
An Evaluation of Adaptive Partitioning of

Real-Time Workloads on Linux

Andrea Stevanato, Tommaso Cucinotta, Luca Abeni

Scuola Superiore Sant’Anna, Pisa, Italy

{a.stevanato,t.cucinotta,l.abeni}@santannapisa.it

Daniel Bristot De Oliveira

Red Hat, Inc., Pisa, Italy

bristot@redhat.com

Abstract—This paper provides an open implementation and
an experimental evaluation of an adaptive partitioning approach
for scheduling real-time tasks on symmetric multicore systems.
The proposed technique is based on combining partitioned EDF
scheduling with an adaptive migration policy that moves tasks
across processors only when strictly needed to respect their tem-
poral constraints. The implementation of the technique within the
Linux kernel, via modifications to the SCHED DEADLINE code base,
is presented. An extensive experimentation has been conducted
by applying the technique on a real multi-core platform with
several randomly generated synthetic task sets. The obtained
experimental results highlight that the approach exhibits a
promising performance to schedule real-time workloads on a real
system, with a greatly reduced number of migrations compared
to the original global EDF available in SCHED DEADLINE.

Index Terms—Real-Time Scheduling, Real-Time Operating
Systems, Linux Kernel

I. INTRODUCTION

Nowadays, processing platforms stopped evolving towards

higher and higher frequencies, taking a tight turn towards

multi-core and multi-processor architectures. This allowed

manufacturers to keep deploying hardware with consistently

higher and higher computing capabilities, overcoming the

thermal and heat dissipation problems which led to the non-

practicality of releasing microprocessors with frequency be-

yond 5 GHz for the general public [1].

Parallel computing platforms are not only taking off

in personal and general-purpose computing (besides high-

performance computing, where they have been the standard

for decades). They are also becoming increasingly adopted and

playing a key role in embedded and real-time systems, where

the growing richness of the required features implies the use of

more and more powerful processing platforms [2], often made

available through multi-core architectures, GPU and FPGA

acceleration [3]. Hence, it is becoming increasingly important

to design efficient and practical scheduling techniques for real-

time applications on multi-core and multi-processor platforms.

However, this is known to be a non-trivial problem [4].

Multi-core real-time schedulers are generally described [5]

as global or partitioned schedulers. In the former case, tasks

can be migrated among cores to respect some scheduling

invariant, whilst in the latter one tasks are statically partitioned

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 871669
AMPERE – “A Model-driven development framework for highly Parallel and
EneRgy-Efficient computation supporting multi-criteria optimisation”.

among the available CPU cores, and a single-processor sched-

uler can be used on each core. A useful trade-off between

these two extremes is the one of clustered schedulers, where

cores are partitioned in clusters, tasks are statically assigned

to clusters and scheduled globally within each cluster.

An interesting new approach that tries to reconcile these

different scheduling approaches exploiting their advantages is

represented by adaptive partitioning EDF (apEDF) [6], [7].

This technique consists in combining an EDF-based parti-

tioned real-time scheduler, with a policy for dynamic migration

of tasks among cores until a schedulable task partitioning is

reached, if possible. At such point, migrations stop and the

scheduler converges to a partitioned scheduler. This happens

for example if a first-fit allocation policy is used, and the task-

set satisfies well-known conditions on its total utilization [8],

[9], making the technique viable for hard real-time workloads.

Even when said conditions are not verified, if a schedulable

tasks partitioning does not exist, adaptive partitioning falls

back to approximating global EDF [6], so that interesting prop-

erties of such an approach can be preserved, like the bounded

tardiness, making it suitable for soft real-time workloads.

However, although the adaptive partitioning approach seems

to have promising properties, it has not been implemented

in a real scheduler yet, having only been evaluated through

simulations, to the best of our knowledge.

In this paper, we present the first implementation of an

adaptively partitioned EDF scheduler, based on Linux, an

increasingly attractive operating system (OS) for real-time

workloads. Currently, Linux supports global EDF scheduling

via the SCHED DEADLINE policy [10]1. Motivated by the results

found by simulation in [6], [7], where apEDF has been shown

to possess a distinguished advantage over a global schedul-

ing approach, we implemented apEDF in Linux modifying

SCHED DEADLINE, replacing its migration mechanism (which

implements global EDF by default) with a new mechanism

based on apEDF. The new scheduler, which is made available

as an open-source patch to SCHED DEADLINE for the commu-

nity, is thoroughly evaluated by running synthetic randomly

generated task sets, as common in the real-time scheduling

community, in the simplifying scenario of independent (non-

interacting) periodic real-time tasks. The obtained results show

that the modified scheduling policy performs better than the

1More information about the SCHED DEADLINE can be
found in the official Linux kernel documentation at
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt

https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt

original one, obtaining a slightly better deadline-miss ratio,

with a greatly reduced number of migrations. Note that this

paper focuses on an experimental evaluation of the proposed

scheduler. Readers interested in schedulability analysis argu-

ments can refer to prior works as detailed next.

II. RELATED WORK

Several works exist in the literature dealing with scheduling

of hard or soft real-time task sets on multi-processor systems.

In the former case [11]–[15], even a single deadline miss

cannot be tolerated and is considered a system failure. In the

latter case [16], [17], a few deadline misses can be acceptable

if their number and frequency can be kept under control.

Approaches based on partitioned scheduling are known to

have the potential of reusing well-known optimal results from

the single-processor real-time scheduling literature, like the

EDF utilization bound [18] for independent periodic tasks,

but they add the burden of having to partition the task set

upfront across the CPUs, which is a NP-hard problem when

optimality is needed. This is normally tackled via integer linear

programming techniques applied off-line [19], [20].

On the other hand, approaches based on global schedul-

ing are easier to adopt, but their capability to saturate the

underlying physical resources is generally reduced. Indeed,

for example, simple utilization-based tests for schedulability

analysis on multi-processors are characterized by poor and

quite pessimistic utilization bounds [21]–[23]. However, in soft

real-time systems one can load the system beyond said limits,

as generally there are techniques to compute the maximum

tardiness a task can achieve under certain conditions, like the

well-known tardiness bound for global EDF [16], [24].

Modifying global EDF restricting migrations at job-level

only [25], it is possible to improve its utilization bound,

and prove that it is optimal among fixed-job-priority algo-

rithms [11]. A number of other works exist about optimality of

global multiprocessor scheduling algorithms [12]–[15], [26].

However, due to the additional complexity needed in the

realization of the above techniques, often requiring higher

implementation overheads, common real-time Operating Sys-

tems focus mostly on simpler scheduling algorithms, either

partitioned or global, and based on either fixed-priority or

EDF. Specifically, partitioned fixed-priority scheduling is the

preferred choice in hard real-time systems. On the other hand,

global EDF-based scheduling is increasingly popular in soft

real-time ones, as witnessed by the SCHED DEADLINE policy

available in the mainline Linux kernel today [10], often applied

to real-time multimedia workloads [27]. Moreover, a number

of works can be found with experimental comparisons among

the performance of global vs partitioned scheduling techniques

under various workload conditions [5], [28].

Linux is a popular platform of choice for evaluating the

effectiveness of real-time scheduling algorithms, often proto-

typed as invasive modifications to the kernel. Indeed, this is

the case of the Litmus-RT framework [29], used for empirical

comparisons among a number of RT scheduling algorithms

and resource handling protocols [30]. Albeit interesting, this

platform was not used in the present work, as we tried to adapt

directly the global EDF scheduler in SCHED DEADLINE, so to

obtain a minimally invasive patch to the mainline code base.

In a number of works, on-line partitioning techniques were

investigated, to leverage the advantages of partitioned schedul-

ing, yet being capable of adapting the system configuration

depending on dynamic run-time workload conditions.

To this purpose, common heuristics that have been in-

vestigated include first-fit, worst-fit and next-fit, which have

been studied in depth also in other contexts, such as memory

management [31]–[33]. Useful surveys on the topic can be

found in [34], [35]. Many of these works focus on the concept

of absolute approximation ratio: this is the minimum number

of bins that are needed to pack a number of items with different

weights, when using one of the above mentioned bin-packing

heuristics, as compared to the number that would have been

sufficient if using an optimal approach. Some authors focused

on the asymptotic value of such an approximation ratio,

achieved as the size of the problem grows to ∞. For example,

one interesting result in the area is the 12/7 ≅ 1.7143 bound

for the first-fit heuristic [35]. However, many of these works

are not concerned with scheduling of real-time tasks, so they

do not study the effectiveness of the mentioned heuristics on

the performance, in terms of slack and/or tardiness, obtained

when scheduling various real-time task sets.

Note that the present study is strongly motivated by [8],

where heuristic partitioning techniques are applied to real-time

scheduling, analyzing the effectiveness of utilization-based

admission tests and demonstrating optimality of the first-fit

policy, among the ones usable in the context.

III. DEFINITIONS AND BACKGROUND

This section provides some definitions and a quick overview

of the adaptive partitioning approach.

A. Task Model

The scheduler selects tasks from a (dynamic) set Γ = {τi}
of real-time tasks τi and dispatches them on M (identical)

CPU cores. A real-time task τi is seen as a stream of jobs

{Ji,k}, each arriving (becoming ready for execution) at time

ri,k, executing for a time ci,k and then finishing at time fi,k.

Notice that the finishing time fi,k of each job depends on

the scheduling decisions. Each task is also associated with a

relative deadline Di and each job Ji,k must finish within its

absolute deadline of di,k = ri,k +Di: if fi,k ≤ di,k, then the

deadline of Ji,k is respected, otherwise it is missed. Task τi
respects all of its deadlines if ∀k, fi,k ≤ di,k ⇒ ∀k, fi,k −
ri,k ≤ Di. Finally, the tardiness of job Ji,k is defined as

max{0, fi,k − di,k}.

A real-time task τi is often periodic with period Pi, if

∀k, ri,k+1−ri,k = Pi, or sporadic with minimum inter-arrival

time Pi among subsequent jobs, if ∀k, ri,k+1 − ri,k ≥ Pi;

in this work, we make the simplifying assumption of implicit

deadlines, i.e., ∀i, Di = Pi, and we assume to know a reason-

able estimation of the Worst-Case Execution Time (WCET) Ci

of each real-time task, respecting the condition: Ci ≥ ci,k ∀k.

Based on these definitions, it is possible to define a task

utilization Ci/Pi, which is often used to perform admission

tests. For example, it is well known [18] that, on single-CPU

systems, a set of periodic or sporadic real-time tasks as defined

above, scheduled by the EDF algorithm [36], will not miss any

deadline if
∑

iCi/Pi ≤ 1.

B. Scheduling on Multi-Core Platforms

In what follows, with reference to symmetric multi-

processing (SMP) architectures, we use the terms core, CPU

or processor interchangeably to refer to a single independent

computation unit. Note that dealing with such problems as

cache-level or other architecture-level interferences among

tasks running on different cores or processors, sharing cache

memories or memory controllers on the platform, are out of

scope for the present paper. In a simplistic view, any possibe

worst-case interference of said kind is assumed to be implicitly

accounted for in the WCETs used for the tasks. Moreover, we

restrict the discussion to EDF-based scheduling of real-time

task sets on multi-processor platforms.

Traditionally, scheduling is performed with either parti-

tioned or global approaches. The former ones partition all

tasks Γ = {τi} across the cores so that each partition Γj ⊂ Γ is

statically associated to a single core j, and EDF scheduling can

be used on each core. This allows analyzing the schedulability

of each Γi independently on each core, assuming it is possible

to partition the tasks among cores in a way that the condition∑
τi∈Γj

Ci/Pi ≤ 1 holds for each CPU j. Unfortunately, there

are a number of well-known cases where this is not possible,

like the task set Γ = {(6, 10, 10), (6, 10, 10), (6, 10, 10)},

where each task is specified as a triplet (Ci, Di, Pi), which is

not schedulable on 2 cores using a partitioned approach.

On the other hand, global scheduling approaches are

able to dynamically migrate tasks among cores so that the

m earliest-deadline ready tasks are scheduled, where m is

the minimum between the number of cores and the num-

ber of ready tasks. Looking again at the task set Γ =
{(6, 10, 10), (6, 10, 10), (6, 10, 10)}, it is clear that some dead-

lines will be missed also when using global EDF (gEDF),

but in this case the finishing times of all jobs will never

be much larger than the absolute deadlines (in practice,

∀i, k, fi,k−ri,k ≤ 12). This bounded tardiness is a property of

the gEDF algorithm which holds when
∑

Ci/Pi ≤ M , with

M being the number of cores [16].

The Linux kernel implements a global EDF algorithm (for

its SCHED DEADLINE scheduling policy) by using M per-core

ready task queues (runqueues — rq) and by migrating tasks

among the runqueues so that the global EDF invariant (at any

time, the M earliest deadlines ready tasks are scheduled) is

respected. These migrations are performed by three different

routines in the scheduler: select task rq() (invoked every

time a task becomes ready for execution), pull (invoked every

time a task blocks) and push (invoked every time a task is

inserted in a runqueue). This way, every time the set of the

M earliest deadline tasks changes, the kernel has a chance

to balance it, so that such tasks are inserted in M different

runqueues.

C. Adaptive Partitioning

In this paper, we perform an experimental evaluation of the

apEDF and a2pEDF algorithms, originally introduced in [7]

where they were accompanied by a simulation-only evaluation.

Basically, the essence of these algorithms is to schedule

tasks so that runqueues are not overloaded (∀j, Uj ≤ 1)

while reducing the number of migrations. In apEDF, pull

operations are disabled and the select task rq() function is

modified to select a runqueue rq(τi) so that its total utilization

Urq(τi) =
∑

{i:τi∈Γrq(τi)
} Ci/Pi is smaller than the least-upper

bound guaranteeing schedulability U lub (U lub = 1 for EDF).

Here, Γj = {τi : rq(τi) = j} is the set of tasks assigned to

core j (that is, the set of tasks inserted in runqueue j). As a

result, tasks are migrated only at wake-up time. In a2pEDF,

pull operations are re-introduced, but are only used when a

core becomes idle (so, tasks are not pulled to cores that are

already executing a SCHED DEADLINE task) and do not pull

tasks from cores having utilization Uj ≤ U lub. Additional

details on how these techniques have been implemented in

the Linux kernel are provided in Section IV. Finally, in the

definitions of the apEDF and a2pEDF algorithms the symbol

dj represents the absolute deadline dh,l of the job currently

executing on core j (if the core is idle, dj = ∞ is assumed).

Based on these definitions, the apEDF algorithm works by

assigning each task τi to runqueue 0 (rq(τi) = 0) when it is

created, and by using Algorithm 1 (taken from [6]) to select

a more appropriate runqueue for task τi when a new job Ji,k
arrives. Then, tasks are scheduled on each CPU according to

EDF (so, U lub = 1).

While the complete description of the algorithm can be

found in [6], [7], here we just notice a few important facts:

• If τi is already assigned to a non-overloaded runqueue

(Urq(τi) ≤ 1), then it is not migrated (see Lines 1 and 2

of the algorithm). This means that if the tasks’ assignment

converge to a schedulable task partition, then no further

migrations are performed

• If the First Fit (FF) heuristic is able to find a runqueue j
where τi is schedulable (Uj + Ci/Pi ≤ 1), then the task

is migrated to core j (rq(τi) = j); see Lines 4 − 8 of

the algorithm. This means that the FF heuristic is used

to search for a schedulable task partition

• If τi cannot be assigned to any core without overloading

it (∀j, Uj +Ci/Pi > 1), then rq(τi) is selected as in the

original SCHED DEADLINE “push” operation, according to

global EDF (see Lines 9 − 17 of the algorithm). This

means that the algorithm implements a fallback to global

EDF if no schedulable task partition can be found.

The a2pEDF algorithm extends apEDF by adding a pull

operation that works as in Algorithm 2 (here, “second(j)” is

the first non-executing task in runqueue j and d′j is its absolute

deadline — or ∞ if the runqueue contains less than 2 tasks).

This is similar to the “pull” operation used by the original

Data: Task τi to be placed with its current absolute

deadline being di,k; state of all the runqueues

(overall utilisation Uj and deadline of the

currently scheduled task dj for each core j)

Result: rq(τi)
1 if Urq(τi) ≤ 1 then

/* Stay on current core if schedulable */

2 return rq(τi)
3 else

/* Search a core where the task fits */

4 for j = 0 to M − 1 do /* Iterate over all the

runqueues */

5 if Uj + Ci/Pi ≤ 1 then

6 return j /* First-fit heuristic */

7 end

8 end

/* Find the runqueue executing the task

with the farthest away deadline */

9 h = 0

10 for j = 1 to M − 1 do /* Iterate over all the

runqueueus */

11 if dj > dh then

12 h = j
13 end

14 end

15 if dh > di,k then

/* τi is migrated to runqueue h, where

it will be the earliest deadline one

*/

16 return h

17 end

/* Stay on current runqueue otherwise */

18 return rq(τi)
19 end

Algorithm 1: Algorithm to select a runqueue for a task τi
on each job arrival (from [6]).

SCHED DEADLINE policy, but only pulls tasks from overloaded

cores to idle cores.

The basic idea of a2pEDF is to solve the issue of apEDF of

not being work-conserving (a core might be idle while some

real-time tasks are ready for execution but not scheduled). This

issue happens because with apEDF the runqueue rq(τi) on

which a job Ji,k is enqueued is decided at time ri,k and a

core different from rq(τi) might become idle later (so the

selection can be sub-optimal).

Note that the apEDF algorithm follows the restricted mi-

gration approach [25], while a2pEDF does not (as “pull” can

migrate jobs after they started to execute on a core if they

have been preempted by earlier-deadline jobs).

D. Properties of the Algorithms

A preliminary schedulability analysis of the apEDF algo-

rithm2 has already been performed [6], [7]. In particular, two

2The analysis applies to a2pEDF too.

Data: Runqueue rq where to pull; state of all the

runqueues

Result: Task τi to be pulled

1 if rq is not empty then

2 return none

3 else

4 τ = none; min = ∞;

/* Search for a task τ to pull */

5 for j = 0 to M − 1 do /* Iterate over all the

runqueues */

6 if Uj > 1 then

7 if d′j < min then

8 min = d′j

9 τ = second(j)

10 end

11 end

12 end

13 return τ
14 end

Algorithm 2: Algorithm to pull a task in a2pEDF

(from [6]).

important properties have been proved:

• apEDF is able to schedule every task set with U =∑
i Ci/Pi ≤ (M+1)/2 without deadline misses (derives

from [8] assuming a maximum task utilization of 1);

• if a schedulable task partition is found, after it is reached

the migrations stop.

Based on these properties, it is already possible to provide

some basic schedulability guarantees.

Other properties have been conjectured, and seem to be valid

according to simulations. These conjectures (which will be

confirmed by the experimental results presented in this paper)

allow to provide soft real-time guarantees and more accurate

hard real-time guarantees. In particular:

• if a schedulable task partition exists, then Algorithm 1

converges to it in a finite number of steps, by only

migrating tasks that have been assigned to cores j with

Uj > 1;

• hence, if an optimal partitioning algorithm can find a

schedulable task partition, then only a few deadlines will

be missed (in the first jobs of each task). After an initial

transient, no deadlines will be missed;

• if
∑

j Uj ≤ M , then each task τi experiences a bounded

tardiness: ∃L : ∀τi ∈ Γ,maxk{fi,k − di,k} ≤ L.

These theoretical and experimental results show that apEDF

and a2pEDF are designed to provide the best properties of

partitioned EDF and global EDF.

IV. IMPLEMENTATION

This section describes our modifications to the Linux

kernel version 5.7.0, to implement apEDF and a2pEDF as

described in Section III-C. The patch is publicly available at:

https://github.com/thymbahutymba/linux/tree/v5.7-apedf. Our

implementation relies conveniently on the kernel scheduler

https://github.com/thymbahutymba/linux/tree/v5.7-apedf

design based on multiple per-core runqueues, as described

in Section III-B. The patch modifies SCHED DEADLINE with

additional code that can be used to switch at run-time the

scheduler behavior among the original gEDF policy, apEDF

or a2pEDF.

The main functions implementing the migrations for gEDF

that have been modified in this work are:

• push dl task();

• pull dl task();

• select task rq dl();

• enqueue task dl().

The push dl task() function has the purpose to find a

suitable CPU where to possibly push ready-to-run tasks (the

“pushable” tasks) from the current runqueue. In the original

code base, this is done either to a CPU that is not running

any SCHED DEADLINE task, or to the one that is running the

SCHED DEADLINE task with the least urgent deadline.

In apEDF, the original push dl task() function has been

renamed as push dl task global edf(), while a new func-

tion push dl task xf() has been added to realize the apEDF

logic in Algorithm 1. In the end, the push dl task() has

been rewritten as a wrapper that calls either one or the push

functions, depending on the kernel configuration. Additionally,

for a2pEDF, the original pull dl task() function has been

renamed as pull dl task global edf(), and a new func-

tion pull dl task xf() has been added to implement the

a2pEDF logic in Algorithm 2. Finally, the pull dl task()

function has become a simple wrapper that calls either one of

the pull functions, depending on the kernel configuration.

In gEDF, when all cores are running deadline tasks, push

and pull use the following functions to find the runqueue

running the task with the latest deadline:

• find lock later rq();

• find later rq();

• cpudl find().

Therefore, in the implementation of apEDF the same

scheme has been reused for the push operation. In

push dl task xf() the functions that are exploited, to find

the first runqueue where the pushable task fits, are:

• find lock xf suitable rq();

• find xf suitable rq();

• first fit cpu find().

In order to implement the first-fit policy, we exploited the

total utilization Uj already tracked by the Linux kernel, in the

form of the “runqueue bandwidth” field stored in the this bw

field of the dl rq data structure of a runqueue, implementing

Lines 1− 8 of Algorithm 1.

For the implementation of a2pEDF, the function

pull dl task xf() has been added so that, if the a2pEDF

is the current scheduler, the pull is started only from an idle

runqueue and pulls only from an overloaded runqueue, i.e.,

one with a total bandwidth greater than 1.

The aim of the select task rq dl() function is to search

the right CPU for a task when it is created, or when it wakes

up after suspension. A criticality we faced in this regard, is

due to the fact that, when changing scheduling policy from

CFS to SCHED DEADLINE, the select task rq dl() was not

called. In our apEDF implementation, in the worst-case a new

SCHED DEADLINE task is pushed to the right CPU, according to

the apEDF policy, when it wakes up after its first block/sleep.

This will be fixed in a future revision of the patch.

In order to choose whether to use gEDF with respect to

apEDF or a2pEDF, a few sysctl tunables have been added.

These tunables may be found in the /proc/sys/kernel direc-

tory, all with a common prefix of sched dl:

• sched dl policy allows for choosing the policy to use,

setting it to 0 for gEDF, or 1 for apEDF or a2pEDF;

• sched dl xf pull allows to enable the pull of a2pEDF,

when set to 1;

• sched dl fallback to gedf allows to enable the fall-

back to gEDF in the push operation, when set to 1 (lines

9− 17 in Algorithm 1).

Note that real-time tasks often implement a periodic be-

haviour using the clock nanosleep() system call (or similar).

In this case, if a job of the periodic task finishes after the end

of the period the task does not block waiting for the next

activation (because when clock nanosleep() is invoked to

wait until a time in the past, it returns immediately without

blocking the task). Therefore, in this case, the task continues

execution straight into the new job, and it does not wake-

up at its beginning. However, there is no way the kernel can

distinguish the beginning of the new job, unless specialized

APIs are introduced for the purpose3. We deal with this

scenario by recurring to a push operation when the reservation

is replenished.

Finally, when a task changes its scheduling policy to

SCHED DEADLINE without blocking, the kernel can continue

to execute it on its previous core, breaking the apEDF policy.

To fix this issue, the first time that the task blocks and wakes-

up the push function has to be invoked even if the task is

not executing on an overloaded core (in other words, the first

time that Algorithm 1 is invoked for a task, the check at Line

1 must be skipped).

V. EXPERIMENTAL EVALUATION

The apEDF and a2pEDF algorithms, implemented modify-

ing the SCHED DEADLINE code base as described in Section IV,

have been experimentally validated, comparing their perfor-

mance with the one of the mainline gEDF of Linux. To this

purpose, a number of task sets have been randomly generated,

and run to the hyperperiod, dumping on disk the experienced

response-time of all the jobs at the end of each run, as well as

the number of migrations across CPUs experienced by each

task throughout each run. This allowed us to build useful

statistics by which the mentioned comparison is carried out,

through the text that follows.

3If the application uses the sched yield() function to terminate the current
job and wait for the next period, then it always blocks, however the use of this
capability of SCHED DEADLINE is discouraged because of the risk of skipping
a whole period needlessly.

4.5 5.0 5.5 6.0 6.5 7.0 7.5
Utilization

10−5

10−4

10−3

10−2
de

ad
lin

e
m
i

 ra
tio

gEDF
apEDF-FF
a2pEDF-FF

8 CPUs, taskset with 16 tasks

(a)

4.5 5.0 5.5 6.0 6.5 7.0 7.5
Utilization

10−5

10−4

10−3

10−2

de
ad

lin
e
m
i

 ra
tio

gEDF
apEDF-FF
a2pEDF-FF

8 CPUs, taskset with 16 tasks

(b)

Fig. 1. Mean (a) and median (b) of the deadline-miss ratio (on the Y axis)
achieved with various values of U (X axis), in the case of 8 CPUs and 16

tasks. Note that points that are not marked in correspondence of X ticks imply
a value of 0 on the Y axis, which is logarithmic.

A. Taskset Generation and Experiments Set-up

To carry out the experiments, many task sets have been gen-

erated by using the well-known Randfixedsum algorithm [37],

using different numbers of tasks, from 2 to 8 tasks per core,

a total utilization ranging from 0.4 ∗M to 0.95 ∗M , with a

number of cores M ranging from 2 to 8. Note that the range

of tried utilizations goes well beyond the limit of (M +1)/2,

where apEDF is known to behave well from theory [8]. For

each configuration, 10 different task sets have been generated,

and each run lasted for a time equal to twice the hyperperiod

2 ∗H .

The experiments have been carried out on a Dell R630 dual-

socket server equipped with two Intel(R) Xeon(R) E5-2640

v4 CPUs at 2.40GHz, with frequency blocked at 50% and

hyperthreading disabled (thus 20 cores are available, albeit

we used only up to 8 cores as the focus of this paper is on

the comparison with simulation-based results reported in [6]).

B. Experimental Results

Figure 1 (a) shows the average deadline-miss ratio (on the Y

axis) obtained at a total utilization U of the task sets (on the X

axis) varying in the range from 4.4 to 7.6, with M = 8 CPUs

and 16 tasks. As visible, a2pEDF behaves noticeably better

than both apEDF and gEDF at high utilization values. This

result is also confirmed by the median of the deadline-miss

ratio experienced by the various task sets of each utilization,

as reported in Figure 1 (b).

Figure 2 (a) shows the mean (on the Y axis) of the deadline-

miss ratio achieved with a variable number of tasks, in the

range from 15 to 25, at a fixed total utilization of the task sets

15 16 17 18 19 20 21 22 23 24 25
Tasks

10−3

10−2

de
ad

lin
e

m
iss

 a
tio

gEDF
apEDF-FF
a2pEDF-FF

8 CPUs, utilization 7.6

(a)

15 16 17 18 19 20 21 22 23 24 25
Tasks

10−4

10−3

10−2

de
ad

lin
e

m
iss

 a
tio

gEDF
apEDF-FF
a2pEDF-FF

8 CPUs, utilization 7.6

(b)

Fig. 2. Mean (a) and median (b) of the deadline-miss ratio (on the Y axis)
achieved with various numbers of tasks (X axis), in the case of 8 CPUs and
U = 7.6. Note that points that are not marked in correspondence of X ticks
imply a value of 0 on the Y axis, which is logarithmic.

at U = 7.6, and still on M = 8 CPUs. Even in this case, the

results show that a2pEDF behaves quite well with respect to

the other two. However, the median of the deadline-miss ratio,

visible in Figure 2 (b), highlights that often gEDF behaves

slightly better than a2pEDF, but there are task sets for which

it behaves a lot worse, thus the apparent discrepancy between

the mean and median deadline-miss ratio plots.

Figure 3 (a) depicts the average number of migrations per

job experienced by the task sets with each algorithm, with 16
tasks and at varying total utilizations in the range from 4.4
to 7.6. Note that gEDF has the highest number of migrations

which increase at higher utilizations. a2pEDF has a higher

number of migrations than apEDF due to the pull operation,

however the migrations are close to zero. The fact of having

fewer migrations helps in reducing the number of missed

deadlines. Similarly, Figure 3 (b) reports the same information

fixing U = 7.6 but with a number of tasks varying in the range

from 15 to 25. It is evident that, as expected, gEDF suffers of

the highest number of migrations, whilst a2pEDF has a slightly

higher number of migrations than apEDF, again expected due

to the exploitation of the pull opportunities. Considering that

task migrations risk to have a non-negligible impact on the

execution times of the tasks, we can conclude that, also from

this viewpoint, a2pEDF exhibits a very good behavior.

Figure 4 (a) shows the average deadline-miss ratio (on the

Y axis) obtained at a total utilization U of the task sets (on

the X axis) varying in the range from 2.4 to 3.8, with M = 4
CPUs and 16 tasks. As visible, a2pEDF behaves better than

both apEDF and gEDF almost always, indeed for U < 3.6
the average deadline-miss ratio is equal to 0. However, for

4.4 5.4 6.4 7.4
Utilization

0.0

0.5

1.0

1.5

2.0

gEDF
apEDF-FF
a2pEDF-FF

Av
er

ag
e

m
ig

ra
tio

ns
 p

er
 ta

sk
se

t

8 CPUs, taskset with 16 tasks

(a)

15 16 17 18 19 20 21 22 23 24 25
Tasks

0.0

0.5

1.0

1.5

2.0

2.5
gEDF
apEDF-FF
a2pEDF-FF

Av
er

ag
e

m
ig

ra
tio

ns
 p

er
 ta

sk
se

t

8 CPUs, utilization 7.6

(b)

Fig. 3. Average number of migrations per job (on the Y axis), averaged
through all the task sets, in the case of 8 CPUs, with: (a) various values of U
(X axis) and 16 tasks; (b) various numbers of tasks (X axis) and U = 7.6.

2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
Utilization

10−5

10−4

10−3

de
ad

lin
e

m
iss

 a
tio

gEDF
apEDF-FF
a2pEDF-FF

4 CPUs, taskset with 16 tasks

Fig. 4. Mean of the deadline-miss ratio (on the Y axis) achieved with various
values of U (X axis), in the case of 4 CPUs and 16 tasks. Note that points
that are not marked in correspondence of X ticks imply a value of 0 on the
Y axis, which is logarithmic.

utilization 3.7 and 3.8, a2pEDF and gEDF are almost similar.

Figure 5 (a) shows the mean (on the Y axis) of the deadline-

miss ratio achieved with a variable number of tasks, in the

range from 7 to 15, at a fixed total utilization of the task sets

of U = 3.8, and M = 4 CPUs. Even in this case, the results

show that a2pEDF behaves quite well with respect to the other

two. However, the median of the deadline-miss ratio, visible

in Figure 5 (b), for a number of tasks greater than 10, shows

again that gEDF often performs slightly better than a2pEDF,

being a work-conserving policy, but in some cases it performs

a lot worse (similarly to what reported in Figure 2).

Figure 6 (a) depicts the average number of migrations per

job experienced by the task sets with each algorithm, with 16
tasks and varying total utilizations in the range from 2.4 to 3.8.

Note that, even in this case, gEDF has the highest number of

migrations which increase at higher utilizations. a2pEDF has

a higher number of migrations than apEDF due to the pull

operation, however the migrations are close to zero confirming

7 8 9 10 11 12 13 14 15
Tasks

10−5

10−4

10−3

10−2

de
ad

lin
e
m
iss

 ra
tio

gEDF
apEDF-FF
a2pEDF-FF

4 CPUs, utilization 3.8

(a)

7 8 9 10 11 12 13 14 15
Tasks

10−4

10−3

10−2

de
ad

lin
e
m
iss

 ra
tio

gEDF
apEDF-FF
a2pEDF-FF

4 CPUs, utilization 3.8

(b)

Fig. 5. Mean (a) and median (b) of the deadline-miss ratio (on the Y axis)
achieved with various numbers of tasks (X axis), in the case of 4 CPUs and
U = 3.8. Note that points that are not marked in correspondence of X ticks
imply a value of 0 on the Y axis, which is logarithmic.

2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
Utilization

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
gEDF
apEDF-FF
a2pEDF-FF

Av
er

ag
e

m
ig

ra
tio

ns
 p

er
 ta

sk
se

t

4 CPUs, taskset with 16 tasks

(a)

7 8 9 10 11 12 13 14 15
Tasks

0.0

0.5

1.0

1.5

2.0

gEDF
apEDF-FF
a2pEDF-FF

Av
er
ag

e
m
ig
ra
tio

ns
 p
er
 ta

sk
se

t

4 CPUs, utilization 3.8

(b)

Fig. 6. Average number of migrations per job (on the Y axis) experienced by
the task sets, in the case of 4 CPUs, with: (a) various values of U (X axis)
and 16 tasks; (b) various numbers of tasks (X axis) and U = 3.8.

again that, having fewer migrations helps in reducing the

number of missed deadlines. Similarly, Figure 6 (b) reports

the same information fixing U = 3.8 but with a number of

tasks varying in the range from 7 to 15. It is evident that, as

expected, gEDF suffers of the highest number of migrations,

whilst a2pEDF has a slightly higher number of migrations

than apEDF, again expected due to the exploitation of the pull

opportunities.

Note that, among the experiments mentioned above, we

measured an overhead due to the apEDF and a2pEDF al-

gorithms below 3µs. This was the maximum duration of

the select runqueue and push kernel functions, among all

invocations observed over roughly 12 hours of experimentation

with the above mentioned scenarios.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a study on the properties and perfor-

mance of EDF-based adaptive partitioning strategies [6] for

scheduling real-time tasks on multi-processor platforms. In

particular, it focused on the apEDF and a2pEDF scheduling

algorithms, that allow for a schedulability analysis that is

less pessimistic than the one known in the literature for

gEDF, while allowing to handle in a soft real-time sense

non-partitionable task sets that partitioned EDF could not

schedule. This results in better performance of the scheduled

task sets, from the viewpoint of both the experienced deadline-

miss ratio, and the number of migrations enforced by the

scheduler. This has been highlighted through an extensive

set of experiments conducted using an implementation of the

technique within the SCHED DEADLINE code base in the Linux

kernel, and applied on synthetic randomly-generated task sets.

The presented results let us conclude that the a2pEDF

algorithm provides a smaller tardiness than apEDF at high

utilizations, and with a small number of tasks. In this situation,

apEDF performs slightly worse than gEDF while a2pEDF

provides better performance than gEDF. The improvements

of a2pEDF come at a reasonable cost, due to the additional

migrations performed in pull operations, which are designed to

impact only tasks that are running (both apEDF and a2pEDF

never migrate a running task).

In the future, it would be interesting to evaluate the new

scheduler with a number of additional and more realistic

workload scenarios: for example, data-intensive applications

for which the impact of the reduced migrations could have

a noticeable impact, as well as audio and video processing

pipelines on Android platforms, considering that in this context

there has already been some interest in exploiting real-time

scheduling [27]. However, such real scenarios need at least to

extend the technique to make it applicable, for example, to

the general case of real-time DAGs [38], and with an energy-

awareness policy [39], for example leveraging the Energy

Aware Scheduling framework in the Linux kernel.

Finally, additional work is needed to demonstrate what

theoretical properties apEDF and a2pEDF possess, and under

what conditions exactly task sets with various characteristics

can be guaranteed to be scheduled without deadline misses. A

challenging practicality point in this area is the one to consider

support for arbitrary affinity task sets, as unavoidable in a

complex OS like Linux. A number of promising works [40],

[41] exist in this area that might be merged into the present

line of research.

REFERENCES

[1] L. J. Flynn, “Intel Halts Development Of 2 New Microprocessors,”
https://www.nytimes.com/2004/05/08/business/intel-halts-development-
of-2-new-microprocessors.html, May 2004.

[2] V. Nélis, P. M. Yomsi, L. M. Pinho, J. C. Fonseca, M. Bertogna,
E. Quiñones, R. Vargas, and A. Marongiu, “The Challenge of
Time-Predictability in Modern Many-Core Architectures,” in 14th

International Workshop on Worst-Case Execution Time Analysis,
ser. OpenAccess Series in Informatics (OASIcs), H. Falk,
Ed., vol. 39. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2014, pp. 63–72. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2014/4605

[3] E. Quiñones, S. Royuela, C. Scordino, L. M. Pinho, T. Cucinotta,
B. Forsberg, A. Hamann, D. Ziegenbein, P. Gai, A. Biondi, L. Benini,
J. Rollo, H. Saoud, R. Soulat, G. Mando, L. Rucher, and L. Nogueira,
“The AMPERE Project: A Model-driven development framework for
highly Parallel and EneRgy-Efficient computation supporting multi-
criteria optimization,” in 23rd IEEE International Symposium on Real-
Time Distributed Computing, Nashville, Tennessee (virtual), 2020.

[4] S. Baruah, M. Bertogna, and G. Buttazzo, Multiprocessor Scheduling

for Real-Time Systems. Springer, 2015.

[5] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “An empirical
comparison of global, partitioned, and clustered multiprocessor edf
schedulers,” in 31st IEEE Real-Time Systems Symposium, San Diego,
CA, USA, 2010, pp. 14–24.

[6] L. Abeni and T. Cucinotta, “EDF Scheduling of Real-Time Tasks on
Multiple Cores: Adaptive Partitioning vs. Global Scheduling,” SIGAPP

Appl. Comput. Rev., vol. 20, no. 2, p. 5–18, Jul. 2020.

[7] ——, “Adaptive partitioning of real-time tasks on multiple processors,”
in 35th Annual ACM Symposium on Applied Computing, New York,
USA, 2020, p. 572–579.

[8] J. M. López, M. Garcı́a, J. L. Diaz, and D. F. Garcia, “Worst-case utiliza-
tion bound for EDF scheduling on real-time multiprocessor systems,” in
12th Euromicro Conference on Real-Time Systems, Stockholm, Sweden,
2000, pp. 25–33.

[9] A. Mascitti, T. Cucinotta, and L. Abeni, “Heuristic partitioning of
real-time tasks on multi-processors,” in 2020 IEEE 23rd International

Symposium on Real-Time Distributed Computing (ISORC), 2020, pp.
36–42.

[10] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling
in the linux kernel,” Software: Practice and Experience, vol. 46, no. 6,
pp. 821–839, June 2016.

[11] S. K. Baruah, “Optimal utilization bounds for the fixed-priority schedul-
ing of periodic task systems on identical multiprocessors,” IEEE Trans-

actions on Computers, vol. 53, no. 6, pp. 781–784, June 2004.

[12] B. Andersson and E. Tovar, “Multiprocessor scheduling with few pre-
emptions,” in 12th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications, Sydney, Australia, Aug
2006, pp. 322–334.

[13] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time schedul-
ing algorithm for multiprocessors,” in 27th IEEE International Real-

Time Systems Symposium, Rio de Janeiro, Brazil, 2006, pp. 101–110.

[14] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “Run: Optimal
multiprocessor real-time scheduling via reduction to uniprocessor,” in
32nd IEEE Real-Time Systems Symposium, Vienna, Austria, 2011, pp.
104–115.

[15] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “Dp-fair: A
simple model for understanding optimal multiprocessor scheduling,” in
Proceesings of the 22nd Euromicro Conference on Real-Time Systems,
Brussels, Belgium, July 2010, pp. 3–13.

[16] U. C. Devi and J. H. Anderson, “Tardiness bounds under global edf
scheduling on a multiprocessor,” Real-Time Systems, vol. 38, no. 2, pp.
133–189, February 2008.

http://drops.dagstuhl.de/opus/volltexte/2014/4605

[17] P. Valente and G. Lipari, “An upper bound to the lateness of soft
real-time tasks scheduled by edf on multiprocessors,” in 26th IEEE
International Real-Time Systems Symposium, Miami, FL, USA, 2005,
pp. 311–320.

[18] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” Journal of the Association for
Computing Machinery, vol. 20, no. 1, pp. 46–61, Jan. 1973.

[19] T. Megel, R. Sirdey, and V. David, “Minimizing task preemptions and
migrations in multiprocessor optimal real-time schedules,” in 31st IEEE

Real-Time Systems Symposium, San Diego, CA, USA, 2010, pp. 37–46.

[20] A. Wieder and B. B. Brandenburg, “Efficient partitioning of sporadic
real-time tasks with shared resources and spin locks,” in 8th IEEE Inter-

national Symposium on Industrial Embedded Systems, Porto, Portugal,
June 2013, pp. 49–58.

[21] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability anal-
ysis of edf on multiprocessor platforms,” in 17th Euromicro Conference

on Real-Time Systems, Balearic Islands, Spain, July 2005, pp. 209–218.

[22] M. Bertogna and M. Cirinei, “Response-time analysis for globally sched-
uled symmetric multiprocessor platforms,” in 28th IEEE International
Real-Time Systems Symposium (RTSS 2007). Tucson, AZ, USA: IEEE,
December 2007, pp. 149–160.

[23] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling of
periodic task systems on multiprocessors,” Real-Time Systems, vol. 25,
no. 2, pp. 187–205, September 2003.

[24] J. Erickson, U. Devi, and S. Baruah, “Improved tardiness bounds for
global edf,” in 22nd Euromicro Conference on Real-Time Systems, 2010,
pp. 14–23.

[25] J. H. Anderson, V. Bud, and U. C. Devi, “An edf-based restricted-
migration scheduling algorithm for multiprocessor soft real-time sys-
tems,” Real-Time Systems, vol. 38, no. 2, pp. 85–131, Feb 2008.

[26] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportion-
ate progress: A notion of fairness in fesource allocation,” Algorithmica,
vol. 15, no. 6, pp. 600–625, 1996.

[27] A. Balsini, T. Cucinotta, L. Abeni, J. Fernandes, P. Burk, P. Bellasi, and
M. Rasmussen, “Energy-efficient low-latency audio on android,” Journal
of Systems and Software, vol. 152, pp. 182–195, 2019.

[28] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari, “An experimental
comparison of different real-time schedulers on multicore systems,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2405–2416, 2012.

[29] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “Litmus-rt: A testbed for empirically comparing real-time
multiprocessor schedulers,” in 27th IEEE International Real-Time Sys-

tems Symposium, 2006, pp. 111–126.

[30] B. B. Brandenburg and J. H. Anderson, “A Comparison of the M-PCP,
D-PCP, and FMLP on LITMUSRT,” in Principles of Distributed Systems,
T. P. Baker, A. Bui, and S. Tixeuil, Eds. Springer, 2008, pp. 105–124.

[31] R. L. Graham, “Bounds on multiprocessing anomalies and related pack-
ing algorithms,” in May 16-18, 1972, Spring Joint Computer Conference,
New York, NY, USA, 1972, pp. 205–217.

[32] D. S. Johnson, “Approximation algorithms for combinatorial problems,”
Journal of Computer and System Sciences, vol. 9, no. 3, pp. 256–278,
1974.

[33] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham, “Worst-
case performance bounds for simple one-dimensional packing algo-
rithms,” SIAM Journal on Computing, vol. 3, no. 4, pp. 299–325, 1974.

[34] D. Simchi-Levi, “New worst-case results for the bin-packing problem,”
Naval Research Logistics (NRL), vol. 41, no. 4, pp. 579–585, 1994.

[35] J. Boyar, G. Dósa, and L. Epstein, “On the absolute approximation ratio
for first fit and related results,” Discrete Applied Mathematics, vol. 160,
no. 13, pp. 1914–1923, 2012.

[36] M. L. Dertouzos, “Control robotics: The procedural control of physical
processes,” Information Processing, vol. 74, pp. 807–813, 1974.

[37] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in Proceedings 1st International Workshop

on Analysis Tools and Methodologies for Embedded and Real-time
Systems, Brussels, Belgium, 2010, pp. 6–11.

[38] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho, “Response time
analysis of sporadic dag tasks under partitioned scheduling,” in 2016

11th IEEE Symposium on Industrial Embedded Systems (SIES), 2016,
pp. 1–10.

[39] A. Mascitti and T. Cucinotta, “Dynamic Partitioned Scheduling of
Real-Time DAG Tasks on ARM big.LITTLE Architectures,” in 29th

International Conference on Real-Time Networks and Systems (RTNS
2021), Nantes, France, April 2021.

[40] A. Gujarati, F. Cerqueira, and B. B. Brandenburg, “Schedulability
analysis of the linux push and pull scheduler with arbitrary processor
affinities,” in 25th Euromicro Conference on Real-Time Systems, 2013,
pp. 69–79.

[41] V. Bonifaci, B. Brandenburg, G. D’Angelo, and A. Marchetti-
Spaccamela, “Multiprocessor real-time scheduling with hierarchical pro-
cessor affinities,” in 28th Euromicro Conference on Real-Time Systems,
2016, pp. 237–247.

	Introduction
	Related Work
	Definitions and Background
	Task Model
	Scheduling on Multi-Core Platforms
	Adaptive Partitioning
	Properties of the Algorithms

	Implementation
	Experimental Evaluation
	Taskset Generation and Experiments Set-up
	Experimental Results

	Conclusions and Future Work
	References

