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Congestion is a cardinal sign of heart failure (HF). In the past, it was seen as a homogeneous epiphenomenon that identified patients with
advanced HF. However, current evidence shows that congestion in HF varies in quantity and distribution. This updated view advocates for

a congestive-driven classification of HF according to onset (acute vs. chronic), regional distribution (systemic vs. pulmonary), compartment

of distribution (intravascular vs. extravascular), and clinical vs. subclinical. Thus, this review will focus on the utility of circulating biomarkers

for assessing and managing the different fluid overload phenotypes. This discussion focused on the clinical utility of the natriuretic peptides,
carbohydrate antigen 125 (also called mucin 16), bio-adrenomedullin and mid-regional pro-adrenomedullin, ST2 (also known as interleukin-1
receptor-like 1), cluster of differentiation 146, troponin, C-terminal pro-endothelin-1, and parameters of haemoconcentration. The utility

of circulation biomarkers on top of clinical evaluation, haemodynamics, and imaging needs to be better determined by dedicated studies.

Some multiparametric frameworks in which these tools contribute to management are proposed.
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Schematic summary of circulating surrogate biomarkers of congestion. bioADM, biologically active adrenomedullin; BNP, B-type natriuretic
peptide; CA125, carbohydrate antigen 125; CD146, cluster of differentiation 146; ET-1, endothelin-1; ICAM-1, intercellular adhesion molecule-1;
IL, interleukin; NT-proBNP, N-terminal pro-B-type natriuretic peptide; TNF-a, tumour necrosis factor alpha; VCAM-1, vascular cell adhesion

molecule-1.

Keywords Congestion e Acute heart failure o

Congestion in heart failure (HF) is defined as signs and symp-
toms of extracellular fluid accumulation that result from increased
cardiac filling pressures.’
imbalance between neurohormonal axes with opposite actions:

sodium/water retention and vasoconstriction (mainly adrener-

It is induced and perpetuated by an

gic, renin—angiotensin—aldosterone, and vasopressin systems) ver-
sus natriuretic and vasodilatation (mainly cardiac endocrine func-
tion).’* Congestion is also a central component in the definition of
HE> and most HF hospitalizations are due to congestion either as
predominantly fluid overload, compartmental fluid redistribution,

Biomarkers

or a mix of both mechanisms."**

Beyond the traditional view as
a surrogate for HF severity, the current perspective considers
fluid accumulation/redistribution are causally involved in HF and
organ damage progression. Thus, congestion contributes to the
HF-associated impairment of functional and structural changes in
multiple organs and systems (Figure 7).

Despite most patients with worsening HF (WHF) experience
a substantial clinical improvement when treated with diuretics,
there are several gaps in knowledge. First, the severity of con-
gestion is not linearly associated with the severity of HF (left

© 2022 European Society of Cardiology
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Figure 1 Clinical implications of organ congestion in heart failure. Congestion can lead to organ injury, dysfunction, and, ultimately, the failure
of target organs (i.e. heart, lungs, kidneys, liver, intestine, vessels, and brain). Pulmonary congestion is the net result of increased left-sided filling
pressures, which may lead to cardiopulmonary remodelling (i.e. endothelial dysfunction, fibrosis, and thickening of the extracellular matrix),
pulmonary vasoconstriction, and, finally, pulmonary hypertension. Congestion of organs in the abdominal cavity is the net result of right-sided
dysfunction and venous congestion. Passive congestive hepatopathy due to increased central venous pressure may initially lead to cholestasis.
However, chronic hepatic congestion may result in hepatic fibrosis and cirrhosis. Congestive nephropathy due to increased central venous
pressure and extrarenal compression (i.e. intra-abdominal hypertension) may lead to a pressure-induced reduction in renal blood flow, renal
hypoxia, increased interstitial pressure, and finally, interstitial fibrosis. Intestinal congestion leads to increased gut permeability and translocation
of endotoxins (pro-inflammatory state), gastrointestinal hypoperfusion, protein-losing enteropathy, and cardiac cachexia. Furthermore, gut
involvement complicates chronic heart failure treatment by decreasing intestinal absorption. For instance, oedematous changes in the intestinal
wall may alter the absorption rate of certain drugs such as furosemide. Additionally, the pro-inflammatory cytokine milieu resulting from
bacterial and lipopolysaccharide translocation to the systemic circulation can also alter the expression of various drug-metabolizing enzymes
and transporters.

or right ventricular dysfunction). In other words, some patients
with severe left ventricular (LV) dysfunction remain euvolaemic
and show no signs of congestion. In contrast, other patients
have severe congestion with relatively mild objective structural
or functional abnormalities.® For instance, high-output HF does
not necessarily require significant structural cardiac abnormali-
ties and should also be considered in differential diagnoses of
patients with clinical congestion. Among them, high-output HF

© 2022 European Society of Cardiology

includes a wide variety of underlying conditions (i.e. obesity,
severe anaemia, cirrhosis, arteriovenous shunts, chronic hyper-
capnia, among others) associated with reduced arterial vascular
resistance and high output. The common factor in all these condi-
tions seems to be a reflex increase in sympathetic activity through
baroreceptors that leads to decreased renal blood flow, activa-
tion of the renin—angiotensin—aldosterone system, and sodium
and water retention.3* Second, the optimal decongestion strategy
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remains elusive in most HF patients regardless of LV ejection frac-

tion,3*

mostly reflecting the heterogeneous severity and organ dis-
tribution of fluid overload and the low accuracy of classic symptoms
and signs in grading congestion.! Thus, searching for new clinical
tools, especially those widely available in clinical practice, should
be a research priority in the HF field.

Historically, fluid overload in HF was considered a homogeneous
and uni-compartmental epiphenomenon that identified patients
with more advanced disease. In contrast, current evidence shows
that fluid and sodium accumulation in HF are heterogeneous in
quantity and distribution. An updated view of congestion advocates
for the classification of HF-related fluid overload according to onset
(acute vs. chronic), regional distribution (systemic vs. pulmonary),
compartment of distribution (intravascular vs. interstitial vs. third
spaces), and clinical versus subclinical. A better understanding
and identification of the different congestion ‘phenotypes’ could
probably translate into improving HF management.

Therefore, this review will focus on the utility of circulating
biomarkers in identifying and managing different congestion phe-
notypes.

Pressure-volume disconnection:
fluid overload versus fluid
redistribution

The pathophysiology of congestion in HF is highly complex and
multifactorial. Although too simplistic, it can be viewed as a
dynamic interplay between cardiac function, the roles of interstitial
and intravascular fluid compartments, the integrity of the endothe-
lium, and how the kidney manages the sodium/liquid homeostasis
at the tubular level.” This multifactorial and complex pathogenesis
may be conditioning the disconnection between congestion-driven
pressures and congestion-driven volume expansion, resulting in
patterns that varied widely between patients on severity and organ
distribution.®~® For instance, some patients presenting with WHF
and elevated cardiac filling pressures may have a predominant fluid
redistribution (from splanchnic to pulmonary vascular territory)
(Figure 2). In contrast, others may show a long-standing and gradual
interstitial volume expansion (tissue congestion)® (Figure 2).

Congestion phenotypes

Congestion in HF can be characterized based on the compartment
and regional distribution (Figure 3).

Regional distribution: pulmonary versus
systemic

As stated before, regional/organ distribution of congestion is not
a homogeneous process in HFE®® In patients with predominant
left-sided HF, pulmonary congestion dominates; however, with the
involvement of right-sided chambers and/or pulmonary arterial
hypertension, systemic congestion becomes a dominant presenta-
tion.>¢~? These differences in the distribution of fluid overload are

also the basis of the re-classification of acute HF (AHF) recently
proposed in the 2021 European Society of Cardiology (ESC) guide-
lines in (i) HF with predominant peripheral fluid accumulation, (ii)
acute decompensated HF as patients with acutely decompensated
HF where lung congestion — favoured by splanchnic district veno-
constriction — led to acute pulmonary oedema.’

Compartment distribution: intravascular
versus extravascular

Patients with decompensated HF showed marked elevation of car-
diac filling pressures. In normal hearts and afterload held con-
stant, LV torsion is a preload-dependent phenomenon in which
volume loading results in a net increase in peak systolic LV twist-
ing and subsequent early diastolic untwisting rate.'® This inter-
dependence between systolic twisting and diastolic untwisting
(viscoelastic suction) explains why healthy hearts can accommo-
date a larger preload volume without significantly increasing pul-
monary capillary wedge pressures. In HF, however, there are
diverse LV twisting alterations and reduced and delayed untwisting.
Consequently, the failing heart cannot adequately accommodate
preload volume increase at rest or during exercise, leading to
elevated pulmonary capillary wedge pressures."’ Moreover, pul-
monary pressures may also be high due to enhanced ventricular
interdependence in the context of right ventricular—pulmonary
arterial uncoupling at rest (i.e. isolated right-sided HF) or during
exercise.!! Although this elevation in filling pressures is commonly
related to the inability of the heart to accommodate and distribute
central blood volume, changes in systemic venous function also
play a crucial (and under-appreciated) role in regulating central
haemodynamics.'?

Most blood volume resides within the venous circulation, and
its distribution can be divided into stressed and unstressed vol-
umes."""2 The unstressed volume (approximately 70% of venous
blood volume) refers to the amount of blood necessary to fill the
vascular space at a transmural pressure equal to zero. It represents
a blood reservoir pooled in venous capacitance veins that can be
mobilized into the central circulation when needed'""? (Figure 4). In
contrast, the stressed volume (approximately 30% of venous blood
volume) describes the additional volume of blood that increases
wall tension, determining venous return and cardiac preload'"
(Figure 2). Importantly, the autonomic nervous system tightly reg-
ulates the distribution of stressed and unstressed blood vol-
ume."® Accordingly, increased sympathetic activation — common
in patients with decompensated HF — may lead to a functional
shift of blood from the unstressed volume (mainly from splanch-
nic veins) into the central circulation, resulting in a striking and
acute increase in central venous pressures and the development
of congestion-related symptoms.’> Therefore, a substantial pro-
portion of patients present with a predominantly vascular type of
congestion.>'>* |n these patients, acute venous tone dysregulation
rather than total blood volume expansion seems to be the principal
underlying mechanism.

Another compartment phenotype is characterized by impaired
sodium and water excretion due to increased neurohormonal
activation and cardiorenal dysfunction.1 As a result, there is a

© 2022 European Society of Cardiology
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Figure 2 Fluid redistribution (A) versus volume overload (B). (A) The relationship between circulatory filling pressures (pulmonary and
systemic) and total blood volume (unstressed blood volume [UBV] + stressed blood volume [SBV]) is non-linear, such that a significant amount
of volume is required before any significant rise in circulatory filling pressures occurs. However, the venous tone is a crucial modifier of SBV
in the setting of constant total blood volume. For instance, increased sympathetic activation — common in patients with decompensated heart
failure — may lead to a functional shift of blood from the unstressed volume (systemic and pulmonary capacitance vessels), increasing circulatory
filling pressures despite constant total blood volume. (B) Total blood volume progressively increases as fluid start to accumulate due to sodium
and water retention since the early stages of an exacerbation. Because UBV is constant, there is a progressive rise in SBV and circulatory
filling pressures. Together with other factors such as vascular permeability and Starling forces between the plasma and interstitium, part of
the fluid overload is shifted towards the interstitial compartment because of net capillary filtration. Because of markedly increased lymphatic
function, interstitial fluid is initially efficiently drained without fluid accumulation. Nevertheless, when lymph flow reaches a plateau, the rate of
transudation from capillaries into the interstitium exceeds lymphatic capacity, and fluid starts to build up in the interstitial space.

relatively gradual development of vascular congestion reflecting
an absolute increase in extracellular fluid and sodium content
(tissue congestion), as is illustrated in Figure 2. The above will
lead to a progressive and sustained increase in venous pres-
sures that finally shift the Starling forces between the plasma
and interstitium towards net capillary filtration. However, due
to the limited compliance of the interstitial glycosaminoglycan
(GAG) network and increased lymphatic function, interstitial
fluid is initially efficiently drained, and there is no interstitial fluid
accumulation.” However, once lymph flow is maximized, the rate
of transudation from capillaries into the interstitium may then
exceed lymphatic capacity, and fluid accumulates in the interstitial
space.’ Moreover, the long-term positive sodium balance may
compromise the interstitial GAG network’s integrity and buffering
capacity, lowering its tensile force.” Consequently, the interstitial
matrix becomes highly compliant, and slight increases in hydro-
static capillary pressure are sufficient to drive interstitial fluid
expansion.’'® Other factors such as lower plasma osmolarity,
inflammation and increased vascular permeability,>'” may also be
playing a role in the pathogenesis of tissue congestion. Additionally,

© 2022 European Society of Cardiology

third-space fluid accumulation in serosal cavities is not uncom-
mon.23 However, the mechanisms behind the shift to a third-space
fluid accumulation are not fully understood, requiring more
evaluation.

Clinical implications

An integrative assessment of symptoms and signs, imaging, and
circulating biomarkers seems necessary for identifying the predom-
inant congestion phenotype (Figure 3). Additionally, some clinical
characteristics may help to reveal the predominant phenotype. For
instance, those with an acute presentation more frequently present
intravascular pulmonary congestion due to fluid redistribution. On
the other extreme, patients with predominant tissue congestion
will also show long-term evolution, gradual onset, and greater
severity of systemic congestion (Figure 3). Not infrequently, these
distinct phenotypes overlapped, resulting in mixed clinical patterns.
Moreover, these phenotypes may change over time — patients may
transition from one predominantly to another along the course of
the disease.
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Figure 3 Congestion phenotypes. Time onset, utility of circulating biomarkers, and potential therapeutic implications. We propose four
congestion phenotypes: pulmonary intravascular, pulmonary tissular, systemic intravascular, and systemic tissular. An integrative assessment
using symptoms, signs, imaging, and circulating biomarkers may be useful for identifying the predominant congestion phenotype. ldentification
of the predominant congestion phenotype may imply crucial therapeutic implications as proposed. LV, left ventricle; PCWP, pulmonary capillary

wedge pressures; SGLT?2i, sodium—glucose cotransporter 2 inhibitor.

Beyond the pathophysiological considerations, this classification
may also have important therapeutic implications. For instance, and
contrary to those with dominant fluid overload — requiring more
aggressive diuretic therapy — patients with predominant fluid redis-
tribution may benefit from the use of vasodilators and not as much
of an aggressive depletive strategy. In patients with predominant
tissue congestion, strategies aiming to reduce vascular permeabil-
ity and increase vascular refill, such as using hypertonic solutions
with high doses of loop diuretics and sodium—glucose cotrans-
porter 2 inhibitors (SGLT2i), or vaptans, may be more beneficial
than other traditional diuretic approaches (Figure 3)." Also, con-
gestion phenotyping may influence the pertinence and timing of
other guideline-directed medical therapy. For instance, early initi-
ation of SGLT2i and sacubitril/valsartan has been associated with
a greater decongestive effect.’®’” Conversely, early initiation of
beta-blockers in patients with overt congestion status should be
avoided.3*

Role of circulating biomarkers
for assessing the severity
and distribution of congestion

A growing body of evidence supports an integrated and multi-
parametric evaluation of congestion by means of validated clinical
scores, circulating biomarkers, and technical assessments (imaging,
haemodynamics, and impedance-based tools)."?°

The current article provides an overview of the novel and estab-
lished circulating biomarkers for identifying different modalities of
congestion (Graphical Abstract). The biomarkers included in this
review are those identified by the Biomarkers Working Group of
the Heart Failure Association as the more relevant contemporary
biomarkers in HE

Ideal characteristics of a congestion
biomarker

An ideal biomarker should be expressed and produced in different
organs and systems affected by fluid accumulation. Indeed, several
HF biomarkers predominantly reflect stress in other affected
tissues and provide information beyond the heart.?’ An ideal
biomarker in HF should include the following characteristics:
(i) non-invasive, low-cost, easy, and standardized assessment, (ii)
high sensitivity, allowing early detection and no overlap in values
between wet and dry patients, (i) provide specific information
about the congestion phenotype, (iv) be unaffected, or minimally
affected by comorbid conditions, and (v) their levels should be
modified in response to treatment.

Natriuretic peptides

Several studies have correlated B-type natriuretic peptide
(BNP) and its co-secreted amino-terminal propeptide congener
(NT-proBNP) with increased left intracardiac filling pressures and

© 2022 European Society of Cardiology
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Figure 4 Biomarkers in a clinical context. bioADM, biologically active adrenomedullin; BNP, B-type natriuretic peptide; CA125, antigen
carbohydrate 125; CD146, cluster of differentiation 146; HF, heart failure; NT-proBNP, aminoterminal pro-B-type natriuretic peptide; sST2,

soluble ST2.

pulmonary capillary wedge pressures in patients with HE22"2 A
summary of the evidence endorsing the association between natri-
uretic peptides (NPs) and haemodynamic parameters is presented
in online supplementary Appendix S1. The reason why these pep-

tides correlate with left cardiac pressures lies in their origin. The
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biomechanical wall stress induced by plasma volume expansion
and/or pressure overload triggers the release of pre-synthesized
proBNP and transcription of the NP precursor B (NPPB) gene,
leading to the production of the 134-amino acid proBNP hor-

mone precursor (pre-proBNP).2?7 Following its production,
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pre-proBNP is rapidly processed to yield proBNP,_,,5, which is
further cleaved into the bioactive BNP and its biologically inactive
equivalent NT-proBNP by the action of proteases such as corin
or furin.2®?% After this initial processing, within minutes of their
synthesis, both BNP and NT-proBNP are liberated into the plasma,
providing a valuable reflection of the overall cardiac load.23?2-25
The biologic actions of elevated BNP hormone (natriuretic and
vasodilator effects) are counteracted by the peripheral resistance,
which is established at receptorial and post-receptorial level,*°
making HF a condition characterized by second messenger cyclic
guanosine monophosphate (cGMP) insufficiency, hence a target
for several treatments.?!

Despite the proven value of BNP and NT-proBNP for diagnosis
and prognosis across the spectrum of HF syndromes,’*3? several
properties may limit their usefulness for assessing and grading con-
gestion. First, NPs are mainly expressed by the heart, while fluid
overload is systemically extended."3233 Thus, NPs are indirect con-
gestion measures making them not the ideal markers for conges-
tion. Second, a broad range of structural and functional cardiac and
non-cardiac abnormalities are associated with increased ventricu-
lar wall tension leading to substantive elevation of levels of plasma
NPs without being necessarily linked to fluid retention, such as
ischaemia and atrial fibrillation.3233 Third, LV wall stress is the most
potent trigger for NP synthesis and release.?” Accordingly, NPs may
fail to capture the contribution of right-sided HF and its conse-
quences (systemic and extravascular congestion).”3* For instance,
in-hospital single-measurements of NPs in AHF did not predict the
severity of clinical congestion,*® and it lacked prognostic effect in
those with predominant right-sided HF, such as in patients with
severe tricuspid regurgitation.>® Fourth, in addition to primary gen-
eration via increased intracardiac pressures, plasma concentrations
of both NT-proBNP and BNP levels are also influenced by com-
mon conditions in HF such as older age, atrial fibrillation, and renal
dysfunction. Conversely, NPs are inversely related to body mass
index.* Fifth, NPs are not perfect surrogates for filling pressures
and are less accurate in ruling out HF with preserved ejection frac-
tion (HFpEF), especially in the outpatient setting.?’” Furthermore,
some specific conditions are associated with NP deficiency, such
as polymorphisms in the NPPB gene, African ancestry, increased
androgenicity in women, insulin resistance, hypercortisolism, and
certain medications (e.g. spironolactone).®® Thus, it is important
to account for these factors when interpreting NP levels in the
clinical setting.3*

The role of repeated measurement for monitoring changes in
fluid status is also a property that needs to be commented. In gen-
eral, patients with a greater relative reduction in NPs after treat-
ment exhibit a lower risk of adverse events.?>3°~*! For instance,
in chronic HF with reduced ejection fraction (HFrEF), short-term
changes in NP levels predicted the risk of hospitalization for
WHF?* Likewise, recent observational data showed, in at least
two consecutive outpatient visits in an ambulatory setting, that
a decrease in NT-proBNP was associated with improved mor-
tality and morbidity also in patients with HF and mildly reduced
and preserved ejection fraction during routine care.”* Following
an episode of AHF, long-term repeated measurements of high NPs
have also been shown to be independently associated with the risk

of death.*! A descending kinetic pattern identified those at lower
risk of death, although the ability of serial measurements to pre-
dict survival was blunted at longer follow-up.*' However, despite a
clear relationship to cardiac filling pressures and prognosis, changes
in NPs may show either absent or weak to moderate relationship
with indicators of decongestion in AHF"’

The evidence endorsing the utility of NPs for guiding therapy
is mixed. The largest trial and the more recent meta-analysis
showed no prognostic benefit compared to usual care.*>* The
GUIDE-IT included 894 patients with stable LV ejection fraction
<40% and elevated NT-proBNP in the previous month.** The
authors recommended therapy intensification in this study to
achieve a target NT-proBNP of <1000 pg/ml.** The NT-proBNP
guided therapy included, among others, up-titration of diuretic
therapy if NT-proBNP >5000 pg/ml.** No differences were found
in the mean loop diuretic dose over time between both treatment
arms.® Thus, a single value of NPs may not provide relevant
additional information about the overall congestion status.

From a practical point of view, changes in NPs should be inter-
preted together with cardiac structural and functional character-
istics and clinical evaluation. Evaluating the relative modifications
(%) based on each patient’s plasma levels when stable (‘dry lev-
els’) may be more informative about the severity of intracardiac
pressure/volume overload than using a single measurement. In this
context, a practical approach would consider changes >30% as clin-
ically relevant.3>*> For example, in stable ambulatory patients, a
change of 50% seems to indicate a shift in filling pressures.333
Despite the current evidence not supporting NPs as guiding ther-
apy in HF, its short-term changes are useful for monitoring and
guiding initial decongestive therapy in WHF with high levels at pre-
sentation (those with predominant pulmonary congestion).

Pitfalls in interpreting serial changes of natriuretic
peptides in heart failure

First, NPs show a high intraindividual biological variation, hamper-
ing the clinical interpretation of serial measurements.*® Second, the
utility of kinetic of NPs in patients with intrinsically higher levels,
such as the elderly, atrial fibrillation, and those with severe kidney
dysfunction, needs to be more carefully evaluated.*=3¢ Third, their
utility in monitoring decongestion is even less clear in patients with
overt systemic intravascular and tissue congestion, such as those
with predominant right-sided HF.333¢

The clinical utility of mid-regional sequence of pro-A-type natri-
uretic peptide as a biomarker of congestion is less well documented

despite its promising utility for long-term risk stratification.334’

Carbohydrate antigen 125

Carbohydrate antigen 125 (CA125, also called mucin 16 [MUC16])
is a high molecular weight (220 kDa) glycoprotein encoded by the
MUCT16 gene in humans.®®* It is expressed on the surface of cells
derived from the coelomic epithelium (i.e. pleura, peritoneum,
and pericardium) as a membrane-bound protein, or released in
a soluble form via proteolytic cleavage, making it available as a
circulating biomarker.>%>" Although primarily used in monitoring
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ovarian cancers,*® CA125 has also been shown to be elevated in
a wide range of other conditions related to volume expansion,
including cirrhosis, renal failure, and AHF>" It has been postulated
that elevated hydrostatic pressure, mechanical stress, and inflam-
matory stimuli in the setting of congestion may activate mesothe-
lial cells in serosal surfaces, leading to CA125 overproduction
and release.’®*" Indeed, cumulative evidence supports the positive
association between plasma levels of CA125 with tissue conges-
tion/serosal effusions, increased cardiac filling pressures, and other
proxies of right-sided HF3*3" CA125 levels have been shown to
be substantially higher in patients with large serosal effusions and
peripheral oedema than in those without these particular clin-
ical surrogates of volume overload.®" In a recent study includ-
ing 2949 patients hospitalized for AHF, the severity of tricuspid
regurgitation, presence of pleural effusion, and peripheral oedema
were factors closely associated with the magnitude of circulating
CA1253* Likewise, in a substudy of BIOSTAT-CHF, CA125 was
positive and significantly associated with a clinical congestion score
in patients with WHF.>2 More recently, CA125 has also been asso-
ciated with intrarenal venous congestion and high intra-abdominal
pressure in patients with AHF>** adding to the growing body
of evidence supporting the role of this biomarker in identifying
a phenotype of predominant systemic and extravascular conges-
tion.”" Evidence summarizing the association between CA125 and
haemodynamic parameters is presented in online supplementary
Appendix S1.

The close correlation between plasma changes in this biomarker
with disease severity and clinical outcomes was described more
than 20years ago. Nigele et al.>> found, in 71 candidate patients
for heart transplantation, a significant decrease in this biomarker
after heart transplantation (401 +259 U/ml vs. 33 +22 U/ml), and
this trajectory was significantly associated with prognosis. Simi-
larly, D’Aloia et al® showed in 286 patients with predominant
systolic dysfunction that mid-term fluctuations of plasma CA125
were correlated with clinical evolution and prognosis. More recent
studies have confirmed the incremental predictive utility of CA125
changes, especially during the first months after a decompen-
sated HF event, for predicting mortality and readmission.*"" For
instance, a longitudinal study of 946 consecutive patients dis-
charged for AHF showed that the long-term trajectory delineated
by repeated measures of CA125 (3402 observations) predicted
the risk of long-term mortality.*! Most of the substantial decrease
occurred within the first month after discharge, and this trajec-
tory identified the subgroup of lower risk. In contrast, there was
a higher risk in patients in whom CA125 levels remained high or
increased along the course of follow-up.*!

Regarding therapeutical implications, two small randomized clin-
ical trials endorse the role of CA125 in guiding diuretic therapy.>”8
In CHANCE-HEF, 380 patients with a recent AHF decompensation
and CA125 >35U/ml were randomized to standard of care ver-
sus CA125-guided therapy. In the active arm, up/down-titration
of diuretics was more frequent, and it translated to a significant
reduction of the composite outcome of 1-year death/HF admis-
sions, mainly by reducing HF hospitalizations.>” The IMPROVE-HF
trial tested the utility of CA125 for guiding diuretic therapy at pre-
sentation in patients with WHF and renal dysfunction.?® In this last
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study, the CA125-guided diuretic therapy translated into a better
short-term renal function performance.®

To correctly interpret CA125 as a surrogate marker of conges-
tion and its evolution, it is important to highlight some fundamental
aspects of its biology. First, there is a time gap between congestion
onset and CA125 upregulation and release (lagged effect intrin-
sically related to long half-life that ranges from 5 to 12 days).>"*?
Accordingly, the subset of patients with progressive and
long-standing fluid retention (days to weeks) are more likely to have
elevated CA125 plasma levels than those presenting with a more
acute-onset (minute to hours) presentation.’’ Therefore, besides
being valuable for assessing and grading the severity of tissue/third
space fluid accumulation, CA125 could also help estimate the
chronicity of the congestion process.>’ Likewise, serial changes in
CA125 following therapeutic intensification may not capture infor-
mation about short-term decongestion (hours-days).>"*° Con-
versely, weeks after depletive intensification, most patients reached
CA125 <35 U/ml regardless of the wet peak value, and this trajec-
tory was closely related to prognosis.”’ Along this same line, in a
recent study in patients with AHF, variations in CA125>10days
from admission, but not before, were associated with the risk
of 1-year mortality.®® Second, and in contrast to NPs, circulating
CA125 levels are not meaningfully modified by age, LV status,
and kidney function.®' These properties may be advantageous for
its assessment in the elderly, HFpEF, and those with cardiorenal
syndrome. The clinical utility of this biomarking for tailoring decon-
gestive therapy, despite initial encouraging results, requires larger
confirmatory trials. Lastly, the low cost and wide availability of this

biomarker make it easy to implant into daily clinical practice.’’

Bio-adrenomedullin and mid-regional
pro-adrenomedullin

Adrenomedullin (ADM) is a 52-amino acid peptide encoded by the
ADM gene located on chromosome 11.8" Upon its translation, the
ADM precursor (a pre-prohormone composed of 185 amino acids)
is cleaved to yield first proADM and then glycine-extended, inactive
ADM.?2 The latter is subsequently converted to biologically active
ADM (bio-ADM) by enzymatic amidation.®>** Although ADM is

6 its dominant

involved in a wide range of biological processes,
role is thought to be maintaining vascular integrity and permeabil-
ity barrier function and regulating vascular tone.®® ADM diffuses
freely across the vascular barrier and exerts a differential effect
on vascular endothelial cells (predominantly barrier stabilization)
and vascular smooth muscle cells (vasodilatation).” Thus, in sit-
uations like HF and sepsis characterized by endothelial dysfunc-
tion, increased plasma bio-ADM levels may be interpreted as a
compensatory attempt to limit vascular leakage by stabilizing the
endothelial barrier function.®**” A growing body of literature sug-
gests the utility of this peptide as a surrogate marker of congestion
in HE6%8-72 |n patients hospitalized for AHF, bio-ADM was associ-
ated with the severity of clinical congestion score at admission in a
stepwise fashion, and its baseline values were significant predictors
of the presence of residual congestion assessed by clinical conges-
tion score by day 7.7° In recent large cohorts, bio-ADM was asso-
ciated with the presence of oedema, orthopnoea, hepatomegaly,
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and elevated jugular venous pressure.”’’? Interestingly, and even
though CA125 and bio-ADM correlated positively in patients with
WHEF (either in-hospital or in the outpatient setting), the magni-
tude of the association was moderate (r = 0.35).° In a recent
cohort of patients with stable advanced HFrEF undergoing right
heart catheterization, bio-ADM correlates positively with both pul-
monary capillary wedge pressure (r = 0.37, p = 0.003), mean right
atrial pressure (r = 0.46, p <0.001), and NT-proBNP (r = 0.43,
p < 0.001).”® Thus, bio-ADM may reflect the integrated assessment
of both vascular and tissue types of congestion.

The activity of the ADM system may even help to personalize
post-discharge diuretic treatment. Among 1886 patients with AHF,
patients with above-median bio-ADM concentrations derived dis-
proportional long-term benefits if treated with diuretics.”* In the
same study, mid-regional pro-ADM (MR-proADM), a stable pre-
cursor of ADM, had even higher accuracy for predicting 1-year
all-cause mortality versus bio-ADM.”* This last biomarker has
shown to be strongly correlated with mean pulmonary artery
pressure and pulmonary capillary wedge pressure and inversely
correlated with pulmonary artery compliance in subjects with
HFpEF”> A recent study suggests that the association between
levels of bio-ADM and pulmonary capillary pressures decreased
in patients with body mass index >35 kg/m?. Interestingly, in this
work, MR-proADM showed a robust correlation with pulmonary
capillary pressures (r = 0.62, p <0.001), with no differential rela-
tionship based on the presence of obesity.”®

The information regarding the clinical value of changes over time
of these biomarkers for monitoring is more limited. In patients with
clinical signs of residual congestion 7 days after hospital admission,
bio-ADM levels were high at baseline and remained high through-
out the first week of hospitalization.”® Serial short- and long-term
increases in bio-ADM and MR-proADM concentrations have been
reported in patients with HF following sacubitril/valsartan initiation
due to inhibition of neprilysin.”” However, no studies are avail-
able exploring the long-term kinetics of bio-ADM or MR-proADM
across congestion status and clinical outcomes. Therefore, the role
of bio-ADM and MR-proADM in monitoring congestion and guid-
ing therapy remains to be defined. Additionally, further research is
required to clarify whether its plasma levels are influenced by age,
body mass index, LV systolic function, HF aetiology, and liver and
renal function.

Online supplementary Appendix S7 summarizes the evidence
endorsing the association between both biomarkers and haemo-
dynamic congestion.

Soluble ST2

ST2 (also known as interleukin-1 receptor-like 1 [IL1RL1]) is a
member of the Toll-like/interleukin-1 receptor superfamily and
is encoded by the gene ILTRLT located on chromosome 2.78
Alternative splicing generates multiple ST2 isoforms, including a
transmembrane form (ST2 ligand or ST2L) and a soluble circulating
form (sST2),”%8% which is a valuable prognostic biomarker in acute
or chronic HF®'82 The biological action of the ST2 protein is
mediated by the extracellular engagement of ST2L with its ligand,
interleukin-33 (IL-33).2° IL-33/ST2L signalling has anti-hypertrophic

and anti-fibrotic effects via its activation of diverse intracellular
pathways.®> However, sST2 also avidly binds to IL-33 and is viewed
as a decoy receptor, diminishing net transduction of the favourable
effects of IL-33 through ST2L.%

Although sST2 levels are usually low in patients with stable HF,
striking increases in plasma levels are common in AHF and provide
valuable prognostic information.?*8> The mechanisms behind sST2
upregulation in AHF seem to be related to the peripheral release
of pro-inflammatory cytokines by activated vascular endothelial
cells and lung tissue in response to haemodynamic congestion and
inflammation.2¢-88 Indeed, sST2 positively correlates with echocar-
diographic indicators of right-sided HE® and invasively measured
central venous pressure in AHF? It has been recently identified
as a surrogate marker of diuretic resistance in patients with AHF
and renal dysfunction at presentation.”’ Accordingly, sST2 may be
a surrogate marker of pulmonary and vascular congestion in HF.2
Furthermore, the interaction between congestion/inflammation
and sST2 upregulation results in dysfunctional IL-33/ST2L signalling
that blocks its cardioprotective and vascular benefits.83 Thus, this
pathophysiological link could be one of the mechanisms by which
congestion drives further progression of HF.

A single determination of ST2 is associated with additive prog-
nostic information to those provided by clinical variables and car-
diac biomarkers in chronic and acute HF8%3%

Interestingly, the prognostic value of sST2 appears not to be
influenced by renal function.” However, longitudinal studies are
scarce. In a population of 150 patients with decompensated HF
undergoing daily blood sampling for sST2, percent change in ST2
was strongly predictive of 90-day mortality: patients whose ST2
values decreased by 15.5% or more during the study period
had a 7% chance of death, whereas patients whose ST2 levels
failed to decrease by 15.5% in this time interval had a 33%
chance of death.”® In this study, the prognostic value of sST2
changes was independent of variations in NT-proBNP% In a
recent subanalysis of the PIONEER-HF trial (comparison of the
effect of sacubitril/valsartan vs. enalapril on NT-proBNP in patients
stabilized from an AHF episode), baseline sST2 concentrations
yielded prognostic significance for the composite outcome of
cardiovascular death or HF rehospitalization.”” Notably, patients
in the sacubitril/valsartan arm displayed a greater reduction in
circulating sST2 than those receiving enalapril by as early as 1 week,
as well as a potentially better outcome.”’

The exact mechanisms explaining the kinetic of sST2 and the
relationship between changes in this biomarker with clinical out-
comes warrants a more profound evaluation. Additionally, fur-
ther studies evaluating potential interactions with common con-
founders in HF and the ability of this biomarker for monitor-
ing congestion status or guiding depletive therapy are warranted.
A summary of the data linking the association between sST2
and vascular congestion is presented in online supplementary
Appendix S1.

CD146

Cluster of differentiation 146 (CD146) is a 113 kDa glycoprotein
encoded by the CD 146 gene located on chromosome 11.%8 It
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contains a signal sequence of 28 amino acids, an extracellular
portion composed of five immunoglobulin-like domains, a
hydrophobic transmembrane region of 24 amino acids, and a
short intracytoplasmic domain.”® Three isoforms of CD146 have
been described: two membrane-bound isoforms (IgCD146 and
shCD146), and a soluble form (sCD146), which results from
the shedding of the extracellular portion of CD146 through
cleavage by matrix metalloproteinases.”” CD146 is expressed
on endothelial cells (mainly at the endothelial junction), smooth
muscle cells, and pericytes within the whole vascular tree regard-

less of vessel size and location.'%%101

This glycoprotein interacts
with various ligands and mediates pleiotropic functions in vessel
homeostases, such as permeability, angiogenesis, vessel archi-
tecture, stabilization, and healing.”® Not surprisingly, sCD146 is
overexpressed in conditions associated with inflammation, vascu-
lar injury, and endothelial dysfunction (all usually present in AHF
syndromes).'02-105

Current data points to sCD146 as an emerging surrogate of
congestion in HE'%1%7 Higher sCD146 levels have been reported
in patients with peripheral oedema and/or dilated vena cava than
in those without signs of congestion.'” Moreover, sCD146 accu-
rately identified overhydrated haemodialysis patients irrespective
of their BNP values.' Similarly, a peripheral venous stress study
performed by inflating a pressure cuff over forearm veins induced
a rapid and pronounced increase in circulating sCD146 but not of
NT-proBNP in the congested arm.'” Taken together, these pre-
liminary data further indicate that sCD146 is a specific biomarker
of venous congestion and, accordingly, could be of value in differ-
entiating between central and peripheral congestion. However, to
date, the evidence endorsing the association of this biomarker with
haemodynamics and its clinical utility over symptoms/signs and
other proxies of congestion is weak or even missing. Additionally,
how this biomarker is influenced by common comorbidities and
different clinical scenarios in HF requires further clarification.

Troponin

There is a paucity of data linking high levels of troponin with clin-
ical congestion. In patients with advanced HF, after optimization
of medical therapy, patients with detectable cardiac troponin |
showed higher pulmonary artery and pulmonary capillary wedge
pressures.’'® In another study including 133 subjects hospital-
ized for decompensated HF, the authors showed that peripheral
oedema and pulmonary rales on admission were associated with
troponin levels on discharge.’"’ More recently, an elevated tro-
ponin was associated with clinical congestion score in multivariable
models after controlling for ventricular filling pressures and NP
levels, suggesting that subclinical myocardial injury may be an
important contributor to the pathophysiology of congestion.'"?
However, the greatest elevation of this biomarker occurs in
situations outside acute and chronic HE* This fact and the lack of
studies correlating the changes over time of this biomarker and
clinical congestion limits the clinical applicability of using troponin
as a surrogate of congestion. Online supplementary Appendix S1
summarizes the evidence endorsing troponin and haemodynamic
congestion.

© 2022 European Society of Cardiology

C-terminal pro-endothelin-1

Endothelin-1 (ET-1) is a strong vasoconstrictor, which is involved
in inflammation and neurohormonal activation."’® C-terminal
pro-endothelin-1 (CT-proET-1) is the stable circulating precursor
protein of ET-1."" Circulating levels of CT-proET-1 are higher
in patients with HFpEF compared to controls at rest and during
exercise.”® In this same study, CT-proET-1 was strongly correlated
with mean pulmonary artery pressure (r = 0.73) and pulmonary
capillary wedge pressure (r = 0.67).° In a more recent study
of subjects with unexplained dyspnoea, CT-proET-1 was highly
correlated with pulmonary capillary wedge pressures and mean
pulmonary artery pressures and did not display any differential
relationship with body mass index.”® Future studies are warranted
to confirm prior findings and expand the evidence about the utility
of this parameter as a surrogate of congestion.

Haemoconcentration

Haemoconcentration, as indicated by increases in haemoglobin
or haematocrit following intensive depletive treatment, has also
been proposed as a parameter of decongestion.'” Large studies
have shown that haemoconcentration is associated with greater
weight and fluid loss, greater reductions in filling pressures, and
greater decongestion.''*~1 Interestingly, decongestion with stable
haematocrit during treatment has been suggested as a marker of
adequate intravascular plasma refill rate.!"’

Likewise, widely accessible indices for estimating changes in
plasma volume, which incorporates haemoglobin and/or haemat-
ocrit and/or weight, have been shown to correlate with plasma vol-
ume assessed by isotopic techniques in healthy volunteers patients
with HE'1811% Although other studies have questioned their reli-
ability for volume estimation,’® estimated plasma volume status
(ePVS) has been related to adverse outcomes in different HF stud-
e, 118,119,121

Based on the latest published data with the Duarte’s
Strauss-derived instantaneous assessment of  ePVS
(Strauss—Duarte) in acutely decompensated or chronic HF
an actionable threshold of >5.5 ml/g was proposed to define an
excessive congestive status associated with poor outcomes, which
may allow a prospective evaluation to be used as a trigger for
therapeutic action.'??

Changes in kidney function parameters (serum creatinine and
estimated glomerular filtration rate) have also been proposed to
play a role as markers of haemoconcentration in HF. In patients
with successful decongestion, an increase in creatinine may reflect
haemoconcentration rather than worsening renal function.'?-1%7
In contrast, a decrease in renal function together with clinical
data showing persistent congestion is more likely to indicate true
‘worsening renal function’.'?2=1?7 Along this line, a recent analysis of
two large cohorts of patients with AHF (PROTECT, n = 1698 and
RELAX-AHF-2, n = 5586) showed that worsening renal function,
defined as a creatinine increase >0.3mg/dl, in the first 4days
was not associated with worse outcomes when patients had an
adequate diuretic response.’?® However, it is fair to recognize that
haemoconcentration parameters lacked specificity, and their utility
in a single patient required a careful and comprehensive evaluation.
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Putting the circulatory
biomarkers in the clinical context
and future roadmap

A summary of the congestion-related clinical information provided
by circulating biomarkers is presented in Figure 4, together with
tips and caveats for their use and interpretation.

Evaluating congestion in HF is a difficult task as it is crucial to
tailor diuretic treatment to the patient’s needs,'?’
recommended as class | by the ESC guidelines.* The various avail-

and strongly

able tools need to be applied coherently and effectively within
each stage of the patient management cycle (i.e. pre-hospital, at
the emergency room, during hospitalization, and post-discharge).
Whether all patients or a subset could benefit from a multipara-
metric approach — including clinical evaluation, biological biomark-
ers, haemodynamics, and imaging (either sequentially or com-
bined) — to detect signs of congestion, help optimize treatment,
and improve outcomes has yet to be determined in dedicated stud-
ies. Some frameworks in which these tools could (co)-operate
have already been proposed in the current document."?° The opti-
mal set of tools required to identify the predominant congestion
phenotype in each patient is still to be determined. Therefore,
we postulate that further evaluation of different multiparametric
approaches requires the inclusion of NPs and additional circulating
biomarkers, especially those related to tissue congestion. A pro-
posal for an integrative assessment is provided in Figure 3.

Other less specific circulating biomarkers related to congestion
status, such as blood urea nitrogen to creatinine ratio, cholestatic
parameters, and serum sodium, may also have a useful clinical role
in a proper clinical context.*2%130

Another issue that deserves to be evaluated is the interac-
tions between circulating biomarkers and common associated
conditions in patients with HF, such as renal dysfunction® As
already emphasized, the interplay between the heart and the kid-
ney is crucial in HF while also contributing to cardiorenal syn-
dromes.'?~128131 Importantly, such mutual engagement may jeop-
ardize the interpretation of variations in the estimated glomeru-
lar filtration rate. Indeed, ‘true’ worsening renal function may be
associated with worse clinical outcomes, while ‘pseudo’ worsen-
ing renal function — when initiating depletive therapies — would
not.'”” The magnitude of changes in traditional renal function
markers for defining true worsening renal function remains to
be better defined. Prior studies suggest traditional cutpoints for
determining worsening renal function (a drop >20%) in patients
with AHF treated with intensive intravenous diuretics are not
associated with increased markers of kidney tubular injury.'?
The value of acute kidney injury biomarkers in helping to dis-
criminate between true versus pseudo worsening renal func-
tion is yet uncertain.'?>127132133 For instance, serum neutrophil
gelatinase-associated lipocalin (SNGAL), a biomarker that predicts
acute kidney injury in multiple conditions, has shown inconsis-
tent findings in AHF'33 The AKINESIS study showed that SNGAL
proved not to be superior to creatinine for predicting worsening
renal function or in-hospital adverse events in a large cohort of
patients with AHF'3® However, more recent substudies suggest

34 The value of

an interaction with parameters of decongestion.
serum and urinary novel tubular markers in HF requires more eval-
uation.

Moreover, the interpretation of congestion biomarkers might
also be challenging in the setting of acute or chronic variations in
kidney function. Indeed, there is no consensus on cut-off values
used to define HF in patients with acute kidney injury. In patients
with chronic kidney disease, independent of HF status, elevated
plasma levels of NPs are often found as a result of reduced renal
clearance 323

Similar uncertainties about the clinical interpretation of circulat-
ing biomarkers in the setting of elderly patients with HF and those
with concomitant atrial fibrillation, liver dysfunction, and obesity
deserve to be clarified.

Additionally, we must be extremely rigorous in analysing and
implementing novel biomarkers to adopt only those that pro-
vide an extra added value to the physician in terms of under-
standing and handling the disease. Antoniou et al.’>> have recently
undertaken a comprehensive review of biomarker-guided adaptive
trial designs. Their in-depth overview provided clarity in defini-
tion, methodology, and terminology for biomarker-guided adap-
tive trial designs.'® Eventually, this should help in designing future
trials in a more homogeneous and reproducible way. Finally, a
cost-effectiveness evaluation of implementing these biomarkers
into clinical practice requires profound consideration.

Conclusions

Together with NPs, some circulating biomarkers may help clinicians
identify the predominant congestion phenotype of each patient
with HF. Ideally, some circulating biomarkers may also be useful for
monitoring and guiding decongestive therapies. However, further
studies are required to determine which subset of circulating
biomarkers should be included in a multiparametric approach for
assessing congestion.
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