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Adaptive rational equilibrium with forward
looking agents

William Brock,* Pietro Dindo! and Cars Hommes?

In adaptive rational equilibrium dynamics (ARED) agents choose between a costly
rational expectation forecast and a cheap naive forecast, and the fractions using
each of the two strategies evolve over time and are endogenously coupled to the
market equilibrium price dynamics. In this setting, agents are backward looking in
the sense that strategy selection is based on experience measured by relative past
realized profits. When the selection pressure to switch to the more profitable strategy
is high, instability and complicated chaotic price fluctuations arise.

In this paper we investigate the ARED with forward looking agents, whose strategy
selection is based upon expected profits. Our findings suggest that forward looking
behavior dampens the amplitude of price fluctuations, but local instability of the
steady state remains. The global dynamics depends upon how sophisticated the for-
ward looking behavior is. With perfectly forward looking agents, prices converge to a
stable 2-cycle, whereas with forward looking agents who are boundedly rational con-
cerning their estimate of expected profits, small amplitude chaotic price fluctuations
might arise.

We also establish an equivalence relationship between a heterogeneous agent model
with switching of strategies and a representative agent framework, where the repre-
sentative agent optimally chooses between the benefits of a high quality forecast and
the associated information gathering costs. To an outside observer it is impossible to
distinguish between the two.
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1 Introduction

The work of Jean-MichelGrandmont (e.g. Grandmont 1982, 1985, 1998) has played a most
stimulating role in the debate whether adaptive learning might or might not lead to co-
ordination and convergence to self-fulfilling expectations in economic dynamic systems.
This debate is important, because instability of adaptive learning might explain why finan-
cial markets exhibit excess volatility; that is, are more volatile than justified by underlying
economic fundamentals.

Grandmont (1982) surveys the field of temporary general equilibrium theory. In this
theory, at each date ¢, agents form expectation functions for relevant quantities at date
t+ 1, and given these expectations, agents optimize to produce demand functions at date .
Markets then clear at date ¢ to produce equilibrium prices and quantities at date ¢. At date
t+ 1 the process is repeated for going into date ¢ 4 2. A sequence of prices, quantities, and
expectations, is produced. In principle, there could be feedback from equilibrium prices and
quantities into expectations functions but the expectations need not be rational. At each
date t, the actions of the agents are coordinated only by the price system. Unlike rational
expectations the plans for the future that are made by the agents are not coordinated. As
Grandmont (1982, p. 887) puts it:

The aim of temporary equilibrium theory is to study the interaction through markets of
different individuals in a given period, and to analyze the behavior over time of the sequence
of these equilibria.

Grandmont treats both spot markets and futures markets in his review and focuses
mostly on cases where agents plan one period ahead. Radner (1982, p. 950) gives an early
treatment of the rational expectations approach to general equilibrium and links it to the
temporary general equilibrium approach.

More recently, Grandmont (1998) focuses on dynamics rather than conditions for
existence in a general temporary equilibrium setting. Grandmont (1998, p. 743) identifies
an “uncertainty principle” under which learning generates instability:

learning generates local instability of self-fulfilling expectations whenever agents are on
average uncertain about the local dynamics of the system, and thus ready to extrapolate a
wide range of regularities (trends) out of past deviations from equilibrium, and when the
influence of expectations on the dynamics of the system is significant.

Moreover, on local instability and global dynamics Grandmont (1998, p. 743) notes:

I should emphasize that the instability we are talking about is only local, and that plausi-
ble global nonlinearities, originating from the agents’ expectations scheme themselves, may
keep the motion of the system bounded. Thus even in the absence of shocks to the “fun-
damentals”, or to expectations, learning by itself might generate convergence to complex
nonlinear (“chaotic”) attractors, hence self perpetuating endogenous fluctuations, along
which forecasting errors would never vanish.

Finally, Grandmont (1998, p. 744) puts discipline on such complex “learning
equilibria”:
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The ultimate test that this approach will have to pass, however, is that such “learning equilib-
ria” must, to be acceptable, exhibit a reasonable degree of consistency with the agents’ beliefs.
In this respect, one might envision situations in which agents think that they are living in a
world that is relatively simple, although subject to random shocks, but in which deterministic
“learning equilibria” are complex (chaotic) enough to make the agents’ forecasting mistakes
still “self-fulfilling” in a well defined sense.

The purpose of our paper is to study a “toy model” of a compromise economy, along the
lines of Brock and Hommes (1997), where it is costly to possess fully structurally rational
expectations but less costly or free to possess “simpler” expectations. Our key objective is to
study the dynamics of such an economy in the simplest set of minimalist models in which
we can expose the ebb and flow of forces to possess fully structural rational expectations.
Hence, if it were very costly to purchase fully structurally rational expectations our economy
would act more like a Grandmont temporary general equilibrium economy. Instead, if fully
structural rational expectations were cheap our economy would act more like a rational
expectations economy. Although it would be an excellent research project to study such
an economy with endogenous rational choice of the “level of rationality” in a general
equilibrium system at the level of generality of Grandmont (1982) and Radner (1982), it
turns out to be challenging enough to study the impact of this extra level of dynamics of
information choice in a simple cobweb economy as we shall do here.

Brock and Hommes (1997) introduce the concept of adaptive rational equilibrium
dynamics (ARED), which is an endogenous coupling between the selection of expectations
rules and market equilibrium dynamics. In the ARED, the consistency requirement that
has to be imposed upon learning rules, as emphasized by Grandmont, is an evolutionary
selection of strategies; that is, agents switch to rules that have performed well in the recent
past.! Brock and Hommes (1998) apply this evolutionary switching mechanism to an asset
pricing model with heterogeneous beliefs; see Hommes (2006) for an extensive survey of
heterogeneous agent models in economics and finance.

As a simple illustration of the ARED concept, Brock and Hommes (1997) consider
a cobweb model where agents can choose between two predictors: either a cheap naive
predictor, where the forecast for the price for tomorrow is the last observed price, or an
expensive rational expectation (perfect foresight) predictor. To choose between the two
predictors, agents compare their performance as measured by relative past realized profit.
One of the main results in Brock and Hommes (1997) is that, when the selection pressure
to switch between a costly sophisticated rational and cheap simple naive strategy is high,
the price dynamics becomes locally unstable. As prices diverge, errors from the simple,
naive strategy increase and it becomes worthwhile to switch to the costly rational strategy,
pushing prices back close to the steady state. This interaction between a “close to the
steady state destabilizing force” and a “far from the steady state stabilizing force” leads

! Another type of complicated “learning equilibrium” in which forecasting mistakes are “self-fulfilling” in
the spirit of Grandmont is the consistent expectations equilibrium (CEE), introduced in Hommes and Sorger
(1998). In a CEE, agents use a simple linear forecasting rule in an unknown nonlinear economy. A CEE arises
when the sample average and sample autocorrelations of the nonlinear implied law of motion coincide with the
corresponding linear belief. One possibility is chaotic CEE with chaotic price fluctuations with sample average
and sample autocorrelations exactly corresponding to a stochastic AR(1) process. See Bullard (1994), Schonhofer
(1999) and Tuinstra (2003) for similar complicated learning equilibria.
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to complicated, chaotic price fluctuations. These complicated “learning equilibria” are
driven by past realized net profits of the expectation strategies. More precisely, in the Brock
and Hommes (1997) model strategy selection is given by a discrete choice model with a
performance or fitness measure based upon past payoffs, (i.e. realized profits) from earlier
choices of predictors. Therefore, strategy selection is based on “experience” or “regret”, and
agents tend to switch to strategies that have performed well in the (recent) past. In the
Brock and Hommes (1997) model both the naive and the rational agents are backward
looking with respect to the choice of their prediction strategy but forward looking in
their production decision because they want to maximize expected profits. In fact, these
agents implicitly use past profits as a proxy for expected future profits. One might argue
that sophisticated agents should realize that other agents are making their choices in this
backward looking manner and will learn to use a more sophisticated predictor selection
strategy attempting to exploit the backward looking behavior. This reasoning raises the
obvious question: Will the Brock and Hommes (1997) instability results vanish under a
concept of sophisticated forward looking predictor strategy selection?

In this paper, we investigate ARED with agents who are forward looking concerning
their selection of strategies. For this purpose we reconsider the same cobweb model as
in Brock and Hommes (1997), in the case where agents evaluate the different predictors
based upon their expected profit instead of their realized profits. As one might expect with
hindsight, forward looking behavior does dampen some of the instabilities uncovered by
the original Brock and Hommes (1997) work. The tendency to overshoot when “selection
pressure” is high is dampened. Indeed, in one case the erratic dynamics is dampened down
to a stable 2-cycle. In other cases, however, small amplitude chaotic price fluctuations
persist.

Our setup is also related to the concept of quantal response equilibrium introduced
by McKelvey and Palfrey (1995, 1998). They also use a discrete choice model for strategy
selection in a game theoretic setting, with expected payoff as the performance measure. A
similar approach is used by Camerer et al. (2002), who study repeated games with various
levels of rationality. An important difference between these game theoretic settings and
Brock and Hommes (1997) is that in the latter case strategy selection is coupled to the
dynamics of an endogenous variable, say the market price, whose realization affects the
performance of all strategies.

A second contribution of this paper is to formulate a representative agent version of
the model, where the costs of information gathering of more sophisticated strategies are
endogenized. This approach is inspired by Simon (1955, 1957) and more recently by Evans
and Ramey (1992) and especially by Dudek (2004). We formulate hybrid models based
on Brock and Hommes (1997) and Dudek (2004), where a representative agent chooses
optimally among predictors of different quality, where quality is purchased at a cost that
is increasing and convex in quality. We establish a close link between the representative
agent optimizing between the benefits of sophisticated prediction rules and information
gathering costs and a heterogeneous agent framework with switching of strategies. See
Kirman (1992) for a critique upon the representative agent approach in economics and
Hommes (2006) and LeBaron (2006 )for surveys of heterogeneous agent modeling.

244 International Journal of Economic Theory 2 (2006) 241-278 © IAET



William Brock et al. Adaptive rational equilibrium

The paper is organized as follows. Section 2 reviews some facts from Brock and Hommes
(1997) to be used for comparison. Section 3 introduces forward looking behavior with
respect to strategy selection. Two different cases will be discussed, one where agents have
perfect foresight on expected profits for strategy selection and one where agents make a
boundedly rational estimate of expected profits. Section 4 introduces a representative agent
who weighs expected profits versus information gathering costs. Section 5 concludes and
all proofs are contained in an Appendix.

2 The original model

Following Brock and Hommes (1997), we recall some key features of the ARED in the
simple economic setting of the cobweb model with selection of forecasting rules based
upon past realized profits. The cobweb model describes price fluctuations in a competitive
market for a non-storable good that takes one period to be produced. We call p; the
price of the good at time ¢ + 1 and py , | the expectation at time  of the price at time ¢ + 1.
The demand at time ¢+ 1, D(p;+1), is a linear decreasing function:

D(piy1) =A—Bpy1, A>0,B>0. (1

The supply at time ¢+ 1, S, is an increasing function of the producers’ forecasts at time ¢
of the price at time ¢+ 1. More specifically, the supply curve, S, is derived from expected
profit maximization:

S(pf, 1) = Argmax, (xp; | — c(x)), )

where x is the amount of goods he decides to produce at time ¢ and ¢(x) is the production
cost function. Because the decision is taken at time t, but the price is realized only at time
t+ 1, producers have to condition their decision on their expected price py, ;. Taking a
quadratic cost function

2

X
= —, b 0 3
o) = > 3)
gives the linear supply curve:*
S(pis1) = Py (4)

We assume that agents (producers) can choose between two types of predictors, p; ’Jil and
pi?,. Let n! and n? be the fractions of agents choosing at the end of time ¢ (or at the
beginning of time ¢+ 1), respectively predictor 1 and predictor 2. The market clearing
equation at time ¢+ 1 is given by:

D(Pt+1) = ”}S(Pteiﬁ‘i‘”fs(lﬁﬁl)' (5)

2 The general case with nonlinear demand and nonlinear supply is investigated in Goeree and Hommes (2000).
Because it leads to similar results we restrict our analysis to the linear case.
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We now have to specify how agents choose between the two prediction rules. Brock and
Hommes (1997) assume that agents are “comparing” past realized profits. At time t,
the realized profit of strategy i is a function of both the realized price at time ¢, p;, and the
predictor pf’i, i =1, 2, used at time ¢ — 1. The price p; determines the price at which the
goods are sold, and the predictor pf’i determines the amount of good produced by agent
i. As a result, the realized profit at time ¢ under expectations scheme i is given by

_ . _ _ (Y oy _
i = (po p7") = peS(p?) — (S(pf)) = pibpf — ) =P (2p = p):

2b
(6)

We consider the realistic case where one predictor, say p®!, is more sophisticated or of
higher “quality” than the other predictor p®2, which is just an easy to use rule of thumb.
However, the sophisticated predictor is more “expensive” than the simple predictor because
it is more difficult to compute or requires more information gathering. In general, we call
C > 0 the net costs for obtaining the sophisticated predictor.

As mentioned before, the choice of the predictor rule is based on the fitness or per-
formance measure for the two strategies. Brock and Hommes (1997) take last period’s net
realized profits as the fitness measure; that is,’

ul=x!-¢,

t
U =,
AU =An,— C=n} -7} -C,

where AU; is the difference in fitness and A, is the difference in realized profits (ex-cost
for the sophisticated rule). The fraction of the agents choosing predictor 7 at time ¢ is given
by a discrete choice (logit) model:

LoefU
n,= 7 i=12 (7)

where B is the intensity of choice parameter and Z, = ) e? Ul is a normalization factor

such that n! 4+ n? = 1. The model (7) is derived from ah random utility framework; see
Brock and Hommes (1997) for more details and Anderson et al. (1993) for many economic
applications. The intensity of choice parameter, 8, determines how quickly agents switch to
different strategies and it is inversely related to the noise level in the random utility model.
In the extreme case § = 0 there is no switching at all and both fractions are 0.5, whereas
in the other extreme case B = oo all agents switch immediately to the best predictor. In
an evolutionary framework one can refer to 8 as the selection pressure. As 8 increases the
selection pressure increases; that, is more and more agents use the strategy with the higher
fitness.

3 More generally, Brock and Hommes (1997) introduce memory in the fitness measure, which is a weighted
average of past realized profits. In this paper, we focus on the simplest case with fitness determined by last period
realized profit.
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If we introduce m, = n! — n? we can rewrite the market equilibrium equation as:

b e e
A—Bp, 4 = 3 (Ptil(l‘Fmt)"‘Ptﬁl(l - mt)):

where
_ B
mMiy1 = tanh 2 (A?Tt+1 C) .

The framework introduced so far is still general in terms of the actual predictors used.
Following Brock and Hommes (1997) we consider the choice between costly rational
expectations and freely available naive expectations:

el

Piv1 = Pr+1s
e2

Piy1 = Pr

The ARED in the case of a rational expectation predictor “versus” a naive predictor is
then given by:

b
A—Bp 41 = > (pr+1(14+my) + p(1 — my)), (8)

b
m; 41 = tanh (? |:E(Pt+1 - Pt)2 - C]) . 9

The timing in the ARED is important. First, the new market clearing price p;, is deter-
mined using the old fractions n! and n? (or difference in fractions m;,). Second, the new
realized market price p; ;1 is used to update and determine the new fractions n} , ; and n? , |
(ordifferencein fractions 1, 4 1). Notice that in the market clearing equation (8) p; .+ isonly
implicitly defined, but it can easily be solved explicitly by some map p,.; = Fg1(ps, m,).
The ARED of the cobweb model with rational versus naive expectations and strategy selec-
tion based upon realized profits is thus described by a two-dimensional system of nonlinear
difference equations (p; 11, m¢+1) = Fg(pr, my) = (Fg,1(ps, M), Fpo(ps, my)). We dis-
cuss the dynamics of Fg as the intensity of choice, or selection pressure, §, increases.
A straightforward computation shows that the unique steady state of the system is:

A C
E = (p*, T’Tl*) = (H—B’ tanh <—IBT)) .

Notice that the steady state value of the difference in fractions, m* = m*(8), depends upon
B. In particular, when costs for rational expectations C > 0, as the intensity of choice
B increases, the steady-state fraction of rational agents, n'* = (1 4+ m*)/2, decreases and
n'* — 0 as B — o0o. The economic intuition is that at the steady-state p* there is no
fitness advantage in buying a rational predictor, because both predictors predict the same,
correct, value. As the intensity of choice increases more and more agents choose the naive
predictor. The following theorem (theorem 3.1 in Brock and Hommes (1997)) summarizes
the stability of the steady state.
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Theorem 1  Assume that the slopes of supply and demand satisfy b/ B > 1:

(i) When the information costs C = 0, the steady-state E = (p*, 0) is always globally stable.

(ii) When the information costs C > 0, then there exists a critical value B such that for
0 < B < B the steady state is globally stable, while for B > B; the steady state is an
unstable saddle point with eigenvalues 0 and

_ b(d —m*(B))
2B+ b(1+m*(B))’

A(B) =

At the critical value B, the steady-state value m*(8,) = —B/b.

(iii)) When the steady state is unstable, there exists a locally unique period 2 orbit
{(p, m), (—p, m)} with in = —B/b. There exists a B, > By such that the period 2
cycle is stable for B; < B < Ba.

The assumption b/ B > 1 means that if all agents have naive expectations,the market
will be unstable. The case with b/ B < 1 is straightforward because it leads to convergence
to the steady state for all values in the parameter space. In the ARED with b/B > 1, as
soon as information costs are positive an increase in the intensity of choice destabilizes
the system, and yields an unstable saddle point steady state and the creation of a (stable)
2-cycle through a period doubling bifurcation. Brock and Hommes (1997) show that, as
the intensity of choice further increases, the 2-cycle also becomes unstable and a rational
route to randomness, that is, a bifurcation route to complicated chaotic price fluctuations,
occurs. The mechanism responsible for generating complicated price dynamics is the
interplay between a local, close to the steady state, destabilizing force and a global, far from
the steady state, stabilizing force. The interplay is fostered by the evolutionary switching
mechanism. Technically, it is responsible for homoclinic bifurcations and the presence of
strange attractors in the dynamics of prices and fractions, as discussed in detail in Brock and
Hommes (1997). Recently, the same mechanism and type of bifurcations have been shown
to generate complicated price fluctuations in other frameworks, for example a Cournot
duopoly model in Droste et al. (2002) or a financial market where informed and uniformed
agents coexist as in de Fontnouvelle (2000) and Diks and Dindo (2006).

The economic intuition of this phenomenon can be explained in the limiting case
B = +o0. For f = 00, in each period, all agents choose the predictor with the highest
fitness measure, no matter how small or big this difference is. From (9), for 8 = oo, the
difference in fractions m;, is determined by:

+1, if Yp—p)?>C
= b 2
-1, if E(Pt —p1)°=C
so that p; ., is given by:
" if %(pt - Pt—l)2 >C

p
Pi+1= foo( P> Pr—1) = { N b

- , . (10)
z—5b» if 3(p—p1)°=<C
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The following theorem (theorem 3.2 in Brock and Hommes (1997)) characterizes the
price dynamics in this case.

Theorem 2  For B = 00, even when the market is locally unstable (i.e. b/ B > 1) and when
information costs C > 0, the system always converges to the saddle point equilibrium steady
state E = (p*, —1).

The reasoning behind the proof is quite instructive and provides a simple economic
intuition. For 8 = oo in each period either all agents are rational (m = + 1) or all agents

are naive (m = —1). Assume, for example, that all agents are naive and let the price be close
to the steady state. For m = —1 the price will diverge from p* due to the local instability. As
long as m = —1, price fluctuations become bigger (in absolute value) and errors made by

the naive forecast will rapidly increase, until the point where the difference between realized
profits of rational and naive expectations exceeds the costs for rational expectations. At this
point, because 8 = 00, all agents buy the rational predictor, so that m becomes +1, and in
the next period the price jumps immediately onto the steady-state price p*, and remains
there forever.

For future comparison with the model of Section 3, it is instructive to compute the
difference between the maximum and the minimum observable price when § = co. We
define this maximum difference as AL, where the superscript fand the subscript oo refer
to the map f defined in (10).

Lemmal When B = oo, the difference between the maximum and the minimum observable

price is AC’; = 23<Bb—2+b)«/2C/b.

3 Strategy switching with forward looking agents

In the original Brock and Hommes model, agents are backward looking in their selection
of prediction strategies because their choice is based upon past realized profits, but they
are forward looking in their production decision because, given their price forecast, they
maximize expected profits. In this section we discuss the model with forward looking agents,
with both strategy selection and production decisions based upon expected profit. In the
forward looking case, at time ¢ the fitness measure difference used for strategy selection
between the rational and naive predictors becomes:

AUf, =Anf, — C=nf) -7l - C, (11)

where, as before, C represents the costs for the rational expectations predictor.

We will discuss two different versions of the model with forward looking agents,
depending on the way agents compute their expected profit. In Subsection 3.1 all agents
(i.e. both agents using the rational and the naive forecast) have perfect foresight on expected
profits conditional on their production decision. We will refer to this case as perfectly forward
looking agents in strategy selection. In Subsection 3.2 we discuss a different version of the
model where agents using the rational price forecast still have perfect foresight on expected
profits, whereas the agents using the naive price forecast use their most recent observations
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to make a simple estimate of their expected profit. We will refer to this case as boundedly
rational forward looking agents.

3.1 Perfectly forward looking agents

Consider forward looking agents and a discrete choice random utility model, with expected
profit as the fitness measure in the following way. As before, given the expected price p;, |,
the optimal supply S(p;, ) = bp;, , is derived from expected profit maximization with
quadratic production cost function. There are two price forecast strategies available, the
rational forecast at cost C and the free naive forecast. As before, market equilibrium at time
t+ 1 is given by:

A— Bpt+1 = nlbthrl + Tl%bpt. (12)

The fraction of agents who adopt strategy i, 1, is determined through a discrete choice
model as in (7), but this time the fitness of each predictor is measured in terms of the
expectations at time ¢ about profits at time ¢ + 1:

ePUL

0= , 13
; Z (13)

(’,h . . . . . .
where Z, = Y efUi+1 is the usual normalization factor. The rational predictor is evaluated
h
according to:

1 1
Uy =m0 =G, (14)
whereas the naive predictor is evaluated according to:
e,2 e,2
Uy =m0 (15)

In both cases:

e,

Ch=m(pen piy) = P S(07E) — e(S(p7E0))- (16)

T

Notice that the expected profit, nf+' i =1, 2, depends both on the expected price pf:L b
which determines the production decision at time ¢, and on the price that clears the market
attime t+ 1, p;4 1. We assume that the economy works “as if” agents have perfect foresight
on this second price. This implies that whatever their production decision is, agents have
perfect foresight on expected profits. Stated differently, given the production decisions,
fractions of the strategies are determined “as if” agents compute expected profits without
errors.

At this point it is useful to discuss a potential inconsistency problem in the model. If
agents have perfect foresight on the expected profit, then, at time ¢, wouldn’t they also
“know” the price forecast p,, 1? If they could extract the perfect foresight price forecast
from perfect foresight on expected profits, there would be no incentive left to pay the
information cost C for the perfect price forecast. That is, why buy the cow when you can
get the milk for nothing?
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To avoid this behavioral inconsistency, we assume that there is an expert manager who
has “structural knowledge” about the economy enabling him to have structural rational
expectations. Each agent can choose either to run the business by himself or hire an
expert manager with “structural knowledge” of the economy and rational expectations.
The manager promises the agent a sure net profit, after subtracting an (unknown) cost C
for his service. Agents take the decision to hire or not to hire the rational expert manager by
evaluating the fitness measure difference (11), which is computed and announced by the
expert manager and available as public information. The fraction of agents that chooses
to hire the rational expert manager is determined by the difference in fitness announced
by the manager, according to the random utility framework. It is important that agents do
not know the division between profits and costs C in the net revenue they receive from
their manager, because if they did they could derive the perfect foresight forecast from
public information. Notice also that the manager is “credible” in the sense that, given the
production decision of the agents, the manager delivers the net profits that he announces.

We are aware of the limitations of these assumptions and we do not claim this to be
a realistic description of market behavior. Rather, we view this model as an interesting
theoretical benchmark with strategy switching determined by rational forward looking
behavior on expected profits. In this theoretical benchmark, forward looking strategy
switching is not affected by any mistakes of the agents in evaluating their expected profits.
In Subsection 3.2 we will consider the probably more realistic case where some forward
looking agents make mistakes in evaluating their expected payoff.

Under the assumption of perfect foresight on expected profits for both types, the
expected profits for rational respectively naive agents are given by

el

b
Tipq = ”(Pt+1> Pfil) = Pr+1S(Prg1) — c(S(prs1)) = EP?H) (17)

e,2

b
mil = (P> PIE1) = Per1S(p) — c(S(py)) = Ept(zpm - p),  (18)

where we used pfil = pr+1 and pf’jl = p;. Notice that the fitness difference becomes

(11):
e b 2
AUH_l = E(PH-I —p)—C. (19)

The fractions of the two types are determined through a discrete choice model as before,
with fitness measure difference (19). Working again with the difference in fractions m, =
n} — n?, the system is given by:

b
A—Bpiy = > (pr+1(1 4+ my) + p(1 — my)), (20)

b
m; = tanh (g [5(pt+1 — p)t — C:|> . (21)
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0.8 r 4

9(py)

Py

Figure 1 Perfectly forward looking agents. The graph of p,,.; = gsz(p,) for three different values of

B. The three points where all graphs intersect correspond to the steady-state p* (in the middle) and

points where m(p;, p:+1) = 0; that is, where the profit difference of the two strategies is equal to the
net cost, C. Other parametersare: A=1.5 B=1,b=2,C=0.1.

We define a managerial perfect foresight equilibrium to be a time path of prices p;,
produced quantities xé, i = 1, 2, fractions of agents choosing strategy i, n’;, i=1,2,and
point expectation of profits, nfi 1» i = 1, 2, that at each date ¢ satisfies equations (12-18)
with supply equals demand and fulfilled point expectations. Co-evolution of prices and
(differencein) fractionsis described by (20) and (21). We use the extra adjective, managerial,
because our concept of perfect foresight equilibrium requires both agents having perfect
foresight (i.e. fulfilled point expectations) on the amount of net revenue (which is the net
profit received by the agent after deducting the manager’s operating cost, C), as well as the
manager generating profits consistent with perfect foresight on the date ¢ + 1 price p; 1.

It is useful to compare the model with perfectly forward looking agents (20) and (21)
to the original model with backward looking agents (8) and (9). In the forward looking
case the difference in fractions m;, is simply a one period ahead version of the backward
looking case. In fact, in the forward looking case the difference in fractions of the two
strategies, m;, depends upon p; and p; ; 1, implying that the market clearing equation (20)
is only implicitly defined. The following result states that (20) and (21) translate into a well
defined, explicit one-dimensional map p;41 = gg(p:) (see Figure 1).

Theorem3 Given alinear demand and alinear supply curve, for any value of the information
cost C > 0, the intensity of choice B > 0 and the initial price p;, (20) and (21) determine
a well defined map p; .1 = gg(p:). That is, there exists a unique non-negative price p;
such that, at time t + 1, either the market is in equilibrium or the excess supply is positive at
Pi+1 = 0. Furthermore, the map gg is continuous.
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A straightforward calculation shows that, as before, p* = A/(b+ B) is always the
unique fixed point of the map gg. The corresponding fraction difference  is again given
by m*(B) = tanh(—pBC/2). The following theorem characterizes the dynamics:

Theorem 4 Assume that the slopes of supply and demand satisfy b/ B > 1.

(i) When the information costs C = 0, the steady state E = p* is always globally stable.

(i) When the information costs C > 0, then there exists a critical value 8, such that for
0 < B < B1 the equilibrium is globally stable, whereas for B > B, the equilibrium is
unstable with eigenvalue

b0 —m"(B))
2B+ b(1+m*(B))

AMB) =

At the critical value B, the steady-state value m*(8,) = —B/b.
(iii)) When the steady state is unstable, there exists a unique period 2 orbit {p1, p.}. The
period 2 orbit is globally stable for any value of 8 > B;.

Compare the local stability of the system with forward looking agents as specified in
Theorem 4 with the local stability of the system with backward looking agents as specified in
Theorem 1. Points (i) and (ii) of both Theorems imply that for small values of the switching
parameter S the systems behave similarly. When the switching parameter is smaller than
the primary bifurcation value 8, the steady state is stable, whereas for 8 > B, a (stable)
period 2-cycle is created. Notice that the primary bifurcation value B, is the same for
both systems. For larger values of 8, according to (iii), the backward looking and forward
looking cases are different. In the backward looking case the 2-cycle is stable only when
B1 < B < B,, whereasin the perfectly forward looking case the 2-cycle is stable for all values
of the switching parameter B > ;. The rational route to randomness (i.e. the bifurcation
route to chaos) has disappeared because of the perfectly forward looking strategy switching
behavior of the agents. Technically, no homoclinic bifurcation is observed and the interplay
between local instability and global stability is different.

The reason that complicated dynamics does not arise is that perfectly forward looking
agents do not make mistakes in the estimation of their expected profits. In contrast,
backward looking agents use past realized profits to evaluate which predictor to use, and,
therefore, might make big mistakes. In particular, these mistakes might lead to big losses
for the agents who choose a naive predictor, especially when g is high. In fact, in the
backward looking case, when the cheap naive predictor has performed well in the last
period it attracts many agents. This triggers local instability with prices deviating more and
more from the steady state and bigger and bigger errors in profit estimation. When these
mistakes become sufficiently large and B is high, many agents switch back to the rational
predictor, therefore pushing prices back very close to the steady state. However, close to
the steady state the cheap naive predictor works fine and is less costly than the rational
predictor, so that the story repeats. When agents are perfectly forward looking concerning
expected profits, big mistakes by the naive predictor are anticipated by the forward looking
behavior and, therefore, prices will not deviate very far from their steady state nor will they
be pushed back very close to the steady state.
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Figure2 B = oco. Comparison of the map p, 1 = goo(p;) in (22) for perfectly forward looking
agents and the corresponding one-dimensional map in the case of backward looking agents. The
latter has been obtained from the projection of the two-dimensional map p, 1 = foo(ps> pi—1) in
(10) with p,_, given by the inverse-image of ( p;, —1) through the map Fg, 1 (see also the proof of
Lemma 1 in Appendix 6.1). Other parameters: A= 1.5, B=1,b=2C =0.1.

An analysis of the case of an infinite switching parameter enables us to make this point
precise. Remember that in the case of backward looking agents for 8 = oo the price always
converges to the (locally unstable) steady state value, as stated in Theorem 2. As we shall
prove in the next theorem in the case of forward looking agents, in the limit case 8 = oo
prices always converge to a period 2 orbit. For § = oo the map g defined by (20) and (21)
becomes (see Figure 2):

P

pi+/2C/D
Prr1=8x(p) =14
3~ B8P

pr € [0, p* — plU[p*+ P, 00)
pee(p*—p, p*—6p)

N ) (22)
pr€p*—38p, p*+6p]

pe—+2C/b
where p = \/2C/band§ = B/(B+b) < 1.

pr € (p*+38p, p*+Pp)

Theorem 5 For 8 = oo, when the market is locally unstable (i.e. b/B > 1) and when
information costs C > 0 the system always converges to a period 2 orbit. A continuum of
period 2 orbits exists. Furthermore, the difference between the maximum and the minimum
observable price is:

A&:ZL\/ZC/I?;

B+b

that is, A5, = (%)Ago < AL,
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The last part of Theorem 5 points to another difference with the original model
concerning the size of fluctuations. Figure 2 illustrates this difference between the models
with backward looking and forward looking strategy selection. The backward looking map
foo has a higher maximum and a lower minimum; that is, A%, < Ago. The comparison
of the two maps clarifies that the globally stabilizing forces are different. In the backward
looking case agents make larger errors and it takes one extra time period before agents are
ready to switch to the costly rational strategy. Moreover, if the errors have grown too large,
all agents share the same experience and all switch to the costly rational strategy at the same
time. In the forward looking case, agents anticipate large mistakes and start switching to
the rational strategy before the errors grow too large. Moreover, forward looking behavior
prevents all agents switching at the same point in time, but instead ensures a smooth
and gradual switching to the costly rational strategy, leading to smooth dynamics and an
interval of 2-cycles at some not too far away distance from the steady state with rational
and naive agents co-existing (see the parts of the graph of g, parallel to the diagonal). In
this model, forward looking behavior based on expected profits instead of realized profits
leads to smoother transitions and dampened fluctuations in the short run but also prevents
the system from returning (close) to the steady state price in the long run.

The presence of a regular 2-cycle for a large interval of values of the switching parameter
B (e.g. Figure 3) raises the question of whether boundedly rational agents are able to detect
the regular structure from time series observations and exploit it? Stated differently, is
the 2-cycle equilibrium “evolutionary stable”; that is, will the cycle persist when other
boundedly rational agents “invade” the system? We will not address this problem in detail
here, but investigate the question using some simple simulations, illustrated in Figure 4.
The answer depends on whether or not additional boundedly rational forecasting rules
have costs associated with them, (e.g. higher costs when the rule uses more memory). In
what follow, all agents, including those using the new price forecasting rules, have perfect
foresight on expected profits as before. First consider the case where rational expectations
at cost C versus free naive expectations leads to a stable 2-cycle. Suppose a new forecasting
rule, py, | = p;1 (callita period-2 rule), at costs C',0 < C" < C, enters the system. Along
the 2-cycle this period-2 rule has in fact perfect foresight, and because it is cheaper than the
rational perfect foresight rule, many agents will start using the period-2 rule. Figure 4 shows
that the system with rational versus period-2 versus naive locks into another stable 2-cycle,
with smaller amplitude because of the lower costs for the period-2 rule. The costly rational
expectations rule is (almost) driven out of the market and replaced by the cheaper (but still
costly) period-2 rule, but the long-run equilibrium outcome remains a stable 2-cycle (with
smaller amplitude).

Next consider the case where costly rational versus free naive expectations leads to a
stable 2-cycle, and a new period-2 rule at zero costs invades the system. Figure 4 shows that
the system with costly rational versus free naive versus free period-2 converges to a stable
3-cycle of smaller amplitude. The intuition is that along the original 2-cycle, agents switch
to the period-2 rule because its forecast is the same as the rational rule but at no costs.
As a consequence, the amplitude of price fluctuations decreases, which leads to smaller
forecasting errors of the naive rule and, therefore, an increase of the fraction of agents
using the naive rule. With the naive and the period-2 rule both having positive fractions the
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Figure 3 Bifurcation diagrams with respect to 8. The case of (a) backward looking agents
(Section 2), (b) perfectly forward looking agents (Section 3.1) and (c) the case of boundedly rational
forward looking agents (Section 3.2). The other parameters are A = 1.5, B = 1.0, b = 2.0 (so that

p*=0.5)and C =0.1.
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Figure 4 Perfectly forward looking agents. This figure illustrates the persistence of the stable 2-cycle

when free naive and costly rational predictors are available (a) with respect to “invasion” of other

predictors (b—f). If a period-2 predictor emerges ata cost 0 < C’' < C, the stable 2-cycle persists but

with smaller amplitude (b). If a period-2 predictor invades at no cost, the interaction of naive,

rational and period-2 predictors leads to a 3-cycle (c). In (a)—(c), at every step (from left to right and

from top to bottom) a higher period predictor is introduced. This leads to the creation of a stable

4-cycle, a stable 5-cycle and, finally, to the stabilization of the steady state. In all cases, parameters are
A=3,B=1,b=58=300,C=0.1.
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system locks into a stable small amplitude 3-cycle. We can continue the story and introduce
an additional type using a period-3 rule (i.e. p;, | = p_») entering the market. This system
with four different rules locks into a stable 4-cycle with even smaller amplitude, as shown
in Figure 4. Similarly, adding a new fifth type, a period-4 rule, the system locks into a stable
5-cycle with very small amplitude. Finally, adding a period-5 rule, the system stabilizes and
locks into the stable steady state price. The intuition is that with more and more period-k
forecasting rules at no cost, many rules gain positive weight and the system behaves as if
agents use (a weighed average of) past prices as their forecast, therefore stabilizing price
fluctuations.

Thekey point of this simulation exercise is that when new boundedly rational forecasting
rules “invade” the system and more memory comes at higher costs, the stable 2-cycle
persists but has smaller amplitude. In contrast, when there are no costs associated to
boundedly rational rules with more memory, price fluctuations stabilize. This situation
is similar to the simulation experiments of the El-Farol bar problem in Arthur (1994),
where “cycles are quickly arbitraged away” by cycle-detector predictors. Another example,
where autocorrelation structure is arbitraged away by simple rules, is presented in Dindo
and Tuinstra (2006). They argue that this might be a characteristic feature of systems with
negative feedback from expectation to realization, as in the cobweb model.

3.2 Boundedly rational forward looking agents

In the previous subsection all agents were perfectly forward looking concerning expected
profits. In this subsection we back off from perfect rationality and assume that to choose
their strategy some agents only make a boundedly rational estimate of expected profits. As
in the previous subsection, we assume that each agent is faced with the choice of either
hiring an expert manager to run the business or running the business themself. In the
first case, the story unfolds as in the previous subsection: by hiring an expert manager, the
owner is promised at time £ to receive at time ¢+ 1 a sure profit U, ;11 as computed in (14)
and (17). The manager promising this last payoff uses rational expectation and keeps an
(unknown) amount C of the profit of the firm for himself. As a result, U}, = 7}, — C.
Because the agent (the owner of the firm) does not know C, he is not able to extract the
rational expectation price forecast at the time he compares the two expected net profits. The
computation of the fitness in the second case, when the owner decides to run the business
by himself, is done in a different way than in the previous subsection. Equation (15) still
holds but, in this case, we assume that the naive agent makes an estimate of the expected
profit. We refer to this case as boundedly rational forward looking agents. We focus here
on a simple case where the naive agents use their naive forecast both in the production
decision and in the forecast of the expected profit. Instead of (18) he uses:

e,2
t

e e b
g Y1 = T[(ptﬁl’ Ptﬁl) = ”(Pt» pt) = E(pt)z (23)

In Subsection 3.1 agents switch between prediction strategies only because one of the two
is granted a higher profit. In the present case, agents switch between the two predictors
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not only because naive agents make price forecasting errors, but also because they make
a wrong estimate of the expected payoff they will get by using the naive predictor. As we
shall see, this additional error complicates the qualitative dynamics, but does not change
the amplitude of the price fluctuation significantly.

Summing up, at time £, the expected fitness difference of the two predictors is:

. b
AU, = E(p?H - P?) -C. (24)

The fraction of agents using the predictori = 1, 2attime tisasin (13). Using m, = n! — n?,

market equilibrium and the evolution of the fractions’ difference are

b
A— Bpiy1 = 5[pt+l(l+mt)+pt(l_mt)]> (25)
;= tanh (§ E( P2 — 1) — cD . (26)

As in the case of perfectly forward looking agents in (21), the difference in fractions m,
in (26) depends upon p; and p; .1, so that the market clearing equation (25) is again
implicitly defined. The following result states that (25) and (26) determine a well defined,
explicit one-dimensional map p; 1 = hg(p:):

Theorem 6 Given linear demand and linear supply, for any value of the information cost
C > 0, the intensity of choice B > 0 and the price p;, the system ((25) and (26)) implies a
well defined map p; 1 = hg(p;). That is, there exists a unique minimum non-negative price
Dr+1 such that, at time t + 1, either the market is in equilibrium or the excess supply is positive
at p;11 = 0. Sufficient conditions for continuity of the map hg are B < 4/(Ap*) or, when
B > 4/(Ap"),

B ><ZB 4/(Ap) 27)

1+ tanh(—EC zm

Notice that (27) is always satisfied in the limit 8 — 0o. Some graphs of the map hg
and the associated dynamics are given in Figure 5. The fixed point of the system is the same
as before: E = (p*, m*(B)) =(A/(b+ B), tanh(—BC/2)). The following theorem is the
analogue of Theorems 1 and 4 in the case of forward looking boundedly rational agents:

Theorem 7  Assume that the slopes of supply and demand satisfy b/ B > 1.

(i) When the information costs C > 0, then there exists a critical value B, such that for
0 < B < Bi the equilibrium is globally stable, whereas for 8 > B, the equilibrium is
unstable with eigenvalue

b(1 — m*(B))
A = — .
B = =B o+ m(8)
At the critical value B, the steady state value m*(8,) = — B/b.

(ii) When the steady state is unstable, there exists a locally unique period 2 orbit { p;, p,}.
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Figure 5 Boundedly rational forward looking agents. On the left: map and price dynamics for
A=1.5,B=10,b=2.0,C=0.1and 8 = 20. The price dynamics converges to a 2-cycle. On the
right: map and price dynamics for A = 1.5, B = 1.0, b = 2.0, C = 0.1 and B = 140. The price
dynamics is chaotic.

Notice the similarity between Theorems 1,4 and 7. In all cases, the primary bifurcation
leading to local instability is the same. However, after local instability sets in, the global
dynamics becomes quite different. Figures 3 and 6 compare the dynamics of all three cases,
the original backward looking case, the perfectly forward looking case and the boundedly
rational forward looking case. Both forward looking cases clearly have price fluctuations
with smaller amplitude, as explained already in Subsection 3.1. In contrast to the perfectly
forward looking case, with boundedly rational forward looking agents simulations show
that a secondary bifurcation and a rational route to randomness (i.e. a bifurcation route
to chaos) occur, but for higher values of 8 than in the original Brock and Hommes model
and with chaotic fluctuations with smaller amplitude. The investigation of the case 8 = oo
helps us to understand the origins of this difference, the intuition behind it and its economic
consequences.

For 8 = o0, the difference in fractions (26) becomes:

+1, if %(P?-H - P%) >C
-1, if g(ptz+1—pf)<C,

M1 =
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Figure 6 Comparison of the cases with backward looking agents (a) and boundedly rational
forward looking agents (b). In both cases, there exist homoclinic points converging both forward
and backward in time to the steady state. As a consequences in both cases at irregular time intervals
price fluctuations approach the (locally unstable) steady state. The amplitude of price oscillations is
much smaller in the forward looking case. In both cases the parameters are:

A =15, B=0.85,b=2.15(so that p* = 0.5), 8 = 200 and C = 0.1.

and, using (25), the price at time ¢ + 1 becomes

p* if p1>+/pi+2C/b
Piri=14-2%p, if piv1<VpP+2C/b
\/m otherwise.

If we define p such that /p>+2C/b= p* and p such that A/B— (b/B)p =

V P*+2C/b, the map ho, becomes:*

p*) Pt < p
pt+1 =h00(pt) = \% P?+2C/b, P € [p) p~] (28)
% - %Pt: pt > p.

Two graphs of the map h, are given in Figure 10 in the Appendix illustrating the proofs.
The following theorem states that, if the market is sufficiently unstable, in the case with
boundedly rational agents complicated dynamical behavior arises.

Theorem 8 For B = +00, when the market is locally unstable (i.e. b/ B > 1) and when
information costs C > 0, there exists a value M > 1 (depending on p*, C and b) such that:

(i) When b/ B € (1, M], for an interval of initial conditions, the prices dynamics is bounded
away from p*.

(ii) Whenb/B > M, there exist infinitely many homoclinic points p, that is, points such that
lim,, 4o b (p) = p* and lim,_, _o, hZ (p) = p*.

4 Notice that p is only defined if C is not too large. If p is well defined, so is p and p € (p, p*).
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Recall from Subsection 3.1 that in the case with perfectly forward looking agents local
instability always leads to a stable 2-cycle. In the case with boundedly rational forward look-
ing agents more complicated dynamics arises. Mathematically, this difference is explained
by the fact that in the perfectly forward looking case the map g, has two critical points (i.e.
points where the map has a local maximum or a local minimum; see Figure 1), whereas
in the boundedly rational forward looking case the map h., has only one critical point
(a local maximum) and the map is linearly decreasing for all p > p*. In particular, if the
local instability is strong enough (i.e. b/ B is large enough), the steady state p* of the map
hoo has homoclinic points (i.e. points whose time path converges to p* both forward and
backward in time). As is well known, existence of homoclinic points implies complicated,
chaotic dynamical behavior, as illustrated in the time series of Figures 5 and 6.

From an economic viewpoint the key difference is that boundedly rational agents make
errors in their estimation of expected profits. In particular, when the price p, > p* is large,
boundedly rational forward looking agents expect a high profit and, therefore, stick to the
simple, naive strategy. This profit expectation turns out to be wrong, and the error might
become so large that (almost) all agents switch to the rational strategy, pushing prices back
(close) to the steady state. This interaction between local instability and global stability
generates chaotic price fluctuations when the intensity of choice is high, as in the case
of backward looking agents. Nevertheless, the size of such fluctuations remains limited
as in the case for perfectly forward looking agents. Therefore, forward looking behavior
dampens the amplitude of price fluctuations, whereas bounded rationality might lead to
chaotic (small amplitude) fluctuations.

4 An optimizing representative agent

Until now we have focussed on a heterogeneous agent framework, where agents switch
between two predictors, a costly sophisticated and a cheap simple rule. The aim of this
section is to reconcile the heterogeneous agent framework with that of a representative
agent optimally choosing from a continuum of expectation rules of different quality. The
representative agent outweighs the benefits of a better prediction rule against the costs of
information gathering, in the spirit of Simon (1955, 1957). Our approach has been inspired
by a recent paper by Dudek (2004); see also Evans and Ramey (1992).

Consider a cobweb model with a representative supplier. As before, the production
decision at time ¢ depends upon the prediction p;, , for the price at time ¢+ 1. The
representative supplier can optimally choose among a continuum of forecasting rules, each
with different quality and costs. At time ¢, choosing a predictor with quality g € [0, 1]
corresponds to buy, at a cost C(q), a signal v; such that

b { Dri1 w?thprobab%lfty q, (29)
p:  withprobability 1— gq.

The information gathering cost function, C(q), is assumed to be increasing and convex. To
optimally choose the quality of the signal, the representative agent computes his expected
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net profit and maximizes it with respect to g. In general, a better signal gives a higher gross
expected profit at a higher cost. At period ¢, the trade-off between expected profits and
information gathering costs sets the optimal predictor quality, g}, which determines the
optimal supply x;, which, given the demand, determines the realized price and profit at time
t+ 1, and so on and so forth. The purpose of this section is to investigate the equilibrium
price dynamics generated by this mechanism and to compare it with the heterogeneous
agent models of the previous section.

Similarly to Subsection 3.1, we focus on the case of a perfectly forward looking repre-
sentative agent; that is, the representative agent behaves “as if” he has perfect foresight on
expected profit and no systematic errors are made in estimating expected profits. Expected
profits of a representative agent choosing the perfect foresight forecast with probability g
and the naive forecast with probability (1 — q) is then given by:

7/ 1(q@) =qr(pigts pry) + (L= Qm(prgrs po)- (30)

In this case the fitness measure for using quality q is given by:
Uiii(q) =nf, — C(q). (31)

Similarly to the story underlying the managerial perfect foresight equilibrium of Subsection
3.1, we assume that there is a continuum of managers who offer to sell a predictor of quality
q € [0, 1]. The managers have perfect foresight on expected profits. The representative
agent can not compute the expected profit by himself, but compares the fitnesses announced
by the managers without knowing the value of C(g) and, therefore, being unable to derive
pr+1 from public information.

To optimally choose the quality of the signal, the representative compares the fitness
associated with each predictor g € [0, 1]. At period ¢, by choosing the predictor, that is,
the level of g that grants him the higher fitness, the agent behaves “as if” he is solving:

Argmax, {Uf, 1(q)} = Argmax, {7 (p; 41, pr1) + (1= @) (pirr, pr) — C(q)}. (32)

When this maximization problem has an interior solution, this is given by the solution of
the first order condition:

b
T(Prs1s Pro1) = T(Pra1> Pr) = E(Pt+1 - Pt)2=c/(q)- (33)

The specific solution depends on the functional form of C(g). In general, given a solution
of the maximization problem at time ¢, which we shall call g/, we can derive the implicit
equation that sets the price at time t+ 1. To do that notice that, by the Law of Large
Numbers, on average the representative agent produces:

S(v) = S(0y) = bq} prs1+b(1 — qf) pr.
At time t 4 1 market clearing (implicitly) defines the price p;; according to:

A— Bpiy1 =bq; piyr+b(1—qf)pr. (34)
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The price is only implicitly defined because the optimal level of g s, in general, a function
of p; and p,41; thatis, g = q(ps» pr+1)- In what follows we investigate the equilibrium
price dynamics for different functional forms of the information gathering cost function,
C(q).

4.1 Linear cost function

Consider first the case of a linear information gathering cost function C(q). The following
theorem shows that in the linear case, the price dynamics described by (34) exactly cor-
responds to the price dynamics of the heterogeneous agent model with perfectly forward
looking agents in Subsection 3.1 when 8 = oo.

Theorem 9 When the marginal information gathering costs of the representative agent is
constant, that is, C'(q) = C, the system ((33) and (34)) is equivalent to the heterogeneous
agent system ((20) and (21)) with B = oo. Consequently, when the market is locally unstable
the system ((33) and (34)) always converges to a period 2 orbit.

This is the first interesting correspondence between the models: the representative
agent model with a linear cost function for information gathering corresponds exactly
to the heterogeneous agent model with intensity of choice § = co. This result might be
explained by observing two key features: (i) in the limit 8 — oo all agents choose the best
predictor, so that the heterogeneous agent model reduces to a single agent model (possibly
switching between strategies over time) and (ii) in the case of a linear information gathering
function in each time period typically it is optimal for the representative agent to use an
extreme signal; that is, to use either g* = 0 (naive) or g* = 1 (rational expectations).

4.2 Nonlinear cost function

What is the relation between a heterogeneous agent and a representative agent framework
in the case of a general, nonlinear information gathering function C(g)? To answer this
question, it is useful to consider an explicit example. Take as cost function:

C(q;) = Cq%, a>1,
where C(0) =0, C(1) = C, C’'(0) =0 and C’(1) = «C. In this case the maximization

problem (32) may have an interior solution. To find it, we solve the first order condition
(33) and get:

Q= I:b/Z(pt;(lj_ pt)z]a]j.

Notice that as long as the cost function is convex (¢ > 1), the optimal level of g is an
increasing function of p;; ;. This turns out to be important for the uniqueness of the
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Figure 7 Graphs of the map x,, ; = r(x;) in (37) for different cost functions. (a) C(q) = 0.24>. (b)
C(q) = 0.2g> 4+ 0.1q. In both cases, due to the symmetry of the map around x = 0, the dynamics
converges to a 2-cycle. The lines parallel to the diagonal delimit the zones where an implicit solution
exist, as specified in (37). Other parameters are B = 1 and b = 2.0.

market equilibrium price. The market equilibrium equation (34) becomes:

1

b2 - p)* ]
M} b(prs1 — po) +bpr. (35)

A_Bpt+1=|: aC

Theorem 10 Let o > 1. For any fixed value of p, > 0, the system (35) implies a well defined

map pyy1 = r(ps). That is, there exists a unique minimum non-negative price p;41 such
that, at time t + 1, either the market is in equilibrium or the excess supply is positive at

pr+1=0.

A straightforward calculation shows that for any @ > 1 and C > 0 the fixed point of
the system is p* = A/(b+ B), as before. Figure 7 shows a graph of the map in the case of a
quadratic cost function (o = 2). The following theorem characterizes the price dynamics.

Theorem 11 Let C(q) = Cq*. When b/ B < 1, the price dynamics converges to the steady-
state equilibrium p*. When b/ B > 1, the steady state is locally unstable and a unique globally
stable 2-cycle exists.

It turns out to be possible to generalize Theorem 11 for any increasing and convex cost
function C(q). In fact, the condition for the existence of an interior solution of (32) defines
four parallel lines with slope one and intercepts \/ZC/(l)/b, \/ZC/(O)/b, —\/ZC/(O)/b,
and —./2C’(1)/b; see the Proof of Theorem 12 for details. We can use these lines to define
the price dynamics in different regions, for any given C(q). In some regions delimited by
these lines the representative agent chooses either ¢ = 0 or g = 1 (see Figure 7). For all
other values of g the dynamics is implicitly determined by the solution of the corresponding
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market equilibrium equation. In summary, we have:

p* Pry1 = pe+4/2C(1)/b
implicitsolution  p;; € (pt—i—\/m pt—l—\/m)
prr=r(p)=1{4-1Lp, Pi+1 € [pt+\/26’(0)/ p: —+/2C'(0)/b].
implicitsolution  p;41 € \/W pr— \/W )
p* pii1 < pr—+/2C'(1)/b

(36)
In terms of the deviation x;, = p; — p* from the steady state, the map becomes:
0 x < —4/2C"(1)/b
implicitsolution  x; € (— \/ZC’(I)/b —\/2C’ 0)/bB+h)
xp1=r(x) =] —Lx x €[ —/2C0)/bzEs, +2C(0)/b555] -
implicit solution  x; € (+,/2C/(0)/b3—+b, +./2C'(1)/b)
0 x> 4/2C'(1)/b

(37)

Figure 7 shows the graph of r in two specific cases. The next theorem shows that only
this partial knowledge of the map r is sufficient to characterize the price dynamics:

Theorem 12 Let C(q) be any increasing and convex information gathering cost function.
When b/ B < 1 the price dynamics converges to the stable steady-state p*; whenb/B > 1 the
steady state is locally unstable and a unique globally stable 2-cycle exists.

Notice that according to Theorem 12, in the case of a perfectly forward looking repre-
sentative agent concerning expected profit, in the long run the incentives to buy a perfect
foresight predictor are never strong enough, no matter how strong the local instability of
the market is. Stated differently, for any functional form of the cost function, either (when
the market is stable) the agent always chooses a cheap naive predictor (¢ = 0) or (when the
market is unstable) he switches between a naive predictor and a better, but non-perfect, pre-
dictor with g < 1. Before concluding, we present another interesting relationship between
the representative agent and the heterogeneous agent framework of Subsection 3.1.

Theorem 13  There exists a non-decreasing and convex information gathering cost function
C(q) such that the price dynamics driven by the interaction of a group of heterogeneous agents
choosing between a freely available naive forecast (q = 0) and a costly perfect foresight forecast
(g = 1) at constant cost C as given by (20) and (21) is the same as if a representative agent is
operating in the market and optimally chooses a signal q € [0, 1] at cost C(q) as in (33) and
(34). For every fixed B and C the cost function C(q) is given by:

C(q) 3 RI]J (2tanhj;(2t—l) + C)dt, qe (t{), 1]

0, q € [0, t]
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where ty = (1+ m™)/2.

It can be shown that this exact correspondence between a heterogeneous agent and
a representative agent framework is not only valid in the perfectly forward looking case
studied in this section, but holds more generally, for example also in the case of boundedly
rational forward looking agents (making mistakes in the estimation of expected profits) or
in the original framework of Brock and Hommes (1997) (with backward looking agents
and strategy switching based on realized profits). Hence, the same trade-off between local
instability and global stability when a group of heterogeneous agent is operating in the
market exists when a representative agent optimally chooses the quality of his price pre-
dictor. This kind of theorem shows that, for an outside observer, it would be impossible
to distinguish between a heterogeneous agent and the corresponding representative agent
economy (e.g. the discussion in Kirman (1992)).

5 Conclusion

Adaptive rational equilibrium dynamics can produce complicated equilibrium price dy-
namics, because of the interaction between a locally destabilizing force when agents use
simple, cheap strategies and a far from the steady-state globally stabilizing force when er-
rors become so large that most agents switch to the costly rational forecast. In the original
framework, strategy selection is driven by experience or regret, as it is based upon a mea-
sure of past realized profits. In this paper we investigated how forward looking behavior in
strategy selection might affect the co-evolving equilibrium dynamics. With forward looking
behavior, the same local instability as a result of costly information gathering and free riding
remains, but the amplitude of price fluctuations is dampened. How exactly forward looking
behavior affects the globally stabilizing force depends upon how sophisticated agents are in
computing expected profits. When agents are able to make a perfect forecast for expected
profits, prices lock into a stable 2-cycle and the errors of the cheap naive strategy remain
small enough for the population of agents never to switch completely to the costly rational
forecast. If, however, agents can only make a boundedly rational forecast of expected profits,
errors might grow big enough for (almost) all agents to switch to the costly rational strategy.
In that case, the globally stabilizing force becomes strong enough to push prices back close
to the (locally unstable) steady state, therefore causing irregular switching between price
fluctuations of low and moderate amplitude. Boundedly rational forward looking agents
thus dampen the amplitude of the price oscillations but a rational route to randomness, as
in the backward looking case, remains.

We have also established an equivalence relation between heterogeneous agent models
with evolutionary switching of strategies and a representative agent who optimally chooses
between the benefits of high quality forecasts and the associated information gathering
costs. To an outside observer it is impossible to distinguish between the heterogeneous
agent model and the corresponding optimal representative agent framework.

We emphasize that we have shown these results to hold in a supply driven commod-
ity market, with negative expectational feedback (i.e. a high price forecast leads to high
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production and, therefore, a low realized market price). An interesting question for future
work is whether similar results hold for speculative asset markets. In fact, for asset markets
we conjecture that forward looking behavior might actually destabilize the amplitude of
price fluctuations, because of the positive expectational feedback (i.e. high expectations of
future asset prices lead to increased asset demand and thus higher realized market prices).
We leave this conjecture for future research.

Another important topic for future research is how “invasion” of boundedly rational
strategies affects the long-run outcome of a market with heterogeneous agents. In our
cobweb framework, the answer at least depends whether or not more memory comes at
higher costs. When there are no costs, invasion of boundedly rational strategies detecting
and exploiting the regular, periodic structure might stabilize the adaptive equilibrium
dynamics. However, when memory comes at a higher cost we have seen an example where a
stable 2-cycle is persistent against invasion of a period-2 forecasting rule into a market with
free naive versus costly rational expectations. Because of its lower costs, the period-2 rule
drives out most of the rational agents, but the stable 2-cycle persists with smaller amplitude.
Because the period-2 forecasting rule is optimal (it coincides with perfect foresight) with
minimal use of memory, it seems that this situation is “evolutionary stable” and persistent
against invasion of other boundedly rational types. Another possibly “evolutionary stable”
or persistent long-run outcome might be the situation where the interaction between more
and more boundedly rational strategies leads to chaotic small amplitude price oscillations
whose structure can not be detected and exploited easily by newly invading boundedly
rational strategies. A theory of “evolutionary stable” long-run outcomes with complicated,
irregular equilibrium market dynamics is an important topic for a future research agenda.

6 Appendix
6.1 Proofs of Section 2

PROOFOFLEMMA 1:  Themap foo defined in (10) is two-dimensional. Define f asa one-dimensional projection
of fo according to

fa(p) = foolpor (fo. )™ (p2))s

where f3 1(-) = Feo,1(+, —1) and F,1 is the first component of the map Fg, for § = 0o, defined in Section 2
below equations (8) and (9). By applying this definition, one can easily show that

4 by, if pelpt—e pttel,
.

p*, otherwise

folo(pt) =

where & = HLB /2C/b. The graph of f1 is given in Figure 2. The lemma follows by noticing that the difference
between the maximum and the minimum of the map f is 2 15(1?72«%) J2C/b. O

6.2 Proofs of Section 3
PROOF OF THEOREM 3:  From (20) the excess supply function E S(py, ps+1) is given by:

b
ES(ps, pr+1) = 3 (pr+1(L+m(ps, pry1)) + pi(1 = m(pss pra1)) — A+ Bpry1, (38)
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where
o Blb >
m(pys pr+1) = my = tanh 5 E(thrl —p)—C|). (39)

Consider for a moment the function E S(p;, y). We define a function y = g(p;) such that ES(p;, y) =0. A
straightforward computation shows that:

IES(pss b b
IESPo ) V() 4y 82— p? = my 4 m)) + B > 0.

ay 2 2
This implies that given any value of p; we can always find a unique y such that E S(p;, y) = 0. Consequently, the
function y = g(p;) is well defined and, by the implicit function theorem, the function g is C'. Define the map
gp as follows:

(py) = g(ps) if g(p) =0
b= it g(p) <0

This means that when gg(p;) = p;4+1 > 0, we have ES(p;, pr+1) = 0, whereas when gg(p;) = pr41 =0,
there is excess supply even when the market price is p;4; = 0. In fact, d E S(p;, y)/9y > 0 implies that when

g(pt) <0, ES(pt, 0) > ES(ps, g(pr)) = 0. Finally, the map g is continuous but in general not differentiable at
the lowest price p; for which gg(p;) = 0. O

PROOF OF THEOREM 4:  In terms of x; = p; — p* the system (20-21) becomes:

(X1 (L4 mp) + x,(1 — my))

—Bxy1 =13

tanh(g[ Xe41 — —C])

with fixed point x* = 0 and corresponding m* = tanh(—pC/2). Similarly, as in the proof of Theorem 3 it follows
that there exists a well defined map x; 1 = gg(x;), obtained from the map p, 1 = gg(p;) by choosing p* as
the origin. To keep the notation simple we drop the bar, and write g instead of g in what follows. The following
properties of the map g will be useful to prove the Theorem:

(a) gisodd;thatis, g(—x) = —g(x),and g(x) > 0 when x < 0.

(b) When B > B there exists a unique period 2 orbit {a, —a}, satisfying g(g(a)) = a and g(a) = —

(c) ¢'(0) < g'(x) <1, forall x.

(d) The map g has two critical points, ¢ and —c. Furthermore, g'(x) < 0 iff x € (—c, ¢), so that g has a local

minimum at x = ¢ and a local maximum at x = —c.

We postpone the proof of properties (a)—(d), and first use them to prove (i)—(iii) in Theorem 4. Notice that (a)
and (d) imply that g(c) is in fact a global minimum and g(—c) a global maximum. Using the implicit function
theorem, we get:

IES(x,y)

/ x —b(1 —a)(1 — m(x, y))
g =555y
0

et B m(x, ) Tl — m(x, y))+ 2B |,y

(40)

where
b 2
= S8y —xP(1+ mlx y),

International Journal of Economic Theory 2 (2006) 241-278 © IAET 269



Adaptive rational equilibrium William Brock et al.

(a) (b)
0.3 0.3
02t 1 02 1
0.1 4 1 0.1t £
§ 0 - -a 27 “E 0 T ac

-0.1 | 1 0.1 F 1
-0.2 f 1 -0.2 f 1
-0.3 : : : : : -0.3 : : : : :

-03 -02 -01 0 0.1 0.2 0.3 -03 -02 -0.1 0 0.1 0.2 0.3

Figure 8 Graph of (a) the map g., and (b) its second iterate g* in the case when ¢ > a.
A=15B=1,b=2,C=0.1and 8 = 20.

ES(x, y) is the excess supply function defined in (38) and m(x, y) is the difference of agents’ fractions in
(39).

PROOFOF (i):  The global stability of x* = 0 when C = 0 follows from the fact that in this case g is a contraction.
Indeed, using (40) one gets g’(0) = —b/(b+2B) > —1, so that property (¢) implies g'(x) € (—1, 1) for all x.

PROOF OF (ii): The global stability of the fixed point when B < B; follows again from the fact that g is a
contraction. In fact,
b(1 — m(0, 0)) .
"‘0)=rp)=————"T""T"— > —1, iff ,
§O =4 ==y 0, 0)+ 28 i p<h
so that (c¢) implies g’(x) € (—1, 1). Local instability follows from the fact that g’(0) < —1 when 8 > B;. The
value of B, is determined by the condition g’(0) = —1, which gives m(0, 0) = m* = —B/b.

PROOF OF (7ii): Uniqueness of the period 2 cycle follows from (b). To show global stability of the 2-cycle we have
to characterize the shape of the map g2. By (d) the map g has only two critical points, —c < 0 (local maximum)
and ¢ > 0 (local minimum). From now on we concentrate on g> for x > 0; the results for x < 0 follow by
symmetry. We look for the critical points of g2; that is, for the points where (g%)'(x) = g'(g(x))g’(x) = 0. The
positive critical points of g2 are the positive critical point ¢ of g, and points d > 0 such that g(d) = —c. We
distinguish two cases.

Case 1: g(c) > —c and g(—c) < c (see Figure 8). In this case, because c is larger than the global maximum
g(—c), thereisno d > 0 such that g(—d) = c. Hence, c and —c are the unique critical points of g>. We claim that
(g%)(x) > 0 when x € (—c, c). This follows because x € (—c, c) implies both g’(x) < 0 and g(x) € (—c, c) so
that (g2)'(x) = g'(g(x))g’(x) > 0. This, together with g(c) > —c, implies that at the unique point a > 0 for
which g(a) = —a, wehave a < cand g'(a) > 0. When 8 > 1, g’(0) < —1, so that (¢2)'(0) > 1. Hence, x = a
is the unique intersection point of g?(x) with y = x and (g?)'(a) < 1. {a, —a} is therefore a locally stable 2-cycle.
Because g%(x) > 0 for all x > 0 all points (except the unstable steady state) converge and the 2-cycle is globally
stable.

Case2: g(c) < —c and g(—c) > c (see Figure 9). In this case there exist two other positive critical points of
g% di and dy, di < ¢ < dy, for which g(x) = —c. Moreover, property (b) implies that a is the unique positive

270 International Journal of Economic Theory 2 (2006) 241278 © IAET



William Brock et al. Adaptive rational equilibrium

(a) (b)

0.3 0.3
0.2 - R 0.2 - B
0.1 - ] 01

% 0 & —ate=d di¢a dp % 0 ~& —a—c—d o oA G
01 } q -0.1 1
-0.2 g —-0.2 ]
-0.3 : . . : -0.3 : : . : .

01 02 03 203 -02 -0 0.1 02 03

LS
©
w
|
ol
[N}
|
[=}
o
o

x o

Figure 9 Graph of (a) the map g, and (b) its second iterate g* in the case when ¢ < a.
A=15B=1,b=2,C=0.1and 8 = 50.

intersection point of g(x) with the line y = —x, and because g(¢) < —cwehaved; < ¢ < a < d,. By symmetry,
—d; and —d, arealso critical points of g and —d; < —a < —c < dj. Clearly, g%(d; ) and g?(d,) are local maxima
and g2(c) is a local minimum, and using (c) and (d) we get 0 < (g?)'(x) < 1, for all x € [c, d,]. This implies
that a € (c, dy) is a locally stable fixed point of g2. From the global shape of the graph of g it follows easily that
the 2-cycle is globally stable.

To conclude the proof we have to show that (a), (b), (¢) and (d) hold.
(a) In deviations x from the steady state the excess supply function is

b
ES(xp, x141) = 5 (x4 1 (14 m(xp, X 41)) + x:(1 — m(xp, x41))) + Bprs1. (41)

If ES(x, g(x)) = 0 then also ES(—x, —g(x)) = 0, implying g(—x) = —g(x). Moreover, when x > 0(x < 0)
the only possibility to have E S(x, g(x)) = 01is g(x) < 0(g(x) < 0).

(b). We are looking for a point a such that g(g(a)) = a. If such a point exists, E S(a, g(a)) = 0 implies
ES(g(a), g(g(a))) = ES(g(a), a) = 0 and vice versa. Hence, the existence and uniqueness of a period-2 orbit
{a, g(a)} is equivalent to the existence and uniqueness of a such that E S(a, g(a)) = E S(g(a), a) = 0. Consider
the change of variablez = a + g(a), w = g(a) — a. Wecanrewrite E S(a, g(a)) = ES((z — w)/2, (z+w)/2) =
ES (w, z). In terms of the new variables and the function I:J\TS, the existence and uniqueness of a is equivalent to
the existence and uniqueness of two points z and @ such that both E‘E‘(w, z) = ES(—II), z) = 0. Writing down
these two conditions as a function of the new variables one obtains:

_ Bbm) o

B+b
_ B+4bm@w) - (42)
= "B+p ¥

N
Il

N

where, with abuse of notation, m(w) is the difference of fraction in (39) defined as a function of g(a) — a = w.
Notice that if a solution of (42) exists, then z =0 and bm(w) = — B. Obviously z = 0 implies g(a) = —a.
The other equation bm(w) = — B is only possible when 8 > . In fact, when 8 < B, m(0) > —B/b so that
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m(w) > m(0) implies m(w) > —B/b.When B > B, bm(w) = — B has two symmetric solutions. Consequently,
a unique symmetric 2-cycle {a, —a} exists for 8 > ;.

(¢). The expression of g’(x) in (40) can be rewritten as:
-b(1 — @)

(1+m(x,y)) 2B
T=mixy) T "‘) + T m

) (43)

¢(x) = b(

where
b 2
o= Eﬂ(}/ — x)*(1+m(x, y)).

Because the difference of fractions m is an increasing function of (y — x)?, « is also an increasing function of
(y — x)*. Moreover,&@ > Oand o = O when (y — x)? = 0. These properties together with m € (—1, 1) imply that
the denominator of g’(x) is a positive increasing function of (y — x)? and that the numerator is an increasing
function of (y — x)?%, which is negative when (y — x)? = 0. These facts imply that the minimum of g’'(x) is
achieved when y — x = 0; that is, when y = x, which implies x = 0. Moreover, when g’(x) > 0, that is, when
@ > 1, one can easily show that the numerator is always smaller then the denominator so that g’(x) < 1 for all x.

(d) A critical point c satisfies g’ (c) = 0. From (43), and from the fact that « is increasing in (y — x)? and @ = 0 for
(y — x)? = 0, it follows that there existsaunique (y — x)?> = ksuchthatg’ = 0.To show that g hasa unique critical
point ¢ > 0, we have to show that c is the unique solution of (g(c) — ¢)? = k. This translates into showing that
g(c) — ¢ = —v/khasaunique positive solution.> We claim here the more general statement that theline y = x — h
and the curve y = g(x) intersect only once when x > 0, Vi > 0. Change variables from (x, y) to (x, h = x — y),
and consider ES as a function of the new variables. We have E S(x, y) = ES(x, x — h) = E\S(x, h). One can
easily show that this holds:

IES(x, h) _ 00b/2(A+ m(m)(x — h) + (1 — m(h))x) + B(x — h))

=B+b>0.
ax dx *

Asa consequence, we can apply the implicit function theorem and find a function ¢ such that ES(x = t(h), h) = 0.
This means that for Vi > 0 there exists a unique x = t(h) and, as a consequence, a unique y = x — h where
E\S(x, h) = I/i\S(x, x — y) = ES(x, y) = 0. From the last expression it follows that y = g(x), so that, for every
given h, there exists a unique point (x, g(x)) with g(x) = x — h. From this we conclude that g(x) — x = —JVk
has a unique solution c. Property (a) implies ¢ > 0. Because c is the unique positive critical point, by symmetry
—c is also a critical point. Because ¢ and —c use the only critical points and g’(0) < 0 it must be that g’(x) < 0
iff x € (—c¢, ¢). This implies that g(c) is a local minimum and g(—c) a local maximum. O

PROOF OF THEOREM 5:  The existence of a 2-cycle can be proven along the same lines as in Theorem 4. Consider
the explicit definition of g in (22). Let c and —c be the critical pointsand d, > cand —d, < —c points such that
g(dy) = —cand g(—d,) = c asin the proof of Theorem 4. A straightforward computation shows that g(x) = x
for all x € [—dy, c] U [c, da]. This implies that g has a continuum of 2-cycles. The computation of A%, follows
directly from the definition of the map g in (22). O

PROOF OF THEOREM 5:  From (25) excess supply is given by

b
ES(ps, pr+1) = 5[pt+1(1+mt)+Pt(1 —my)] — A+ Bpry1 =0,

where, as in (26),
B[Db
m,:tanh(; E(pf+l—pf)—C .
5 Because by (a)g(x) < 0 when x > 0, in this case the equation g(¢) — c= + 'k has no positive solution.
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We are looking for a function h (we drop the subscript 8 here) such that E S(py, h(p;)) = 0. First, we show
that there always exists a unique minimum non-negative price p;4 such that, at time ¢+ 1, either the market
is in equilibrium or the excess supply is positive at p; 11 = 0. Second, we show that under certain parameter
restrictions h is continuous.

Existence. Write y = p;4+1 and x = p;, and let p* = A/(B+ b) as usual and notice that ES(p*, p*) = 0.
Consider y > x; it can be verified that in this case:

w=é(1+mt+éby(y—x)(l—mo(1+m,)> +B>0. (44)
ay 2 2

Consequently, we can apply the implicit function theorem and there exists a C! map hsuch that E S(x, h(x)) = 0.
The case y < xis more difficult, because 3 E S(x, y)/d y might be zero. We can rewrite the condition E S(x, y) = 0

as:
2(A—(B+Db)y)
————— =m(y,x) -1, (45)
by —x) >
where
Bb, , 5 B
,x)=tanh| = =(y* —x°)— =C .
m(y, x) = tan (22()/ x°) 5
For y < x, =2 < m— 1 < —1 together with (45) imply
A b 2A b (46)
B Bx<y<23+b ZB—i-bx

and, therefore, also x > p*. Equation (45) and —2 < m — 1 < —1 also imply that when y = 0 there is a value
X € (A/b, 2A/b) such that E S(X, 0) = 0. Furthermore, because

IES(x, y)

D)= 2y Bbxly — (1= (14 m) =0 > O (47)

such a value is unique and E S(x, 0) > 0 for x > X, so that we can define h(x) = 0 for x € [%, 00). Notice that
forall y < x, 3E S(x, y)/dx > 0. By the implicit function theorem there exists a C! function x = s(y) such that
ES(s(y), y) = 0.Clearly, s(p*) = p* and s(0) = &. Furthermore, by (46), s(y) must always be between the lines
y=A/b—b/Bxand y =2A/(2B+b) — b/(2B + b)x. The function h we are looking for is not well defined
yet because many different y values may be mapped to the same x through the map s. However, when this is the
case, we can always choose the minimum of these y values. Consequently, there always exists a unique minimum
non-negative price y = py4 such that, at time ¢ + 1, either the market is in equilibrium or the excess supply is
positive at p; 41 = 0 so that 4 is well defined. Notice that y = p;; is the lowest non-negative price for which
ES(ps, y) = 0.

ConrtiNuITY. The map h defined above may be discontinuous. A sufficient condition for continuity can be obtained
by restricting parameters values such that 9 E S(x, y)/dy > 0, also for y < x. To obtain such restriction we use
(44) and (45) to evaluate d E S(x, y)/dy > 0 in those points (x, y) for which E S(x, y) = 0:

dES(x, y)

b
oy les=o = B+ (1+m(x, y))>(1—py(A—(B+D)y) > 0. (48)

Because (46) implies that 0 < y < p*, wehave 1 — By(A — (B + b)y) has a minimum value 1 — (8 Ap*/4). As
a consequence, condition (48) is satisfied when

b Ap*
B+ (14 mlx, y)2 (1= f70) > 0, (49)
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Figure 10 Graphs of the map ho,. In (a) (b/B = 1.2) hoo(c) < d implies that the price fluctuations
remain bounded away from p* in the long run. In (b), (/B = 2), hy(c) > d implies that the map
has (infinitely many) homoclinic points and a typical price time series converges to the locally
unstable steady state p*. Other parameters: A= 1.5,b =2and C =0.1.

This is clearly always the case when 8 < 4/( Ap*). Otherwise, when B > 4/( Ap*), because 0 < y < x, condition
(49) is satisfied when

B+(1+m(o,o)>§(1—ﬂAf*)>o, (50)

which can be rewritten as condition (27) in Theorem 6. O

PROOFOFTHEOREM 7:  From Theorem 5 one can derive that the map hg ( p) is always well defined and differentiable
in a neighborhood of the point ( p*, p*). Furthermore, one can use expressions (44) and (47) to compute:

DES(e 7)/02)l(prpry _ b= n"(B)
DES(x, /0Py 2B+ b(1+m(B)

(hg) (p")=2(B) = -

The value of B, is found by imposing A(8) = —1. Local stability follows from A(B) € (—1, 0) when 8 < ;.
When 8 > B1, A(8) < —1 and graphical analysis of h?; shows that h% has (at least) two other intersection points
with the diagonal than p*. (I

PrOOF OF THEOREM 8:  Consider the map hoo givenin (28). Call p = aand p = ¢;thatis, asolves \/a? +2C/b =
p* and ¢ solves A/B — (b/B)c = y/c?+2C/b. One can easily show that these points always exist, as long as
2C/b < (p*)?, which we assume here, are unique, and ¢ > a. In terms of the points a and ¢, the map hq, can be
rewritten as:

P 0<p<a

hoo(pe) = 3 v/ p?+2C/b, p € la, c]

p*—(b/B)(pi—p*), pr>c.

The map h has a global maximum at the critical point c. Let d be the point such that hy (d) = a. Notice that
when p > d, h2,(p) = p*. Two examples of the map are given in Figure 10.
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Because b/ B > 1, the steady state p* is locally unstable. In what follows we show that for b/ B sufficiently
large, there are (infinitely many) homoclinic points, whose orbits converge to p* both forward and backward in
time. We consider two cases:

Casel: ho(c) < d (asin Figure 10(a)). When hoo(¢) < d we have hgo(c) <k (c) < p* < hgo(c) < heo(c).
Let I} = [hgo(c), hgo(c)] and I, = [hzo(c), hoo(c)]. In this case it is easy to show that all initial states po are
“repelled” from p* and mapped in I; U I, after some iterations. Therefore, the long-run dynamics is contained
in the set I} U I, and bounded away from p*.

Case2: hoo(c) > d (asin Figure 10(b)). In this case the critical point ¢ is a homoclinic point. It converges to p*
forward in time and also backwards in time (take successive inverse images x > ¢, with hgo(x) =ck=12..).
In fact, there is an interval I of homoclinic points containing c.

To conclude the proof we have to show that there exists an M > 1 such that when b/B > M then case 2
obtains; that is, hoo(c) > d. We derive the existence of such a value M from the dependence of the point d and
hoo(c) upon b/ B. Define B/b = N, N € (0, 1). Depending upon N, p*, C and b, the point d and the image
hoo(c) are defined as:

d(N) = p*+ N (" = v/(p)? =2C/b)

ok p* 1- N B
heo(cs N) = p +1_N<‘/1+H_N(2C)/b 1).

One can show that d(0) < feo(c;0), d(1) > heo(c; 1) and d’(N) > 0. Furthermore, ( p*)?> > 2C/b, which is
assumed here to guarantee the existence of a and c, is a sufficient condition for 9 (c; N)/d N < 0. These facts
imply that there exists a unique N such that d(N) = hoo(c; N). It follows that there exists a unique M = 1/N
such that: (i) when b/ B € (1, M], Case 1 applies, and (ii) when b/B > M, Case 2 applies. O

6.3 Proofs of Section 4
PROOF OF THEOREM 9:  When C’(g) = C the first order condition (33) for the optimal choice of q becomes:

b
Amiqg = E(PtJrl - p)*=C.

Consequently, in general there is no interior solution, but g; = 1if Am; 41 > Cand g = 0if A, < C.
This implies that the equilibrium price dynamics (34) is governed either by naive expectations or by rational
expectation, which gives exactly the same dynamical system as in (20)—(21) with 8 = 4+ o0, or equivalently as in

(22). Il

PrOOF OF THEOREM 10:  Consider the market equilibrium equation (35):

b/2(pi1 — pe)?

a1
oC ] b(pr+1— pe) + bpr.

A—Bpiy1= [
Notice that, given the values of the parameters A, B, b, «, C, for any fixed value of p; > 0 the demand (left hand
side) is a decreasing function of p; 1, whereas the supply (right hand side) is an increasing function of p;

provided that & > 1. This implies that there exists a unique point x € R where demand and supply are equal.
Notice that this point is negative for those values of p; for which there is excess supply at p;; = 0; that is, when

2 (et
(= Laze] ™ =
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In this case we set p;4+ = 0, and otherwise p; 4+ = x. O
PROOF OF THEOREM 11:  This is just a special case of Theorem 12. O

PROOF OF THEOREM 12:  Market clearing in (34) implicitly defines a map p;41 = r(p;) by ES(ps, r(ps)) = 05
that is,

ES(pi, r(p)) = qt*b(r(pt) — p)+bpr— Bpry1+A=0,

where g; solves the maximization problem (32), whose first order condition is

b
Amipr = 5(Pt+1 - p)*=Cq). (51)

The first order condition (51) gives only the interior optimal solution. From the convexity of C(q) it follows that
C’(0) is a global minimum and C’(1) is a global maximum of C'(q). Hence, g} = 0if Awr;4.; < C'(0)and g =1
if Awr > C'(1). These two conditions on A7, 1 define four parallel lines in the plane (p;, p41) with slope 1
and intercepts \/2C’(1)/b, /2C'(0)/b and 7\/2C/(0)/b, 7\/2C’(1)/h. The interior solution (51) determines
the map r only in the region between the relevant lines as in (36), or the corresponding map in deviations from
the steady state x in (37). The implicitly defined part of r in (37) is the function r(x;) that solves

ES(xs, r(x¢)) = q/b(r(x) — x;) + bx; — Br(x;) =0, (52)

with
* N—1 b 2
q; = q(x x141) = (C') E(Xtﬂ—xr) .

Notice that, because C’(q) is increasing, (C") ™! is always a well defined function and is itself increasing. We claim
that the map r has exactly the same properties (a—d) as the map g in the proof of Theorem 4. From property (c)
it follows that when b/B < 1, —1 < g’(x) < 1, so that the map is a contraction and all orbits converge to the
steady-state p*. From properties (a — d) and the proof of Theorem 4 it follows that when b/B > 1 the steady
state is locally unstable and a unique globally stable 2-cycle exists.

We conclude the proof by showing that properties (a—d) hold in this case.

(a) From (52) it follows immediately that if E S(x, r(x)) = 0, then E S(—x, —r(x)) = 0. Hence, r(—x) = —r(x).
(b) We show that y = r(x) has only one positive intersection a with the line y = —x. This follows from a change
in variables z = x4+ r(x) and w = r(x) — x as in the proof of Theorem 4. In this case the corresponding system
(42) has a solution only when b/B > 1.

(¢) Obviously when the map in (37) is explicitly defined, r'(x) = 0 or ’(x) = —b/ B. To compute r’(x) when it
is implicitly defined one can use the implicit function theorem and obtain:

dES/0x:  q'(xt xeqp )% — Xe41)* +q 0 xi41) — 1

r(x) = — =— 5 5
OES/xiv1 g’ (%t x4 1) (% — Xi41) +q(xe xe41)+ 5

(53)

Because both g and g’ are always positive, from the expression above it follows that r'(x;) € [—b/B, 1). Notice
that ¢/ is positive iff C'(q) is convex.

(d) Consider the proof of property (d) in Theorem 4. One can prove here that the same statement holds by
replacing (52) with (38) and (53) with (43). O

PROOF OF THEOREM 13:  Comparing (34) and (12), we have to show that there exists a non-decreasing, convex,
information gathering cost function C(q), such that the optimal solution of the representative agent problem
(32) is given by:

. 1+ tanh { 5[4 (prs1 — p)? = C]}
qt =Ny, = P -

(54)

276 International Journal of Economic Theory 2 (2006) 241278 © IAET



William Brock et al. Adaptive rational equilibrium
From the first order condition in (33) for an arbitrary cost function we obtain:
* A ! b 2
q; =(C) E(PtJrl*Pt) . (55)
Combining (54) and (55) it follows that:

b 1 h(B[4(prs1— p)t—C
(2(pt+1—pr)2>=C'< + tan (/3[2(172+1 pe) ])) (56)

In terms of the variable z = b/2(p; 11 — p;)* > 0, (56) becomes:

Z:G<qumfu—cn>

The change of variable t = (1 + tanh(B(z — C)/2))/2 gives an ordinary differential equation:

2tanh ™' (2t — 1)
B

whose solution is the cost function C(q) we are looking for. The restriction z> 0 implies ¢ >
(1+ tanh(—pBC/2))/2 = . In integral form, C(q) is given by:

q “lot -
C(q):/ (WJrC)dHCo, q € (i, 1].
fo

+C=C), (57)

Notice that t) = #, C(p) = Cp and C'(1p) = 0. This guarantees that when p; = p;+1 = p* the solution of
(55) is ¢* = (14 m*)/2, the minimum fraction of rational agents at the fixed point in the heterogeneous agent
model. When g < #, one can define without loss of generality, C(q) = Cy, and take the integration constant
Cop = 0. As a result one gets

fg(%w"‘c)dt q € (n, 1]

0 q € [0, ©].

Clq) =

By construction, the function C(gq) above has derivative C'(q) = Owhen q < #,and C'(q) asin (57) when g > #.
Using this plus the fact that the function (tanh)~!(2¢ — 1) is positive and increasing when t > 1, it follows that
the map C(q) is non-decreasing and convex. O
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