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5. Entropy statistics as a framework to
analyse technological evolution

Koen Frenken and Alessandro Nuvolari®

1. INTRODUCTION

Many scholars have suggested that important similarities exist between
technological development and. biological evolution and that, for this
reason, evolutionary models can provide us with fairly adequate represen-
tations of technical change (Nelson and Winter 1982, Basalla 1988, Mokyr
1990}. However, as has been repeatedly pointed out by those who endorse
the adoption of an evolutionary approach, there are also substantive differ-
ences between biological evolution and technological evolution (Freeman
1991, Nelson 1995). Therefore, evolutionary modeis should always be
emploved with caution, taking into account the specificities of the pro-
cesses of mutation and sclection under study.

The issue we are considering here concerns evolutionary processes of a
special kind, namely the way complex entities evolve through processes of
mutation and selection. Recent evolutionary theorizing in biology and arti-
ficial intelligence has stressed that complex entities evolve in ways that are
different from non-complex ones in important respects. This claim also has
significant implications for models of technological evolution, as a techno-
logical artefact is a complex evolving entity par exceilence (Rosenberg
1976).

Following Simon’s (1969 [1996]) work on the design of artificial systems,
we describe a technological artefact as a man-made system constituted by
interconnected components that are intended to collectively perform a
number of functions. The complexity of an artefact is due to the interde-
pendencies between components, which causes only some combinations of
elements to work well together, in the sense that these combinations are
capable of achieving satisfactory levels of performance. In Simon’s view, a
good deal of what we call innovative activities consists of trying to improve
the general performance of the artefact by finding out progressively better
configurations of its constituting elements.! =

Until recently, however, formal treatments of system interdependencies
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for the understanding of technological innovation have been scarce. This
has changed with the introduction of ‘complexity’ models from natural
sciences in the realm of (evolutionary) economics. In this respect,
Kauffmans (1993) NK model of evolutionary biology has proven
extremely promising and has already been adopted in a large number of
contributions in the innovation and orgamization literature.2 The NK
model represents the design process of a complex technological artefact as
a trial-and-error process that is bound to end up in a local optimum.
Although the NK model has received considerable attention, much less
effort has so far been put into empirical applications.? In this chapter, we
set out a {ramework based on entropy statistics, which allows a relatively
straightforward application of the NK model to empirical studies of tech-
nological change.

We consider the examples of the early development of the steam engine
(1760-1800), the development of the aircraft (1913-84), and the develop-
ment of the helicopter (1940-83) to illustrate the way in which the NK
medel can be employed in empirical studies of technical change by means
of entropy statistics. As we will see, the interpretative accounts that we were
able to produce using the NK model in combination with the entropy meth-
odology emend the received histories of the technologies we are examining
in this chapter in important respects. This suggests that other historical
studies of technology could indeed benefit greatly from the adoption of the
type of approach we propose in this study. .

The remainder of the chapter is organized as follows. Section 2 contains
an exposition of Kauffman’s (1993) NK model and a number of general-
izations since developed. Section 3 presents our entropy methodelogy in
detail. Section 4 applics the entropy framework to data on steam engines,
aircraft, and helicopters, and discusses the resulis in the light of received
histories of these three technologies. Section 5 draws conclusions.

2. TECHNOLOGICAL DEVELOPMENT ASA - -
SEARCH PROCESS ON RUGGED LANDSCAPES

Many scholars have recognized that interdependencies between compo-
nents in technological artefacts are the prime source of design complexity
(Simon 1969 [1996], Rosenberg 1976, Sahal 1985, Vincenti 1990, Ziman
2000}). The existence of interdependencies between components implies that
the functioning of a system cannot be fully understood from the function-
ing of its individual components, Depending on the precise combination of
the components that make up a system, a component will function in a
different way. And, each time one manages to improve the functioning of
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one component, new problems can arise in other components accordingly
requiring redesign. In this context, Rosenberg (1976) introduced the concept
of ‘technical imbalances’ between components that trigger sequences of
problems and solutions over time.*

The existence of system interdependencies is what we understand to be
the nature of complexity in the development of new technological designs.
In this perspective, the design task essentiaily consists of the combinatorial
problem of assembling the right set of components in a functioning system.
The space of ali the possible combinations between all the possible config-
urations of all the components of a system is called the ‘design space’ of a
technology (Bradshaw 1992). Assume that a technology can be described
by N components, or more generally, dimensions (i=1,...,N). Along each
dimension 7 there exist A, possible states or configurations, called ‘alleles’,
which can be coded as ‘0¥, ‘1°, and so on. Each possible design can then be
written as a string of alleles 5,5, . . . 5 and is part of N-dimensicnal design
space S, for which it holds that:” - '

seSis=585...555{0,1, ..., 4,—1}. (5.1)8

The combinatorial nature of a design space implies that the size of a design
space increases exponentially for linear increases in N. The size of the
design space S is given by the product of the number of alleles along each
dimension:

S= ﬂ A, (5.2)
i=1

In the case of binary strings (that is, when all dimensions contain only two
alleles ‘0’ and “17), the size of design space equals S =2¥, meaning that the
number of possible designs doubles for each dimension added. As techno-
logical artefacts are typically made up .of many dimensions and many
alleles per dimension, they have enormous design spaces. Exploring the
whole design space would obviously be very expensive. Instead designers
will usually apply search rules that aillow them to economize by examining
only subsets of the design space. Thus only a small part of the design space
will in effect be searched, and an even smaller part of the design space will
be commereialized on product markets. -

2.1 The NK Model

Kauffman and Levin (1987) and Kauffman (1993) developed the NK
model to examine the properties of evolving complex systems with varying
degrees of complexity. Complexity stems from interdependencies between
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Figure 5.1 Example of an architecture of an N =3 system with K =1

the constituting dimensions of a system, such as genes in biological organ-
isms and components in fechnological artefacts. The interdependencies
between dimensions in a complex system are called ‘epistatic relations’. An
epistatic relation between. components implies that when a component
mutates, the mutation affects not only the functioning of the component
itself but also the functioning of all the components that are ‘epistatically
related’ to it. The ensemble of epistatic relations in a technological system
is calied a technology’s architecture (Henderson and Clark 1990),7

The NK model is restricted to particular types of system architectures
that can be expressed by a single parameter K, which stands for the number
of other components that affect the functioning of each component. For
example, the class of systems for which K= 1 holds refers to systems with

an architecture in which the functionality of each component depends on.

the choice of allele of the component itself and on the choice of the allele

of one other component. The K parameter can be considered an indicator

of a system’s complexity, with K= 0 being the least complex and k=N -1
the most complex architecture. When K =0 each technical dimension is
independent of any other dimensions. Optimization can then proceed by
optimizing each individual dimension separately, which will lead automat-
ically to the global optimum. For increasing values of K it will become
increasingly hard to optimize the system design globally, as interdependen-
cies exist between dimensions. The number of local optlma in which one
can end up increases with the value of K8

Consider, as an explanatory example, a system for which N=3 and K=
1 hold, with an architecture as specified in Figure 5.1. Mutations in com-
ponents in the columns affect the funetioning of the component in the row
as indicated by ‘x’. The symbol * denotes that there is no epistatic relation
between the component in the row and the component in the column. The
architecture in Figure 5.1 specifies the following epistatic relations between
the three components in the system. The functioning of the first compo-
nent w, changes when the first component itself or the second component
is mutated. The functioning of the second component w, changes when the
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Figure 5.2 Simulation of a fitness landscape of an N =3 system with
K=1I

second component itself or the first component is mutated. And the func-
tioning of the third component w, changes when the third component itself
or the first component is mutated.

Following Kauffman (1993), we construct a fitness landscape by drawing
randomly the value of the fitness w, of component i from the uniform dis-
tribution between 0 and 1. A random value is drawn for w; each time com-
ponent I is itself mutated and each time another component that
epistatically affects component 7 is mutated. System fitness W is derived as
the mean value of the fitness values of all components:

N

W(s) :};"Z w; (s) (3.3)

i=1

A simulation of a fitness landscape is given in Figure 5.2. The circled strings
are local optima or ‘peaks’ on a ‘rugged fitness landscape’. For these local
optima it holds that all neighbouring strings, that is, the strings that can be
reached by a mutation in one component, have a lower fitness . In the
simulation in Figure 5.2, this property holds for strings 011 and 101 as their
system fitness values W{011) and W(101) exceed the values of their neigh-
bouring strings. Local optima reflect complementary alleles as the collec-
tive fitness exceeds the value of neighbouring strings.

Using the concepts of design space and fitness landscape, the design
process can be modelled as a local search process based on trial and error.
Local search proceeds by means of a mutation in one, randomly chosen,
dimension (a trial). A mutation means that a designer moves to a neigh-
bouring string in the design space. The newly found string is accepted when
system fitness 3 increases, while it is rejected when system fitness decreases
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(error). Acceptance of a mutation implies that search continues from the
newly found string, and rejection implies that search continues from the
previous string. In this way, a designer can search for improvements in an
incremental way until a local optirmum is found that can no longer be

. improved by means of a mutation in one dimension.? Trial-and-error
search can thus be considered as an ‘adaptive walk® over a fitness landscape
towards a local optimum, and the search will only halt when a local
optimum is reached. Following the metaphor of the fitness landscape, this
type of search in complex technological systems can be considered a
process of “hill-climbing’. .

It should be stressed that we used the relatively simple case of N =3 in the
example above for explanatory purposes. In real-world R&D activities, the
number of design dimensions N is generally much larger. Consequently,
local search takes place in much larger design spaces containing many more
local optima for the same value of K. The probability of ending up in a local
optimum is correspondingly much higher. . o

An important property of the NK model holds that the number of local
optima in a fitness landscape is a function of the complexity K of a system’s
architecture. When complexity is absent {K=0), the fitness values of each
dimension are not- affected by mutations in other dimensions. Therefore,
the global optimum of a ‘system of K=0 can always be found by local
search through trial and error as described above, Put another way, fitness’

landscapes of K= 0 systems always contain only one optimum (which is by -

definition the global optimum). For systems with a positive K value, the
fitness values of dimensions are affected by mutations in dimensions that
are epistatically related. As a result, the fitness landscape will generally
contain muliiple local optima. Kauffman. (1993) has shown that the
expected number of local optima increases for increases in K. This means
that it becomes increasingly hard to find the global optimum for systems
with higher complexity. . - : :

A second property of the NK model holds that the fitness of local optima
decreases for increases in K. One can understand this outcome as reflecting
the detrimental effects of a higher number of conflicting constraints between
components. The higher K, the more difficult it becomes to improve the
fitness of one component without lowering the fitness of other components.
Consequently, the system fitness of local optima is generally quite low.
Furthermore; the variance of fitness value of local optima also decreases for
increases in K, which means that the differences in fitness of local optima
become smaller for systems with higher complexity. In the context of com-
peting technological designs, this result suggests that the higher a technol-
ogy’s complexity, and the smaller the performance differences between
locally optimal designs, the more persistent design variety will be,10
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2.2 Generalizations of the NK Model

The NK model can be generalized in a number of respects to represent a
wider range of phenomena. The first generalization concerns the represen-
tation of the relation between a system’s ‘genotype’ (the set of design
dimensions) in relation to the ‘phenotype’ (the set of functions a system
performs). The NK model is based on the idea that each component of the
system performs an ‘own’ sub-function within the system with regard to the
attainment of one overall function on which external selection operates
(Kauffman 1993, p. 37). Each component 7 is conceived to have a particu-
lar fitness value w, that reflects its functional contribution to the system as
a whole. The fitness of the system as a whole is derived as the average of the
fitness of individual components. '

Altenberg (1994, 1995, 1997} describes a generalized (biological) model
of complex systems that contajns N dimensions (i=1,...,N) and F func-
tions (f=1,...,F) and for which it holds that N does not necessarily equal
F. In biological systems, for which the original and generalized NK models
were both initially conceived, an organism’s N genes are the system’s com-
ponents and an organism’s F traits are the system’s functions on Whlch
natural selection operates. The string of genes constitutes an organism’s
genotype and the set of traits constitittes an organism’s phenotype. "l?he
genotype of an organism is the level at which mutations take place, which
are transmitted to offspring. The phenotype is the level at which natural
selection operates in terms of its relative fitness. _ .

Analogously, a technological artefact can be described in terms of its ¥
components and the F functions it performs. The string of alleles de‘scribes
the ‘genotype’ of a technological system, and the list of functions describes
the ‘phenotype’ of this system. Typical functions of technological artefacts
include cost-related criteria (fuel-efficiency, maintenance cost, and so on)
and. performance-related criteria (power, speed, wgight, safety and the
like). ! : ' : : .

Tn Altenberg’s generalized NK model, the architecture of a complex
system is represented by a ‘genotype-phenotype matrix’ of size FX Nwith:

M=[mg,f=1,....Fi=l....,N ' (5.4)

As in the NK model, an epistatic relation is represented by “x’ when func-
tion fis affected by component »and by ‘~* when function f'is not aﬁ"ecte.:d
by the component #. An example of a matrix for ¥ =3 and F= 2isgivenin
Figure 5.3. - : . :

The way in which fitness landscapes are constructed for generalized gen-
otype-phenotype matrices follows the same logic as the original NK model
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Figure 5.3  Example of a generalized genotype—phenotype matrix

discussed in the previous section. For each component that is mutated, all
functions that are affected by this component are assigned a new, randomly
drawn fitness value w,from the uniform distribution between 0.0 and 1.0.
Total fitness Wis again derived as the mean of the fitness values of all fune-
tions: .

1 F
W= 2w 5.5

A simulation of the fitness fandscape example of the genotype—phenotype
matrix of Figure 5.3 is given in Figure 5.4 for all possible combinations
between two alleles of three components. Local optima are again circled,
reflecting the combinations in which component technologies are comple-
meniary. :

The meaning of the concepts of fitness landscape and local optima
remains entirely the same in Altenberg’s (1994, 1993, 1997) generalized NK
model. Moreover, the properties of the NK model discussed above, which
relate the number of local optima, the fitness of local optima, and the var-
iance in fitness of local optima to complexity K, remain intact. The main
difference compared to the original NK model is that in the generalized
model the number of dimensions N is not necessarily equal to the number
of functions F. Altenberg’s (1997) model can therefore be considered as an
important generalization of the original NK model of complex systems by
Kauffman (1993).12

A second generalization of the NK model can be introduced by specify-
ing a more general fitness function that translates the fitness levels of indi-
vidual functions w, into one overall assessment value W. The fitness
function in Equation (5.5) specified that each function is weighted equaliy.
As an empirical specification of fitness (performance) of a technology, this
equation obviously does not account for the general case in which users
may apply different weights to the various functions of the artefact.
Allowing for different values of weights for each function, we get:
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. .

W(s)=;1 Brwp(s) (5.6)
F

> B=LB>0 (5.7
=1

A selection environment can then be defined by the set of weights {3, B,,
‘.., By} that 1s applied by users of the technology. The concept of a fitness
landscape does not change when total fitness is comiputed as a weighted
sum instead of as the average of the fitness values of functions. However,
the values of total fitness of each design W{(s) will be different depending
on the values of the weights that are applied.

A final generalization can be introduced by allowing for heterogeneity
among users. So far, we have implicitly assumed that each user of a partic-
ular design apphies the same set weights and thus assigns the same fitness
value W{s) to a design. However, depending on the specific use of the
design, different users may well apply different weights, and thus assign
different fitness values to one and the same design (Lancaster 1966, 1979,
Saviotti and Metcalfe 1984, Saviotti 1996).14 In this case of heterogeneous
demand, different users have different valuations of the same technological
design, as they weight the levels of functions differenfly. As Lancaster
(1979, p. 17) expressed it:

Differences in individual reactions to the same good are seen as expressing differ-
ent preferences with respect to the collection of characteristics possessed by that
good and not different perceptions as to the properties of the good. .

The weights assigned to functions as specified above {B,, B, ... , Bz} reflect
one homogeneous user group. When there is more than one user group, we

_ : 010 - - 110
w oW, W ©35),—— (0.60)
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Figure 5.4 Simulation of fitness landscape of the matrix in Figure 5.3
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can characterize each different user group by a different set of weights. For
a & number of user groups g (g=1,...,G), we have G sets of weights. For
each user group, the fitness W, of a design is given by:

F
W)= 3 8w/ 5:8)
F .
jgl Bfgz 1, Bfgz() (5-9)15

This specification of the selection enviromment includes the specification
given above for a homogeneous selection environment as the special case in
which G=1. : : '
When heterogeneity in preferences is more dispersed, it 1s less likely that
one design is optimal for all user groups. In that case, product differentia-
tion is expected to occur. In the extreme case, given a sufficiently large
design space, a different design may be found for each different user group.
When a-user group exisis for which no design is yet optimized, and this is
known to designers, this in itself can spur the search for innovations in par-
ticular components in order to find a new design capable of fitting their par-
ticular demand (induced innovation). ‘ : E

23. IMPLICATIONS

Regarding the patterns -of technological evolution one can expect to
emerge, a number of implications follow from the previous discussion of
the NK model and its generalizations. To summarize the implications, one
can distinguish between technologies that are subject to homogeneous
demand and technologies that are subject to heterogeneous demand:

e When demand is homogeneous (G= 1) and complexity is absent (K
=} there exists only one local optimum, which can be found by local
trial and error. When demand is homogeneous (G=1) and system
complexity is present (K>>0), the expected number of local optima
becomes a function of the complexity parameter K. Thus, even when
demand is homogeneous, technological variety is expected to emerge
as different designers will come up with different, locally optimal

solutions. What is more, the variety in technological designs can be
quite persisient for highly complex architectures, as the variance in
the fitness values of local optima has been shown to decrease as a
function of K (Kauffinan 1993).

e When demand is heterogeneous (G>1) and complexity is absent
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(K =0), there is only one global optimum, which is the same for each
user group, since each function can be optimized independently from

“other functions. The existence of heterogeneous demand is not a
sufficient condition for design variety to emerge. When demand is
heterogeneous (G>1) and complexity is present (K> 0), design
variety is expected to emerge for two reasons. First, as in the case of
homogeneous demand, trial and error may lead different designers to
come up with different local optima. Second, the heterogeneity in
preferences may render different designs to be globally optimal for
different user groups. Note that in the case of heterogeneity in pref-
erences, the design variety is expected to be even more persistent than
in the case of homogeneity in preferences where variety may slowly
disappear as sub-optimal design lose ground due to small differences
in fitness. : :

Note that design variety that is expected to emerge following the general-
ised NK-model is always limited by the extent to which scale economies and
network externalities are realized in the production and use of a single
design (Arthur 1989). When one design s is produced and used in much
higher numibers than alternative designs, lower price and higher willingness
-to-pay may attract users who previously preferred an alternative design.
However, a greater degree of heterogeneity of preferences as expressed by
the different weights users assign to the various functions, will in turn
render it less likely that one design will ‘attract all users. Moreover, radical
innovation may at all times lead to the introduction of complete new
designs attracting new users or users who previously adopted another
design. o B . o :

Patterns of technological evolution thus depend crucially on the com-
plexity of a technology’s architecture, the number of functions that can be
distinguished, and the degree of heterogeneity of demand. In the three
cases we will discuss below (steam engines, aircraft, and helicopters), the
complexity and number.of sclection criteria is generally estimated to be
quite high (Rosenberg 1982). Moreover, all three technologies have been
used in a wide range of user contexts. In our view, one can expect an empir-
ical analysis to show technological variety to emerge in the course of their
evolution.

3. ENTROPY STATISTICS

In the previous section we proposed a formalization of artefact complexity
and discussed its implications for the patterns of technological evolution
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that are expected to emerge. A straightforward way to analyse empirical
data on artefact designs in terms of the ruggedness-of-fitness landscapes is
to apply entropy statistics. Entropy statistics can be computed using fre-
quency distributions of technological designs coded in the N-dimensional
design space and they allow one to map both the degree of technological
variety (by means of entropy indices), and the nature of technological
variety (by means of mutual information indices). In this way, evolution-
ary trends in the development of a technology can be consistently outlined.

The entropy index refers to the degree of randomness in the choice of
technological designs as reflected by the skewness of a distribution. A
skewed distribution reflects a situation in which designers hardly differ in
their choice of design, while a flat distribution reflects a situation in which
designers have come up with very many different designs. As such, entropy
can be used as an indicator of technological standardization and to what
extent a dominant design can be said to have emerged (Frenken et al.
1999b). The more skewed a distribution, the lower the entropy (random-
ness) of a distribution. :

To understand to what extent the variety indicated by entropy can indeed
be said to reflect local optima on a rugged-fitaess landscape, a second indi-
cator called mutual information is introduced (Frenken 2000, 2001).
Mutual information indicates the extent to which particular alleles along
different dimensions co-occur in the technological designs offered on the
market. Statistically, mutual information thus indicates the degree of
dependence between different design dimensions. The existence of local

optima would imply that particular alleles along one dimension typically

co-occur often with particular alleles along other dimensions, which would

result in a high value of mutual information (dependence). Following the *

metaphor of a fitness landscape, high mutual information indicates that
designers occupy more than one peak. When alleles along different dimen-
sions are more or less randomly combined, mutnal informafion is low
(independence). Designers are more or less randomly spread out over the
fitness landscape without clustering around specific peaks.

3.1 Entropy

The entropy concept was developed in late nineteenth-century thermody-
namics to describe randomly moving particles (Prigogine and Stengers
1984). When many particles are moving randomly through a state space,
like particles of a gas in a box, the resulting distribution of all particles is
completely flat. The flat distribution follows from the fact that at all times
each particle has an equal probability of being present in any area in the
box. The flat distribution is characterized by maximum entropy (random-
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ness). When particles behave in a non-random way, some aréas in the box
will be filled with more particles than other areas, and the resulting distri-
bution is skewed. In that case, the entropy of the distribution is lower com-
pared to the case in which all particles move randomly. In the extreme case
when all particles cluster in one area of the box, entropy is lowest.

Entropy is thus a macroscopic measure at the level of a distribution that
indicates the degree of randomness in the microdynamics underlying a fre-
quency distribution. As such, entropy can also be used as a variety measure
of fregquency distributions of technological designs. Following Saviotti
{1996), we refer to a distribution of technological designs as the ‘product
population’. Maximum entropy corresponds to the case in which all designs
occur af the same frequency. Such a completely flat distribution would occur
when designers move around randomiy in state space, which has been called
here the ‘design space’. In that case, designers pick randomly the vatious
alleles of each component. In this hypothetical case, any product design has
an egual probability of occurrence, and the product population would be
characterized by even frequencies of all designs. This hypothetical situation
refers to a situation in which designers do not learn about the functional
properties of different designs, and sirnply choose the alleles configuration
at random (analogous to the randomly moving particles in a box, explained
above). A skewed distribution occurs when some designs dominate the
product population. In that case, the frequency of some designs is high,
while the [requency of most designs is low or zero. In this case, designers
have not chosen a design at random, but have somehow learned which
designs are most demanded, for example, by applying a local search strat-
egy of hill-climbing. In the extreme case in which all designers choose to
offer one and the same design on the market, entropy will be minimum.

The entropy measure thus indicates the degree of design variety in a
product population. To describe a product population as a frequency dis-
tribution of designs, let cach design be coded again as a string of &V alieles
(i=1,...,N). Each of the N dimensions is labelled here as X, with each
dimension containing A, alleles again coded as ‘0°, 1°, and so on. The rel-
ative frequency of design s in the product populaticon is denoted as p.. The
entropy value of an N-dimensional distribution is then given by (Theil
1967, 1972, Langton 1990):

A=l A1
H(Xl,...,XN)z—Z%) Z:Dps-lnps_ (5.10)16.17

Entropy is zero when all products present in the population are designed
according to one and the same design. This design would have a frequency
of one in the product population, which implies that the entropy of the
product population equals:
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H , =—1n(1)=0.

Entropy is positive otherwise. The larger the entropy value, the larger the
design variety in the product population. The maxinmm entropy is limited
by the size of design space S. When all § possible combinations of alleles
have an equal frequency; we obtain a uniform distribution in which each
design has frequency p = 1/8. The entropy of this distribution equals:

el e

This value is the maximum possible entropy value for a distribution of
product designs with a design space of S possible designs. It implies that for
larger values of .S, maximum entropy increases, with the marginal increase
of maximum. entropy decreasing. This property reflects that each new
entity added contributes to variety, but decreasingly so.

Similarly, the design variety along one dimension i can be computed The
one-dimensional or-marginal entropy indicates the variety in a produck
population with respect to one design dimensiontonly, and is given for each
dimension by: ~

HXxy)=- Eps lnps (5.11)

As we will see, the one~d1mens1onal entropy formula:can be used to
compute the mutual information index, which is equal to the difference
between the sum of one-dimensional entropy values and the N-dimen-
sional entropy value.

3.2° Mutual Information.

In information theory, the measure that indicates the degree of dependence
(co-occurrence of alleles) in a frequency distribution i1s the measure of
mutual information 7" Mutual information is given by (Theil 1967 1972,
Tangton, 1990): .

A-1 Ay—1

TX,....Xy= E Epsln

=0 Sy=0

(5.12)
H 2,
: i=1

The mutual information value Tindicates the extent in which alleles along
different dimensions are co-occurring in the distribution of designs. The
mutual information value equals zero when there is no dependence between
any of the dimensions. In that case, the joint frequency of alleles of com-
ponents p_ corresponds exactly to the frequency that could be expected
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from the product of the marginal frequencies I1Y | P, When the product of
marginal frequencies does not correspond to the _]01111; frequency, there is
dependence between dimensions. Mutual information is thus derived by the
weighted sum of dependence values for cach design. It can be proven that
the weighted sum of dependence values is non-negative for any frequency
distribution; that is, 7= 0 (Theil 1972). The greater the difference between
the joint frequency and the product of marginal frequencies, the higher the
value of the mutual information, and the more alleles along particular
dimensions co-occur in ‘design families’.

The mutual information measure is directly related to the concept of
entropy as mutual information can be derived from the multi-dimensional
and marginal entropy values. In the general case of an N-dimensional dis-
tribution (NV>1) the mutual information equals the sum of marginal
entropy values minus the V-dimensional entropy value (Theil and Ficbig
1984, p. 12);

N
T(X,.. ..,XN)=(Zl H()Q))—H(X,...,XN). (5.13)

From this equation, it can be derived that the mutual information equals
zero if entropy equals zero, and that mutual information equals zero if
entropy is maximum (see Appendix).

Similarly, one can compute the mutual informaticn between each pair of
dimensions to indicate dependence between two dimensions:

T (X, X)=HX)+H(X)—H(X,X) i#ji=1,...,Nj=1,...,N.

The two-dimensional mutuval information values indicate the dependence
between a pair of dimensions and are thus informative with regard to the
importance of epistatic relations among the pair of dimension in question.
A high mutwal information between two dimensions suggests that an
important epistatic relation exists between the two dimensions, since
designers predominantly offer alleles in particular opposite combinations
(for example, either combination 00 or combination 11). Dependence
reflects dominant complementarities between two dimensions as particular
alleles along the one dimensions often co-oceur with particular alleles
along the other dimension and irrespective of alleles in yet.other dimen-
sions.

3.3 Entropy and Mutual Information as Indicators of Evolution

To explain the connection between entropy and mutual information indi-
cators and the exploration of rugged-fitness landscapes, one should keep in




110 Applied evolutionary economics and complex sysiems

Tuble 5.1  Three examples of distribution for binary strings of N =3

Distribution  pegy  Pop: Poio Pour Piw P Pio P

Case 1 0.125 0125 0.125 0125 0125 0.125 0.125  0.125
Case 2 0250 0.000 0.000 0.250 G.000 0.250 0250 0.000
Case 3 0.500 0000 0.000 0.000 0.000 0000 0000 0.500

Entropy H(X,.X,X) H(X, Xy HX,X) HX,X) HX) HX,) HX)

Case 1 In8 In4 n4 In4 n2 k2 In2
Case 2 In 4 In4 In4 In 4 Inz2 W2 2
Case 3 In2 m2  In2 ln2 n2 W2 In2

Mutal information  T(X, X,, X T(X. Xy 1%, %) T, X)

Case 1 0 0 0 0
Case 2 In2 0 0 0
Case 3 Ind4 In2 In2 n2

—

mind the relationship between entropy and mutual information. Recall
Formula (5.13), which expresses mutual information as the sum of margi-
nal entropy values minus multi-dimensional entropy, which can be rewrit-
ten as: : :

N
(2 H(Xf))=T(X,...,XN)+H(X,...,XN)

From this formula, it can readily be seen that, given a value for the sum of
marginal entropy (ZH,), mutual information can increase only at the
expense of (total) entropy, and vice versa. This relationship is illustrated in

Table 5.1, in which three differént frequency distributions of designs are .

listed (for N'=3). In all three cases, the sum of marginal entropy values is
the same (TH,= 3-In(2) =1n(8)), because in all threc cases the two alleles
along each dimension occur at the same frequencies. However, the three-
dimensional entropy and mutual information values differ for each distribu-
tion. Case 1 corresponds to a uniform distribution with maximum entropy
and zero mutual information. Case 2 shows that a multi-modal distribution
with four designs has positive and equal frequencies. Three-dimensional
entropy equals 1n(4), while three-dimensional mutual information is only
1n(2). Finally, case 3 shows a bi-modal, 50--50 distribution in which two
opposite designs are present in the product population (000 and 11 D). In this
case, three-dimensional entropy equals only In(2), while three-dimensional
mutual information adds up to In(4). The latter case is characterized by such
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high mutual information becaunse knowledge of one allele along one dimen-
sion of a design would allow one to perfectly predict the alleles along the
two other dimensions.

When entropy and mutual information are applied to the frequency dis-
tributions of consecutive years of technological evolution, a very different
picture may emerge. In that case, the value of SH,in a particular year will
differ from the value of SH, in other years. Over time, the value of 2H;
may incredse or decrease, or show no trends. An increasing trend would
indicate a growing variety in alleles used along each design dimension.
Following the formula, such an increase in the value S H, implies that
entropy and mutual information can both increase at the same time. In
that case, we have a pattern of increasing design variety as indicated by the
risein H(X, . .. X,) and of increasing differentiation of designs in families
as indicated by the rise in T(X] . . . X}y). Such a process indicates the pro-
gressive development of a growing number of design families akin to *spe-
ciation’ in biology (Saviotti 1996, Levinthal 1998). The reverse pattern can
also take place. When S H, is falling, entropy and mutual information may
decrease at the same time (for example when a product family totally dis-
appears). '

The evolutionary development of a complex technology, following the
generalized NK model as discussed earlier, is expected to be characterized
by both an increasing degree of variety (entropy) and an increasing degrec
of differentiation (mutual information}. Such a development process can be
understood from the multi-dimensional and complex nature of technolog-
jcal artefacts and the existence of heterogeneous demand.

4. APPLICATIONS

We will test our thesis of growing design variety and differentiation into
design families using data on early steam engines (1760-1800), aircraft
(1913-84) and helicopters (1940-83). For each technology we will first
provide a short summary of the ‘standard’ historical account of its develop-
ment, then present the data and results, and finally discuss what new insights
can be derived from the analysis. :

4.1 Steam Engines

4.1.1 Early steam-engine history’®. :

Historians of technology have described the early development of steam-
power technology as a ‘linear’ succession of technological break-
throughs. The main contours of what might be called the traditional
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account'’” of early steam-engine development concern the design
sequence of Savery—Newcomen—-Watt—Trevithick that took place during
the eighteenth century,

In the late seventeenth century mining activities begun to be severely
hampered by flooding problems. Following the scientific investigations of
Torricelli and Pascal, there were several attempts to use atmospheric pres-
sure to lift water out of mines. The Savery engine can be considered as the
first successful effort in this direction. The engine was developed during the
period 1695-1702. In the Savery engine, steam was first admitted and then
condensed inside a ‘receiving’ vessel by pouring cold water over its outside.
Following steam condensation, atmospheric-pressure drove water up into
the vessel. The engine had two major shortcomings, which limited its prac-
tical utilization: restricted height of operation and high fuel consumption
due to the need for recreating steam inside the vessel at each stroke.

The Newcomen engine, developed in. 1712, resolved the problem of
limited height of operation. The Newcomen engine consisted: of a
piston—cylinder arrangement connected with one hand of a working beam.
Steam was admitted from the boiler into the cylinder by means of a valve.
Then a cold of jet of water was sprayed into-the cylinder, condensing the
steam. At this point, because of the creation of a partial vacuum, atmos-
pheric pressure pushed the piston down, lifting the pump rod at the other
end of the beam. The use of the piston—cylinder arrangement together with
the beam made it possible to use the engine for effective mine drainage.
Furthermore, the Newcomen engine was robust, highly reliable and based
on a fairly simple working principle. The Newcomen engine, however, did
not solve the problem of high fuel consumption. Neither did the engine
design deliver smooth motion, preventing the use of this kind of engine in
applications in which a smooth rotary motion was needed.?’

James Watt in the 1770s and in the 1780s successfully tackled these two
problems. In his engine, condensation was carried out in a separate vessel
and not in the cylinder. This design implied that there was no longer the
need to reheat the cylinder at each stroke, which greatly contributed to fuel-
efficiency. After the invention of the separate condenser, Watt conceived a
nurmber of modifications to his engine in order to allow the effective trans-
formation of reciprocating motion into rotary motion. Among the designs
that were developed for rotary motion was the double-acting Watt engine,
in which steam is admitted into the cylinder on both sides of the pistonin
an alternating manner. This resulted in a more powerful action, but also in
a much more regular movement of the piston.

Finally, in the second half of the 1790s, Richard Trevithick developed the
first high-pressure engine (Wat{ engines used steam at a little more than
atmospheric pressure). This type of engine did not use the separate con-
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denser, but discharged exhaust steam directly into the atmosphere. For this
reason, they were called ‘puffers’. The main advantage of this type of
engine was their compactness and their cheaper cost of installation due to
elimination of the condenser, the air pump and the beam.?!

As is apparent from this narrative, such a historical depiction is akin to
chronicling a sort of ‘glorious march of invention’, where most of the
emphasis is put on the creative contributions of a succession of individual
inventors {the line Savery—Newcomen—Watt-Irevithick). Each inventor
tackled the shortcomings of the technological “state of the art’, devising
improvements that made previous engine designs obsolete through a
process of technological substitution. The question is whether this tradi-
tional picture also emerges from entropy analysis.

4.1.2 Early steam-engine data

The data we use are taken from an up-to-date version of the database col-
lected by John Kanefsky.” The database contains a list of all steam engines
(more precisely, those for which some historical evidence has been found)
erected in Great Britain over the period 1700-1800. We have limited our-
selves to the period 1760-1800, as the period before 1760 was entirely dom-
inated by the Newcomen design and thus was characterized by absence of
variety and differentiation.”® _

The database contains 1370 engines for the period 1760-1800. Each of
these engines is coded as a string of seven alleles that describes the engine
design as a point in a seven-dimensional design space. Dimensions and
alleles are given in Table 5.2. The design dimensions have been constructed
in such a way that each design could be coded as a unique string, thus cov-

_ering the most relevant dimensions of early steam-engine technology. After

having coded each engine in the database as a design string according to the
classification of the design space in Table 5.2, we constructed yéarly fre-
quency distributions and computed the entropy and mutual information
values.

Note that we have considered three-vear moving averages of the yearly
entropy and mutual information values in order to smooth short-term fluc-
tuations and obtain a ‘neater’ patiern: The results in the figures are shown
per year, where each year stands for the in-between year of a three-year
period. The transformation of yearly values into three-year moving aver-
ages does not in any way affect our conclusions.

4.1 3 Results on steam engines

From the results, it immediately becomes clear that vanety (entropy) and
differentiation (mutual information) have both increased very rapidly from
1774 onwards when the Watt engine became a popular design next to the
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Table 5.2 Design space of steam-engine technology (8 =192)

Steam engine

Number of observations: 1370

Time span: 17601800
Area: Great Britain
X - Pressure

A=2 0 low, 1 high

X, Condenser -
A,=2 0 yes, 1 no

X Action

A;=2 0 single acting, 1 double acting

X, Compounding

A,=2 0 ves, 1 no

X Motion

A5=3 0 reciprocating, 1 rotary, 2 water returnidg
X Top .
A=2 0 open, 1 closed

xX; Cylinder

A,=2 0 single, 1 double

older Newcomen design (Figure 5.5). The rise in variety and differentiation
levelled off around ten years later (more or less from 1785). What is also
clear is that; as both entropy and mutual information have been rising, the
sum of marginal entropy values must have risen also, following Formula
(5.13). This shows that the technological evolution of the steam engine has
been characterized by the introduction of new alleles in several dimensions
accounting for the rise in the sum of marginal entropy values. The intro-
duction of new alleles has been such that both the variety in designs and
the degree of differentiation in design families have risen. Put another way,
the design variety has been made possible by the development-of new alleles
that are combined in highly non-random ways.

Closer inspection of Figure 5.5 also shows that during the 1770s and
“early 1780s the rise of entropy precedes increases in mutual information.
‘We understand this as probably being due to the fact that new combina-
tions of alleles were tried first, leading to an increase of variety. However,
some of these new combinations did not reach adequate levels of fitness,
and so we see that, with a delay, mutual information ‘catches up’ with the
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Figure 5.5 N-dimensional entropy (H) and mutual information (T) for
steam-engine designs

entropy, which means that the product population is clustering around
some specific points of the landscape. In other words, we have first-a phase
of exploration and discovery of new areas of the landscape, followed by
concentration in some points that are likely to be local optima. The ‘level-
ling-off phase’ seems to suggest that from the late 1780s a stable pattern of
differentiation finally emerged.

Results on two-dimensional mutual information values are depicted in
Figure 5.6. The figure shows along which couples of dimensions differenti-
ation has been most pronounced. Hence, these results are also informative
about the nature of the technological interdependencies (epistatic rela-
tions) among the constituting elements of our design space. The highest
mutual information values are reached by the pair T{X,,X,), which reflect
the interdependence between condensation and the closed-top cylinder.
Separate condensation and the closed top cylinder are the two salient fea-
tures distinguishing Watt {ype of engines {(¢100010) from the Newcomen
atmospheric engine without condensation and open top (0000000).
Importantly, the high values of T(X,, X)) are not temporary but continue
during the whole period considered. These results thus confirm the thesis
of an emergence of a pattern of differentiation.

The other couples of dimensions with high mutual information values are
T(X,, X3), T(X,, X5), T(X5; X5), T(X;, X,) and T(X;, X,). What becomes
clear from these results is that the high values are limited to four dimensions:
X,, X;, X; and X, (respectively, with/without condenser, single/double
action, reciprocating/rotary/water returning, and open/closed top). As
explained above, dimensions X, and X, differentiate Newcomen and Watt
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Figure 5.6  Two-dimensional mutual information (T) for steam-engine
designs

engines. Dimensions X; and X concern different types of solutions to
deliver particular types of motion. Double action was a typical feature of
Watt rotary engines (0110110), while Newcomen engines delivering rotary
motion made use of either returning a stream over a waterwheel (0000200)
or directly by alternatively using two cylinders (0000101)..

4.1.4 Discussion

The pattern of growing Varlety and differentiation of early steam-enging
technology suggests that newly developed designs did not simply substitute
older designs, but enlarged total design variety. Our analysis shows that the
‘linear” view of the early history of the steam engine is essentially untenable.
Instead, technological evolution in this period is better characterized by pro-
gressive differentiation mto distinet design families.?* In terms of the NK
model, the clustering of the product population around some specific designs
can be seen as a reflection of designers occupying local optima in the fitness
landscape.

The process of differentiation proceeded along four specific techmcal
dimensions (with/without condenser, single/double action, reciprocai-
ing/rotary/water returning, and open/closed top). These dimensions may
well be related to different useér contexts, in particular to the cheapness
of coal and to the desired properties of the rotary motion. The pattern
of specialization we find contradicts received histories of early stcam-
engine evolution that point to a process of substitution between Watt
engines and Newcomens. Although Watt’s inventions are considered to
have solved the main shortcomings of the Newcomen engine, it is mis-’
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leading to assume that they led to the substitution of Newcomen
engines.

Regarding the superiority of Watt’s fuel efficiency, one can understand
the limited substitution of Newcomen engines by Watt engines, taking into
account the higher costs of erection and maintenance of the Watt engine.
In this respect, von Tunzelmann (1978) has argued that in areas where coal
was cheap enough, the Newcomen engine had an important advantage due
to'its lower costs of installation and maintenance. Besides, whereas the
Newcomen engine was well within the engineering capabilities of the time,
the Watt engine imposed very compelling requirements on the degree of
accuracy of the various components of the engine. This points to the exis-
tence of a fundamental trade-off concerning fuel-eﬁicnency versus simplic-
ity of construction and maintenance.??

Regarding thetype of motion that Watt engines were oapable of deliver-
ing, the significance of Watt’s destgn modifications also requires further
nuance. Although Watt’s inventions for supplying rotary motion were
highly celebrated (Dickinson and Jenkins 1927), they should not by any
means be considered definitive, especially given the accuracy of workman-
ship of the time. We are aware of many cases of unsatisfactory perfor-
mance of Watt rotary engines in textile mills.26 This explains why Watt
engines only partially substituted alterna’uve designs that delivered rotary
motion.

Interestingly enough there was an attempt to develop a ‘hybrid’ engme
combining the simplicity of Newcomen with the fuel-efficiency of Watt. This
was the ‘improved atmospheric enging’ patented by Symington in 1787
{0100000). Unfortunately, we have scant information on this engine (especially
on its actual fuel-efficiency compared to Watt). We know that about twenty of
this type of engine were erected mainly in Scotland and that they generally
proved rather successful.?” Some historians of technology (Dickinson and
Jenkins 1927) have dismissed Symington simply as-a ‘schemer” who tried to
circumvent Watt’s patent.2® Qur results instead -suggest that his attempt to
merge the two separate design trajectories of the Newcomen and Watt designs
was genuinely aimed at solving a teething trade-off.

To summarize; the existence of various user contexts implied that
engine designs be differentiated in order to provide adequate responses to
the specific demands of the various user sectors. In our case, this deter-
mined a divergence of design trajectories, a process akin to speciation in
biology. In a companion paper (Frenken and Nuvolari 2002), we study the
pattern of specialization of different type of steam engines in the various
user contexts in greater detail using data on the sector of application of
engines.
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4.2  Aircraft

4.2.1 Aircraft history

Both historians and economists have analysed the development of air-
craft technology in considerable detail (for example Miller and Sawers
1968, Constant 1980, Bilstein 1996). Although these studies differ in
their perspectives and methodologies, there is a general consensus on the
main stages of aircraft development, which can be divided into four
periods.

The early history of aircraft from the turn of the century to roughly 1930
is characterized by a large variety of designs and limited demand. A larse
number of new, small firms experimented with various designs and materi-
als. 'This period is conumonly considered an explorative stage in the indus-
try characterized by a great deal of trial and error. During this period, series
production remained limited, causing production costs and prices to be too
high for mass consumption. ’

The second stage, covering the 1930s and early 1940s, has been marked
as the period of technological convergence towards what has been termed
a ‘dominant design’ (Abernathy and Utterback 1978). The Douglas DC3
developed in the mid-1930s is generally considered the exemplar of this
dominant design. The DC3 is an all-metal, monocoque, piston-propeller
monoplane with twin engines placed under the wings. Production costs of
this design rapidly fell due to its commercial success in both military and
civil aviation. In the early 1940s, total production of the DC3 reached

10000 models (Jane’s 1978). The DC3 design also provided the basis of the_

development of a whole product family developed throughout the 1940s
and the 1950s, including the DC4, DCS, DC6and DC7. At the time, many
firms, including Boeing, imitated the DC designs in their piston propeller
product lines for passenger aircraft and bombers.

. The third stage, covering the period of the 1940s.and 1950s, is character-
ized by the introduction of jet engines, The first experiments with jet
engines go back to the Second World War, but their successful application
in both military and civil aircraft first took place in the 1950s. The transi-
tion from piston-propeller to jet engines has been widely recognized as a
technological revolution, which has established a shift in the prevailing
‘technological paradigm’ (Constant 1980, Dosi 1982). The introduction of
jet engines did not simply replace piston-propelier engines in existing
designs, but also led to the development of new technologies in other parts
of the aircraft, notably the introduction of swept and delta wings that were
better able to cope with the increased engine power of jet engines. The rev-
olutionary nature of jet-engine technology can be further supported by the
fact that the Douglas, as the most successful company in large piston-
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propeller aircraft, lost its leading position to Boeing, a company that came

to dominate the turbofan passenger aircraft industry.

The fourth stage of aircraft development has been characterized by the
further diffusion of jet engines in smaller aircraft, including business air-
craft and short-range passenger aircraft. In the period after the 1950s, no
major change in aircraft design has taken place as innovative activities
increasingly shifted from aircraft design to avionics,

4.2.2 Aifrcraft data

The data on aircraft design concern the alleles of six design dimensions and
covers the period 1913-84. As aircraft development only took off in the
early 1900s, the data can be considered to cover the larger part of aircraft
history. The choice of the six dimensions and its alleles is based on the lim-
itation posed by the data source, which concerns photographs of aircraft
designs. Admittedly, other dimensions that are known to have played an
imporiant role, including the types of landing gear and the type of materi-
als used, could not be coded due to the limitation of the source materials.
The photographs were drawn from Jane’s (1978, 1989) encyclopaedia on
aviation, which is known to be among the most comprehensive encyclopae-
dias of aviation and aircraft designs from all countries. The data of the six
dimensions have been compiled for a sample of 731 aircraft models (Table
5.3), corresponding to a sample covering other variables not used here, pre-
viously assembled by Paolo Saviotti.?®

The frequency distributions of designs that are used to measure entropy
and mutual information at particular moments in time are not the yearly
distributions of product designs. In this case, a year is too short a time-
span, as aircraft designs are typically products: that remain on offer for
many years after their introduction. We used ten-year distributions, but cal-
culations for five-year and 15-year distributions yielded the same trends as
discussed below.

The results in the figures below are shown still using a yearly basis, where
each year covers a ten-year period. Thus the distribution of designs asso-
ciated with a specific year corresponds to a time period of ten years begin-
ning in that year. In other words, the year 1913 stands for the distribution
of designs introduced between 1913 and 1922; the year 1914 stands for the
distribution of product designs introduced between 1914 and 1923, and so
on. .

4.2.3 Results on aircraft

The results on entropy and mutudl information for aircraft are given in Figure
5.7. Entropy increased in the early decades and decreased only slightly in the
1930s. In the 1940s and early 1950s entropy increased rapidly, again to level
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Table 5.3  Design space of aeroplane technology (S =2520) -

Aeroplane

Number of observations: 731

Time span: 191384

Area: World

X Engine type ‘.

A4,=35 0 piston-propeller, 1 turboprop, 2 jet, 3 turbofan, 4 rocket
X, Number of engines .

A,=7 0 one, 1 two, 2 three, 3 four, 4 six, 5 eight, 6 twelve
X, Number of wings

Ay=3 0 monoplane, 1 biplane, 2 triplane

X, Win g. type . ]

A,=4 0 straight, 1 delta, 2 swept, 3 variable swept

X - Number of tails

A;=2 . O one, 1 two .

Xﬁ Number of booms -

Ag=3 0 one, I two, 2 three

off in the late 1950s. Mutual information shows fewer fluctuations, with a
general upward trend. Notably, mutual information rose substantially during
the period of the 1940s and 1950s-and levelled off thereafter. The results sug-
gests that the long-term evolution of aircraft is characterized by both growing
variety and growing differentiation into different design families.

The results for the pair-wise mutual information in Figure 5.8 prove
informative with respect to the dimensions along which the differentiation
process has taken place. It is clear that the rise in mutual information in the
post-war peried is primarily related to rising mutual information between
the engine type and the wing type T(X;,X,), between the engine type and
the number -of engines T(X},X,); and between the number of engines and
the wing type -T(X,,X,). The values for these three pairs of design dimen-
sions have increased very rapidly. The emergence of design families can
thus be related to the interdependencies between these design dimensions,
The local optima in fitness landscapes are thus primarily characterized by
the different alleles engine type, wing type, and the number of enpines.
Counting the various designs in the final period after 1960 leads us to dis-
tinguish between four design families (Frenken 2001): one- and two-engine
piston-propeller aircraft with straight wings, two-engine turboprop mono-
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Figure 5.8  Two-dimensional wutual information (T ) for aircraft designs

planes with straight wings, one- and two-engine jet aircraft with delta wings
and two-, three- and four-engine turbofan aircraft with swept wings.
Epistatic relations among other pairs of dimensions do not show high
dependence, suggesting that dimensions X, X, and X, have not been con-
stitutive for the emergence of design families. All two-dimensional mutual
information values including X, X or X remain low throughout the period
with the exception of the value T{X,,X.}, This value shows some increase in
the 1920s and early 1930s and indicates the common use of an uneven
number of engines in two-tail aircraft design, with one engine placed
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between the tails. After the 1930s, however, two-tail aircraft designs were
hardly being used, which shows that this trajectory has proven a dead end.

4.2.4 Discussion

From our results we conclude that the history of aircraft technology is
characterized by a progressive development of designs into four distinct
families. Though not entirely differing with the histories of the aircraft
industry as sketched before, these results offer a number of new insights
into its evolutionary dynamics,

First, the emergence of a dominant design in the 1930s commonly asso-
ciated with the Douglas DC3 had only a limited effect on the total design
variety in the industry. The results on aircraft entropy show that the
increase in variety was indeed halted during the 1930s, but did not decrease
substantially. Second, the advent of jet-engine aircraft in the 1940s and
1950s contributed, as expected, to design variety, with entropy values
rapidly rising during this period. However, after the 1950s entropy
- remained at a high level, suggesting that jet-engine design did not fully sub-
stitute propeller designs. Instead, a pattern of differentiation occurred, as
indicated by the rising values of mutual information, with piston-propeller
and turbo-propeller engine design coexisting alongside jet and turbofan
engine designs.

We understand this stable pattern of differentiation as reflecting the
different uses of different aircraft designs found in an eatlier study that
related engine types to market applications (Frenken 2000). Piston-propel-
ler engine design has become dominant in low-cost, small-distance opera-
tions including trainer aircraft, business aircraft and agricultural aircraft.
Turbo-prepeller engine aircraft are used for small-distance passenger air-
craft and military transport, while turbofan-engine aircraft are used for
medium- and long-distance passenger aircraft. Finally, jet engines are pre-
dominantly used in high-speed fighter aircraft.

Note that the history of aircraft technology shows some interesting par-
allels with early steam-engine technology in that both technologies have wit-
nessed the introduction of a revolutionary design (the jet engine and Watt’s
engine, respectively). Yet, in both industries the introduction of the revolu-
tionary design has not so much led to a substitution process, but rather to a
process of progressive differentiation into different design families.

4.3 Helicopters
4.3.1 . Helicopter history

Though the concept of helicopters has a long history that goes back to
China in about 400 Bc, the first successful helicopter dates back to 1939
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with the development of the VS-300 by Sikorsky (Taylor 1995). The advent

of helicopter technology quickly received interest from armies and navies,
because of helicopters’ capacity to evacuate people from areas that were
not accessible by aeroplanes. The military demand for helicopters induced
a great deal of explorative activity in the 1940s and 1950s, including varia-
tions in the type of engine, the number of rotors, and the number of blades.
At the time, commercial expectations were high, as evidenced by popular
magazines predicting that American households would soon have a family
of helicopters in the garage.

In the late 1950s, the explorative stage of technological development
largely came to an end as design convergence took place with the apparent
superior engine performance of turbines to piston engines. According to
Bilstein (1996; p. 91), the single-rotor twin-turboshaft Kaman model intro-
duced in 1954 can in hindsight be considered a ‘pioneering’ design.
Hereafter, the twin-engine turboshaft design with one rotor became the
‘dominant design’.

Commercially, however, helicopters never became a mass-produced
product. Compared to aircraft, the costs and limited range of helicopters
impede their wider diffusion in segments currently dominated by conven- -
tional aircraft (Taylor 1993). Instead, most helicopters are used for trans-
porting people in areas not accessible by aircraft {(such as military troops or
offshore oil-platform personnel), while niche applications exist for a variety
of uses, including ambulance operations and fighter operations.

4.3.2 Helicopter data

The data on helicopters concern the alleles of ﬁve design dimensions and
cover the period 1940-83. The data of the five dimensiens have been compiled
for a sample of 144 helicopter models (Table 5.4). As for the data on aircraft,
the helicopter data have been compiled on the basis of observable character-
istics on photographs and correspond to the sample previously compiled by
Paolo Saviotti®® from Jane’s (1978, 1989) encyclopaedia on aviation,

As for aireraft, the frequency distributions of designs that are used to
measure entropy and mutual information at particular moments in time are
not the vearly distributions of designs. We used again ten-year distribu-
tions, but the calculations for five-year and 15-year distributions yielded the
same frends as in the results based on ten-year distributions discussed
below. The results in the figures are shown per year, where each year stands
for the first year of a ten-year period.

4.3.3 Results on helicopters
The results on entropy and mutual information are given in Figure 5.9.
Interestingly, the results on helicopter variety and differentiation show
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Table 5.4 Design space of helicopter technology (8 =420)

Helicopters

Number of observations: 144

Time span. 1940-83

Area: World

X Engine type

A;=35 0 piston, 1 piston turbo, 2 ramjet, 3 gas generator, 4 turboshaft
X, Number of engines .

A,=3 0 one, 1 two, 2 three

X, Number of blades

A;=7 0 two, 1 three, 2 four, 3 five, 4 six, 5 seven, 6 eight
X, " Number of shafts

A= 0 one, 1 two

X Number. of rotors per shaft

45=2 Oone, 1two ~ - . _ .

-

patterns that are altogether different from the results on early steam engines
and aircraft. After a short period of rising values, eniropy has fallen from
1955 onwards, showing that product variety in product designs has. also
fallen. The value for mutual information peaked earlier in 1949 and there-

after also shows a declining trend. Note that the decline in mutual informa-

tion has been relatively greater than the decline in entropy values (mutual
information -halved during the period 1950-80). This suggests that- the
variety that remained was increasingly based on-small variants around a
single dominant design, which is-the one-rotor turboshaft helicopter cov-
ering the large majority of models made from the 1950s onwards.

The two-dimensional mutual information values for helicopters also
show decreasing trends . (Figure 5.10). Only one pair of dimensions
T(X,,X;) shows the highest values over the whole period, reflecting comple-
mentarities between the number of engines and the number of blades. This
relationship points to the common use of more blades when more engines
are incorporated in a helicopter design to carry the higher weight. These
variations remained within the dominant family of one-rotor turboshaft
helicopters.

4.3.4 Discussion : _ .
The fall in mutval information accompanied by a fall in entropy suggests
that after a brief period of differentiation, we have a prolonged phase in
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which design variety decreases. The results correspond to Bilstein’s (1996,
p. 91) historical account that identified the single-rotor twin-turboshaft
design as the dominant design emerging in.the 1950s. Our analysis is also
in line with findings by Saviotti and Trickett (1992, p. 116), whe found that
the single-rotor turboshaft helicopters increased their share in the popula-
tion from around 30 per cent in the late 1950s to around 80 percentin the
carly. 1980s.: '
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In the case of helicopter technology, de-differentiation cannot be attrib-
uted to absence of heterogeneity in demand. In fact, Saviotti and Trickett
(1992) distinguish between up to 22 different uses of helicopters, ranging
from fighter operations to military transport to ambulance to business
transport. User heterogeneity may well be at least as high as in aircraft
industry, even though sales in the helicopter industry are only a fraction of
those in the aircraft industry. Given the heterogeneity of helicopter demand
and the process of de-differentiation of helicoptér supply, Saviotti and
Trickett conclude that heterogeneity in demand is met by modular designs
capable of being used in a variety of user contexts. In this context, one must
think of helicopters in which the interior is easﬂy adapted without chang-
ing the helicopter design itself,

The results still leave cpen the question as to why heterogeneity in user
contexts in early steam-engine and aircralt design have triggered differenti-
ation, while heterogeneity in helicopters users has not led to a sustained
pattern of differentiation. Following Frenken et al. (1999b), one can
explain the de-differentiation in helicopter technology by the existence of
competition between helicopter technology and aircraft technology. Within
the market for air transport, helicopter technology itself operates within a
relatively small niche, which is bounded by the presence of aircraft technol-
ogy. Over the past few decades, single-rotor helicopter performance has
been Iimited by a flight range of around 1000 km, a speed of 300 kmv/h and
payload of around 10000 kg. The halt in improvements does not reflect
technical difficulties, but competition with aircraft: further improvements
in speed, range or payload are technically perfectly realizable, but would
lead helicopters to compete with small cheap aireraft covering the market
segments of longer distances, higher speeds and higher payload. Put
another way, the range of performance levels that helicopters are techni-
cally capable of reaching has not been fully explored due to the presence of
cheaper aircraft technology.

5. CONCLUSION

We started our study by introducing the NK model as a formal model of
complex evolving systems that are characterized by interdependencies
among their constituting components. We proposed a number of general-
izations to the original NK model to accouni for the specificities of tech-
nological evolution. By examining the properties of ‘this generalized NK
model, we concluded that technological development in complex- technol-
ogies 15 likely to lead to a process of differentiation of designs into distinet
families. This view contradicts models of technological substitution that
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depict competition among designs as a one-dimensiondl (cost-based)
process that leaves room for only one surviving technology.

To analyse the evolutionary pattern of technological development in
terms of changes in variety and differentiation, we proposed the methodol-
ogy of entropy statistics. Entropy provides us with a comprehensive
measure of design variety, while mutual information indicates to what
extent this variety is non-random, that is, clustered in specific areas of the
design. space. The existence of multiple clusters indicates the presence of
local optima in the technology’s fitness landscape.

We applied the entropy statistics to data on design dimensions of three
technologies. The results confirmed our hypothesis of increasing variety
through differentiation for aircraft and stcam engines, while the de-
differentiation process of helicopter technology could be attribuied to the
presence of competing aircraft models. Furthermore, the empirical results
offered us insights into the (quantitative) evolution that differ from the
received histories of steam engines and aircraft. We found that the evolu-
tion of two technologies is better described as an evolutionary process of
differentiation than as a linear substitition process. Obviously, a next step
is to apply the methodology presented in this chapter to other technologies.
The proposed methodology can be applied to any technology, given that
sufficient empirical data are available on the relevant design dimensions of
the technology in question.

APPENDIX: DERIVATION OF MUTUAL
INFORMATION FOR ZERO ENTROPY AND
MAXIMUM ENTROPY

Entropy is zero when one design occurs with frequency one, implying that
the alleles incorporated in this design also occur with frequency one.
Therefore, the sum of marginal entropy values equals zero, implying that
mutual information equals zero:

T(XI,...,XN)=(; H(X))—H(X,...,XN)

i=]

N
T(Xi,...,XN)z(Z—l-lnl) =10 1=0+0=0

Entropy is maximum when all possible designs in design space have an
equal frequency 1/S. In that case, the alleles along each dimension also have
an equal frequency with marginal frequencies equalling 1/4; . Mutuval infor-
mation becomes:
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N .
TX,...,X)= (2{ H(Xg) ~H(X,, ..., X,)
. X N
T(X,,. .., XN)=(2 nd,|-Ins
i=1

. _
T(XI,...,XN)zln(H Ai)_—lnS'
i=1

T(Xp,...,X)=IhS-InS=0.
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Bradshaw (1992) uses the concepts of Simon to provide an interesting account of the
Wrights” devefopment of early aircraft technology.

_ See Kauffman and Macready (1995), Levinthal (1997), Frenken et al. (1 999a), Auerswald

et al. (2000), Gavetti and Levinthal (2000), Kauffman et al. (2000), Marengo et al. (2000),
Rivkin (2060), Valente (2000), Fleming (2001), Fleming and Sorenson (2001), Frenken
(2001). See aiso the discussion by Simon (2002) on the relationship between Kaufiman’s
NK model and Simon’s (1969 [1996]) early work.

Notable expectations are Fleming {2001) and Fleming and Sorenson {2001).

See also David (1975)in his discussion on localized technological change.

The combinatorial nature of the design space of a system requires that dimensions are
orthogonal to one another. Therefore, one dimension of a system cannot correspond
with an allele of another dimension in the same system. For example, the deseription of
alleles of the engine dimension as gasoline (0°), electric (‘1°) and steam (‘2°) implies that
the type of battery used in electric engines cannot count as another dimension in the
description of the vehicleas a system. The choice of a type of battery only constitutés a
dimension for electric vehicles, and wot for vehicle technologies in general.

Note that, since the first allele is labelled ‘0%, the description of alleles of an element
ranges from 0 to 4, — 1, while the number of alletes ranges from 1 to 4,.

A system’s architecture has also been termed the system’s internal structure (Simon 1969
[1996], Saviotti 1996). : ’

The K value is an indicator of the complexity of a system’s architecture and does not
exactly coincide with the system’s computational complexity, which can be expressed as
the computational time that is required to globally optimize a complex system. On this,
see Frenken et al. {199%a). : -

Allowing for mutation in several dimensions at the same time would permit a designer

to escape local optima. However, the more dimensions that are allowed to be mutated at
the same time, the higher the search costs involved as the number of possible moves
increases exponentially with the number-of dimensions that is allowed to bé mutated at
the same time. One can thys argue that designers are expected to search in only a few
d]irrgg(s)ioo)ns at the same time. On this issue, see Frenken et al. (1999a) and Kauffman et
al. .

14.

15.

16.
17.
18.

19.
20.

21,
22,

23.

24,

25.

26.

27.
28.
29,
30.
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For more properties of the NK model, see Kauffman (1993), Altenberg (1997), and
Frenken et al. (1999a).

This perspective on fitness differs from the NK model applied to process technology
where fitness is expressed only by a single cost criterion (Auerswald et al. 2000, Kauffman
et al. 2000).

Altenberg’s generalized NK model also allows one to model search by adding new com-
ponents to a system, increasing N while keeping the number of selection criteria F con-
stant. On this, see Altenberg (1994, 1995). i

This is a relatively simple function sometimes applied in multi-criteria analysis of project
selection (Nijkamp et al. 1990). This function implies that a loss in fiiness of one fune-
tion can infinitely be substituted by an in¢rease in other functions. Various alternative
functions exist to derive a fitness value or ‘utility” from a collection of characteristics
(Lancaster 1966, 1979). . .

Compare the SCOT approach of Pinch and Bijker (1984), who stress the interpretative
flexibility of the meaning and use of artefacts. Here, the sociology of technology meets
evolutionary economics. '

Note that in the case of heterogeneous user groups, some weights can equal zero, while
inthe case of a homogeneous user group in formula 5.7, all weights are by definition pos-
itive. A zero weight in 2 homogeneous user population would imply that the feature does
not count as a function for anyone.

In information theory entropy is computed using the logarithm of two instead of the
natural logarithm taken here (Theil 1967, 1972, Frenken et al. 1999b).

0-In(0)=0:

A more elaborated account can be found in Frenken and Nuvaolari (2002).

In this respect, Dickinson (1938) can be considered an exemplary reference. _

A number of Newcomen engines were successfully used to raise water over a water wheel

“which, in turn, delivered rotary motion for factory machinety. These types of engine

were usually called returning engines.

Von Tunzelmann (1978, p. 263}.

For more details on the original data see Kanefsky (1979). For a more accessible refer-
ence, see Kanefsky and Robey (1980).

To be more precise, apart from the Newcomen design a second engine design was avail-
able before 1760, This design is the Savery engine, which we have excluded altogether
from the analysis as it did not meet the classification of our design space. We consider
the Savery engine to be a steam pump rather than a steam engine as it lacks the charac-
teristic piston—cylinder arrangement characteristic of all the other steam engines. The
exclusion of the Savery engine should not affect our results since only 33 Savery engines
are present in the original data. More details on the Savery engine can be found in
Frenken and Nuvolari (2002).

A similar conclusion based on historical grounds, stressing the role of variety, has been
reached by Von Tunzelmann (1978, p. 24): ‘It is misleading to see the pattern of progress
[in steam-engine technology] as linear and inevitable: in explaining the direction and the
chronology of “technical progress” in the economist’s sense, it is vital to keep this diver-
sity in mind.’ ) .

Joseph Bramah stated that the Newcomen engine had over Watt ‘an infinjte superiority
in torms of simplicity and expense”. John Smeaton, one of the leading engineers of the
time, considered that the Watt engine demanded too high standards for construction and
maintenance. See Harvey and Downs-Rose (1980, pp. 22-3).

. See Hills (1970, pp. 179—86). Many contemporary engineers believed that the rotary drive

produced by a water-returning engine was much more regular and, in the end, *better”
than the one obtained from a rotary Watt engine. See alse von Tunzélmann (1978, pp.
142-3). .

~On the Symington engine se¢ Farvey and Downs-Rose (1980, ch. 3). -

Dickinson and Jenkins {1927, p. 318). See also Farey (1827, p. 656).
See Saviotti and Bowman (1984) and Saviotti (1996). )
See Saviotti and Trickett (1992) and Saviotti (1596).
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6. Complementarity constraints and
induced innovation: some evidence
from the first IT regime

Andreas Reins_ta]ler and Werner Holzl

1. INTRODUCTION

Schumpeter (1939) distinguished three stages in the process of technical
change: (i) invention, that is, the act of creation of a new technology, (ii)
innovation, its cornmercial introduction, and (iii) diffusion, its gradual adop-
tion. Evclutionary economntists recognized the importance of Schumpeter’s
trichotomy, but in the past their work has mostly focused on the last two
stages of the process. The inducements and focusing devices leading entre-
preneurs to produce new combinations are not analysed in an appropriate
way. Technological search is often depicted as random. Neoclassical work on
technical change has long studied John Hicks’s induced innovation hypoth-
esis in the framework of aggregate production functions. The key insight is
that ‘a change in the relative prices of the factors of production is itself a spur
to invention, and to ivention of a particular kind directed to economizing
the use of a factor which has become relatively expensive’ (Hicks 1932, pp.
124-5). This literature studies the inducement mechanism relying on'the
principle that a rise in real wages will trigger labour-saving innovation. The
problem arising from this type of work is that the aggregate production func-
tion framework seems not to be appropriate, as technological change is an
inherently microeconomic phenomenon. Second, neoclassical production
functions of the Cobb—Douglas, CES or translog type are strongly separa-
ble. Separability amounts to the claim that the marginal rate of substitution
of any pair of inputs is unaffected by changes in the level of another input.!
Inputs or groups of inputs cannot be complementary. As the innovation
process is not only a microeconomic phenomenon but also determined by the
systemic character of firms and the technology they use, this assumptlon is
quite strong.

The aim of this chapter is to analyse how recombinant search is trig-
gered, how it is done and how initial conditions influence the final design
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