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Summary. We provide explanations for the results of the Levy, Levy and Solomon
model, a recent simulation model of financial markets. These explanations are based
upon mathematical analysis of a dynamic model of a market with an arbitrary
number of heterogeneous investors allocating their wealth between two assets. The
investors’ choices are endogenously modeled in a general way and, in particular, con-
sistent with the maximization of an expected utility. We characterize the equilibria
of the model and their stability and discuss implications for the market return and
agents’ survival. These implications are in agreement with the results of previous
simulations. Thus, our analytic approach allows to explore the robustness of the
previous analysis and to expand its spectrum.

19.1 Introduction

The goal of this paper is to explore analytically the framework underlying
simulations of the so-called Levy. Levy and Solomon (henceforth LLS) model.
The model was introduced in [6] and further results were presented in |7,
and [9], among others. See also [8] for extensive discussion. The motivation
behind the model was to investigate whether some financial anomalies (like
excess volatility or autocorrelation of returns) can be explained by relaxing
the traditional assumption of classical finance about the presence of a fully-
informed and rational representative agent. The LLS framework assumes the
presence of heterogeneous agents whose market impact depends on their past
performances. In the words of its authors ([8]. p. 143):

“The LLS model incorporates some of the main empirical findings
regarding investor behavior. and we employ this model to study the
effect of each element of investor behavior on asset pricing and market
dynamics.”

The model has been shown to qualitatively explain many of the financial
anomalies, but all its results are based on simulations. The criticism of the
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simulation approach usually points at a huge number of degrees of freedom,
L.e. dimensions of a set consisting of (i) all possible parameters, (ii) realizations
of the random variables and (iii) initial conditions. This leads to the feeling
that “everything one wants to obtain” can be obtained in the heterogeneous
world. In other words, the absence of a closed form solution makes it difficult
to believe that the results are robust. As a reply to that criticism, many ana-
lytic models of financial markets with heterogeneous agents appeared, see [5]
for a recent review. On the other hand, an analytic approach is limited due to
the high non-linearity of the models with heterogeneous agents. For example,
the agents’ wealth evolution is usually neglected in analytic contributions.
Therefore, both analytic and simulation approaches have to co-exist and to
supplement each other. As we show with our analysis, the analytic investi-

~gations of the LIS model can effectively supplement the results of previous

simulation exercises.

Our analytic model of the LLS framework starts off with a pure exchange,
two-assets economy, where agents invest according to different rules. The
framework is consistent with the CRRA (Constant Relative Risk Aversion)
behavior, so that the individual demand for the risky asset is expressed as a
fraction of the agent’s wealth. Consequently, the price and agents’ wealths are
determined simultaneously, and, moreover, agents with different wealth levels
have different impact on the price realization.

Models in [2, 3, 4] are predecessors of our model. In particular, as in -

[3]. we model the agents’ behavior by means of generic investment functions,
mapping the available information on the current investment choice. However,
we substantially deviate from these papers since we introduce a more realistic
dividend process. Instead of assuming a constant dividend yield, we analyse
the case where the dividend is growing at a given constant rate. This system
corresponds to the deterministic skeleton of a market where dividend follows
a geometric random walk. We provide equilibrium and stability analysis for
this skeleton, which sheds light on the behavior of the stochastic LLS model,
where the growth rate of dividends is random.

The direct application of our analytic model follows from the fact that the
market structure we use is the same as in simulations of the LLS model. In
[6. 7, 8, 9] the agents are expected utility maximizers having power utility
function. One of the obstacles on the way to explore such setting analytically
is the absence of a closed-form solution for the corresponding optimization
problem. This obstacle has played a role in arguments in favor of simulations.
However, in our framework with investment functions the precise solutions are
not necessary, since the analytic results are expressed in terms of the general
functions and can be illustrated geometrically. The difficulty of dealing with
a power utility function is overcome, and comparative statics exercises can be
easily performed, analogously to what has been done in (1]. Thus, our analysis
allows to explain simulation results that alternatively have to be described in
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“Looking more systematically at the interplay of risk aversion and
memory spaln, it seems to us that the former is the more relevant
factor, as with different [risk aversion coefficients] we frequently found
a reversal in the dominance pattern: groups which were fading away
before became dominant when we reduced their degree of risk aversion.
[...] It also appears that when adding different degrees of risk aversion,
the differences of time horizons are not decisive any more, provided
the time horizon is not too short.”

The rest of the paper is organized as follows. In Section 19.2 the analytic
model is presented. In Section 19.3 the main results of the equilibrium and
stability analysis are summarized in a few propositions. In Section 19.4 we
apply these results and, therefore, offer a rigorous explanation of the findings
in [7] and [9], among others. The analytic results also help to discuss the
robustness of the simulation results with respect to the different assumptions.
We also present some further results in order to characterize the dynamics
when the equilibria are unstable. Section 19.5 concludes.

19.2 Model Structure

Let us consider N agents trading in discrete time in a two-asset economy with
a riskless asset giving a constant interest rate 7y > 0 and constant supply
(normalized to 1) of risky asset paying a random dividend D;. The price of
the riskless asset is fixed to 1, and the price P, of the risky asset is fixed
through market clearing. Let We.n stand for the wealth of agent n at time +
and z; , for its share invested in the risky asset. The dividend is paid before
trade starts, so the wealth evolves as

Tt n Ith
P

The price at time ¢ is fixed through the market clearing condition

I’Vt+1_n = (1 = It.n) Tth_n (1 -+ ‘T‘f) =+ (PH—I =+ DH—l) 3 (191)

1\1. -
> TaWin=F. (19.2)

Assume that the agent’s investment share Zt., does not depend upon the
wealth. The resulting demand is consistent with the one derived from the
maximization of a constant relative risk aversion (CRRA) utility function.
Moreover the investment shares are independent of the contemporaneous price
and bounded between zero and one, Tt € (0,1). for all t and n. Both assump-
tions are consistent with previous simulations of the LLS model and simplify
the analysis substantially. Notice that according to (19.1), the wealth does
depend upon the contemporaneous price, so that price and wealth are simul-
taneously determined by the market clearing condition (19.2). Thus, (19.1)
and (19.2) give the evolution of the state variables W; ,, and P. over time
implicitly, provided that the investment shares {2t} are specified.

o a0
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Concerning the latter we further assume that for each agent n there exists
an investment function Jn such that

Ben = o), (19.3)

where 7, = {Dy,Dy_y, ... Pro1, By, ... } is the information set available to
the agents at time ¢. Agents’ investment decisions evolve following individua]
prescriptions. The generality of the investment functions allows a big flexibility
in the modeling of the agents’ behaviors. Formulation (19.3) includes as special
cases both technica] trading, when agents’ decisions are driven by the observed
price fluctuations, and more fundamenta] attitudes, e.g. when the decisions

constant investment strategy, occurring when agent assumes the stationarity
of the ez-ante return distribution.

For our application in Section 19.4 it is Important to stress that (19.3)
includes those investment behaviors which are derived from expected utility
maximization with power utility U(W,v) = Wwi=v/a1 - 7Y), where v > 0 is

- the relative risk aversion coefficient. Indeed, solution of such a problem has g

for any risk aversion. However, the solution is unavailable in explicit form.
Consequently, the analysis of the LIS model in 6, 7, 8, 9] rely on numeric
solutions. Since the results of Section 19.3 are valid for any given functional
form f, provided Some easy-to-check general Properties, we are able to perform
an analytic analysis of the LLS model even when agents maximize expected
utility with power utility function.

Accordingly with the LLS model, assume that D= Dy 4 (1+3), where

With some algebra one can show that the implicit dynamics described in
(19.1) and ( 19.2) can be made explicit. The resulting system is written in terms
of the price return ki1 = By, /P; — 1, dividend vield ;.4 = Dyiy1/P, and
agents’ relative wealth shares in the aggregate wealth ¢, , = Win/ >om Wem
as follows

_14g
Yt+1 = Yz 1=k
hioy = s 4 2om (L +74) (zegym — Ttm) + Y1 Ty Ttt1,m) Ot
55 o=
- £ Zm Tt.m (1 - xt+l.m) Pt.m
(L+77) + (bpyy + Y41 —7f) 28,

PHLE = P (1+ Tf) + (keyr + Yt+1 —15) Zm Tt.mPtm

Tet1n = fo (ke keeq, . . kLY, e, . Y1)
(19.4)
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The numerator of the fraction in the right-hand side of the third equation
in (19.4) represents the wealth return of agent n. Thus, the relative wealth
changes in accordance with the agent’s performance relative to the average
performance, where the return of individual wealth should be taken as a
performance measure. The second equation in (19.4) stresses the role of the
agents’ relative wealths in the return determination: the richer agents have
higher influence on the market. F inally, the last equation in (19.4) specifies
the information set 7, in terms of the same variables as other equations. For
the further analysis we assume that agents base their behavior on the finite
number of past price returns and dividend yields. Their memory span L can
be arbitrarily large, however.

19.3 Equilibrium Return and Agents’ Survival

Given the arbitrariness of the size of population NV and absence of any specifi-
cation for the investment function, the analysis of the dynamic behavior gen-
erated by system (19.4) is highly non-trivial in its general formulation. One
may, indeed, expect that nothing specific can be said about the dynamics.
Let us, however, limit ourselves to the “equilibrium” situations, correspond-
ing to the fixed points of system (19.4). In this Section we investigate how
such equilibria can be characterized, under which conditions they represent
the long-run behavior of the system (in other words, when they are stable),
and which agents have positive wealth shares, i.e. survive, in the equilibria.

The proofs of all statements are available upon request.

19.3.1 Location of Equilibria

The following result allows us to classify all possible equilibria into two classes,
depending upon the values of two exogenous variables.

Proposition 1. Let us consider the equilibrium of the system (19.4) given by
the dividend yield y*. return k*, investment shares (z%, ..., x}) and wealth
distribution (¢3,...,0%).

The two following cases are possible:

(i). g >rs. Then k* = 9. and all survivors (agents with non-zero wealth
shares) have the same investment share 3, which together with y* satisfies

*

9_7‘f: Lo
yo l-ay’

(19.5)

(Zi)' gSTf Then k* ::-]'f a.ndy* :0

In both cases the wealth shares of survivors are arbitrary positive numbers sum-
ming to 1, while the agent’s investment shares satisfy xy, = fo(k*, ... k*: y*,.
with corresponding k* and y*.

YY),

R —
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This result shows that the equilibrium price return is £* = max(g,ry). If
the dividend growth rate is smaller than ry, the dividend yield converges to
zero, and the risky asset asymptotically yields the same return as the riskless
asset. In this case, the equilibria described in Proposition 1(71) are referred as
no-equity premium equilibria (NEPE). The investment shares of agents
are unambiguously determined through the investment functions, while the
wealth shares are free of choice, so any number of agents can survive in such
equilibria. Notice that NEPE imply zero dividend yield and, therefore, are
unfeasible, strictly speaking. They can be observed asymptotically, however.

If the dividend grows fast enough, so that g > 7y, the equilibrium div-
idend yield y* depends on agents’ behaviors. From (19.5) one can easily
show that the risk premium in such an equilibrium is positive and equal to
(g —7r¢)/x;. Consequently, the equilibria from Proposition 1(z) are called the

. equity premium equilibria (EPE). Even if the EPE can have any number

M € {1,...,N} of survivors, all of them must behave identically and invest
2. This is the key result for getting a simple geometric characterization of the
EPE. Indeed, it implies that all possible couples “dividend yield — survivor’s
investment share” belong to a one-dimensional curve, which is introduced
below.

Definition 1. The Equilibrium Market Line (EML) is the following function

)= -2 defined for y > 0. (19.6)

Cytg-ry
Now it follows from (19.5), that the dividend yield in the EPE with M sur-
vivors (which are the first 1/ agents, without loss of generality) should satisfy
to M equations

") =falgs -9 ..,y")  Yne{l,...,M}.

In other words, the dividend yield in the EPE can be found as an intersection
of the EML with A/ one-dimensional functions representing the “diagonal”
cross-sections of the original investment functions by the set

{ki=kii=- =k =g V== =Wh_L=Yy} (19.7)

The left panel of Fig. 19.1 illustrates the EPE in the market with two
different agents, whose investment functions (more precisely, diagonal cross-
sections of the original investment functions) are shown as thin lines marked
as I and II. Their three intersections with the EML, shown as a thick line, give
all the possible EPE. At equilibrium S the agent I is the only survivor, so that
7 = 1. The dividend yield y* at this equilibrium is the abscissa of the point S,
while the investment share of the survivor, 27, is the ordinate of S. Finally, the

investment share of the second agent can be found as a value of his investment

function at y*. Notice that in this equilibrium 27 > 3. Analogously, the
variables are determined in other two equilibria. In particular, agent I is the
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Fig. 19.1. Location and stability of equilibria for g > ry. Left Panel: EPE are
intersections of the EML with the investment functions; Right Panel: Stability of
eauilibria for L = 1.

only survivor at equilibrium Uy, while at U;; the second agent survives, @} =
1.

In all equilibria illustrated in F 1g. 19.1 only one agent survives. In the case
of more then one survivors, Proposition 1(i) implies that their investment
functions should have a common intersection with the EML, Such situation
is rather special, while the illustrated example can be classified as “generic”.

Finally, with some simple algebra, one can characterize the agents’ wealth
growth rates in different equilibria.

Corollary 1. (i). The wealth return of agent n is equal to 147y + x5 (g —
rs)/xs at any EPE. Thus, the wealth of all survivors grows at the same
rate g.

(ii). At the NEPE the wealth of all the agents grows at the same rate ry.

19.3.2 Stability of Equilibria

The next natural question concerns the stability of the equilibria characterized
in Proposition 1. In this paper we investigate this question only for the case
g > 1y, ie. only for the equity premium equilibria. The following general
result holds.

Proposition 2. The EPE, described in Proposition 1(i). where the first M
agents survive, is stable if and only if the following conditions are met:

1) the equilibrium investment shares of the non-surviving agents are such
that

) (1- 20+g)/(g—7f)) <zl) < Yme{M+1,...,N}. (19.8)

2) after eliminating all non-surviving agents, the behavior of survivors
generates stable dynamics.
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This Proposition gives an important necessary condition for stability of the
EPE. Namely, investment shares of non-surviving agents must satisfy (19.8).
The leftmost inequality is always satisfied for reasonable values of g and 7y,
while the rightmost inequality shows that the survivors should behave more
aggressively in equilibrium, i.e. invest higher investment share, than those
who do not survive. This result is intuitively clear, because, according to
Corollary 1, the most aggressive agent has a higher wealth return at the EPE.
Proposition 2 implies the instability of equilibria U 7 and U;; in the example
shown on the left panel of Fig. 19.1. In the stable equilibrium the investment
shares of non-surviving agents should belong to the gray area.

If condition (19.8) is satisfied, the non-survivors can be eliminated from
the market. When is the resulting equilibrium stable? We answer this question
only for the case of single survivor with investment function dependent upon

- the average of past L total returns

L
2= (3 (ver +her) /L). (19.9)
This special case will be important in the applications of Section 19.4. Stan-

dard stability analysis leads to the following result.

Proposition 3. Let (z*,y*, k*) be an EPE with one survival agent. The EPE
is asymptotically stable if and only if all the Toots of polynomial

Q) =it = LB () L0y W) g

L U(y*)
lie inside the unit circle.

From Section 19.3.1 it follows that the equilibrium yield at the EPE is given

as a solution of I(y) = f(y + g). Thus, the last fraction in the polynomial

(19.10) gives the relative slope of the investment function and the EML at
the equilibrium. On the EML plot, this is the relative slope of the cross-section
of an investment function and the EML in the intersection.

Propositions 2 and 3, give exhaustive characteristics of stability conditions
of the EPE with single survivor in the market where agents behave according
to (19.9). The stability conditions are implicit, however. since they contain a
requirement on the roots of polynomial Q(u). When L = 1 this requirement
can be made explicit. Namely, the following two inequalities are sufficient for
stability:

'y +g) —y* 'y +g) v
d - < .
Uy~) 1+g+y* U(y*) y*+2(1+g)

These conditions are illustrated in the right panel of Fig. 19.1 in the coordi-
nates (y*, f'/l'). The equilibrium is stable if it belongs to the gray area.

A mixture of analytic and numeric tools helps to reveal the behavior of
the roots of polynomial (19.10) with higher L, and, therefore, to understand
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the impact of the agent’s memory span on the stability of corresponding equi-
librium. In general, the equilibrium stabilizes with lower (in absolute value)
relative slope f’/I" at the equilibrium and with higher memory span L.

19.4 Analytic Support of Simulations

All the simulations of the LLS model deal with agents who maximize a power
utility function with relative risk aversion 7, and who use the average of the
last L returns as an estimate for the next period return. Even if the investment
function for such an optimization problem cannot be derived explicitly, one
can investigate how the cross-section of this function by the hyperplane (19.7)
changes with parameters v and L. In this Section we show that this is sufficient
for explaining the results of the simulations in (6,7, 8,9]. We start the analysis
by illustrating the effects of the risk aversion and memory span in the case
of mean-variance investment function (which can be derived explicitly). The
insights developed in this case will then be used to discuss the results of the
riginal simulations. Throughout this Section it is assumed that g > Ty, 50
that only EPE are analyzed.
Let us consider an agent who maximizes the following mean-variance util-
ity

U = Eilze(ker1 + Yes1) + (I — ze)ry] — %Vt[wt(ktﬂ +y1)]l, (19.11)

where E; and V; denote, respectively, the mean and the variance conditional
on the information available at time ¢, and + is the coefficient of risk aversion.
Assuming constant expected variance V; = o2, the optimal investment fraction
is &7 = Eil[ki+1 + yso1 — 75]/(v0?). Consistently with the LLS framework, we
assume that the next period return is estimated as the average of past L
realized return, while the expected variance is constant, and we bound the
investment shares in the interval [0.01,0.99]. Thus, the investment function
reads

. . 1/1 L \
fa,L = min {099 max {001, g <f ZT:l(kt*,— + 'yt_,—> - Tf) }} 3

where we have defined a = yo2. From Section 19.3.1 it follows that all the
EPE can be found as the intersections of the EML with the function

- g b s 7
Ffaly) = min {0.99, max {0.01, u}} .
83

which is the cross-section of f, 1 by the hyperplane (19.7). The left panel
of Fig. 19.2 illustrates the situation for a single agent. The market has a
unique equilibrium, A,. whose abscissa. y*. is the equilibrium dividend vield.

*

and whose ordinate, z7, is the equilibrium agent’s investment share. This

TR
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Dividend Yield Time

Fig. 19.2. Market dynamics with a single mean-variance maximizer. Left panel:
The equilibrium on the EML. Right panel: Log-price dynamics over the simulations
for two different values of memory span L. In both cases the investment function is
the one depicted in the left panel.

equilibrium does not depend on the memory span L, but depends on the
(normalized) risk aversion coefficient o. When o increases. the line z = (y +
g — T)/a rotates counter-clock wise. Therefore, the equilibrium yield is an
increasing function of the risk aversion, while the equilibrium investment share
is a decreasing function of the risk aversion.

What are the determinants of the stability of the equilibrium A,? First of
all, notice that the stability analysis of Section 19.3.2 can be applied, because
the investment function f, ; is of the type specified in (19.9). The stability,
therefore, is determined both by the relative slope of the function fa with
respect to the EML in point A, and by the memory span L. In particular,
the increase of L brings stability to the system.

The right panel of Fig. 19.2 shows the log-price time series resulting from
two simulations of the model for the investment function fo in the case where
the dividend follows a geometric random walk. The only difference between
simulations lies in the memory span L. The dotted line shows dynamics for
the agent with L = 10. The equilibrium is unstable in this case, and the
endogenous fluctuations which we observe are determined by the upper and
lower bounds of fa. Moreover. the period of fluctuations is related to .. The
solid line shows the price series obtained with memory increased to L = 20.
The system converges to the stable equilibrium, and the fluctuations are due
to exogenous noise affecting the dividend growth rate. Notice that a different
a value may require a different minimum value of I to produce a stable
equilibrium.

We now turn to the analysis of a market with many agents. In this case we
are particularly interested in assessing the agents’ survival. For this purpose
we use the results of Proposition 2, namely that the survivor should have the
highest investment share at his intersection with the EML. If, being alone,
the survivor generates a stable equilibrium, he also dominates the market,
Le. asymptotically has all the wealth. The top left panel of Fig. 19.3 shows
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two investment functions for different values of risk aversion, namely q and
o < a. Since at Ya the agent with risk aversion q invests less then the other
agent, he cannot Survive at “hig” equilibrium, Aq, and, therefore, he can
never dominate the market. Whether the agent with risk aversion o is able
to dominate the market depends on the stability of “hig” equilibrium, A4, 1f
the memory he uses is long enough, the equilibrium is stab]e and ¥, =1,

Fig. 19.3 shows the results of simulations for two different values of t}
memory parameter L’ for the agent with lower risk aversion o/, When [/ — 20,

this agent, while destroying the breviously stable equilibrium 4

between zero and one. However, when the memory of this agent increases to
L' = 30, the new equilibrium A4, is stabilized and he ultimately dominates
the market. The equilibrium return now converges to g + Ya < g+ Ya- Thus
the agents with a lower risk aversion dominates the market,
equilibrium yield by Investing a higher wealth share in the risky asset.
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This analysis helps to explain results of the simulations in [7] and [9], and
their findings concerning the interplay between risk aversion and memory. We
have seen that the risk aversion is mostly related to the capability of agents
to invade the market, whereas the memory span influences the stability of the
dynamics. These properties hold as long as the investment function on the
“EML plot” shifts upward with decrease of the risk aversion. It is easy to see
that the investment function, coming from expected utility maximization with
power utility has the same general features as mean-variance function used in
the examples above. In fact, for a given y and a given perceived variance o?,
the agents with lower risk aversion invest more, which guarantees the upward
shift of the cross-section. As a result, Propositions 3 and 2 can be used. They
provide rigorous-analytic support of the simulation results of the LLS model.

In [7] the focus is on the role of the memory. The authors show that with
a small memory span the log-price dynamics is characterized by crashes and
booms. Our analysis shows that this is due to the presence of an unstable
equilibrium and to the upper and lower bounds of the investment shares.
Furthermore, this equilibrium becomes stable if the memory is high enough.
Simulations in [7] confirm this statement: when agents with higher memory
are introduced, booms and crashes disappear and price fluctuations become
erratic. But as we found, these fluctuations are due to the €X0genous noise
(coming from the dividend) and not to the endogenous agents’ interactions.

In [9] the focus is on the interplay between the length of the memory
span and risk aversion. The simulations suggest that the risk aversion is more
important than memory in the determination of the dominating agents, pro-
viding that the memory is not too short (see the quote in Section 19.1). Our
analytic results explains why this is the case. Namely, it is because agents with
low risk aversion are able to destabilize the market populated by agents with
high risk aversion. However, this “invasion” leads to an ultimate domination
only if the invading agents have sufficiently long memory. Otherwise, agents
with different risk aversion coefficients will coexist. Notice that this result
is new compared to [9] and related works. Thus. our analytic investigation
is indeed helpful in understanding the interplay between risk aversion and
memory. Another new result concerns the case of agents investing constant
fraction of wealth. In [9] the authors claim that such agents always dominate
the market and add (p. 571):

“Hence, the survival of such strategies in real-life markets remains
a puzzle within the Levy, Levy and Solomon microscopic simulation
framework as it does within the Efficient Market Theory.”

Our analysis allows one to understand and also correct this statement. The
agents with constant investment fraction are characterized by the horizontal
investment functions, for which Proposition 3 guarantees stability indepen-
dently of L. If these agents are able to invade the market successfully, they
will ultimately dominate. However, they cannot invade the market when other
agents invest more in their EPE.
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Finally, notice that for the case 9 > 7, which we discuss here, Corollary 1
implies that the economy grows with rate g- All our present and all previous
simulations are in accord with this statement. The case g < 1y appears in
[6], where the dividend is constant, so that g = 0, while the risk-free rate
is positive. The resulting price grows with rate r, as we can expect from
Corollary 1.

19.5 Conclusion

We have performed an analytic investigation of the LLS model and used its
results to explain simulations in 6, 7, 8, 9]. We show that the two parameters
governing the profitability of the risky and riskless investment opportunities,
dividend growth rate and risk-free interest, and determine whether the equity
premium can be endogenously generated at equilibrium. The size of equity
premium depends on the agents’ behavior. We have shown how the stability
of the equilibria is related to the memory span that agents use to estimate
future returns and their risk aversion. The results are verv general and can
help understand and extend the findings of previous simulations even when
the functional form of the investment function is not known explicitly.
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