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Abstract In this paper we explore the statistical properties of the distributions of
consumption expenditures for a large sample of Italian households in the period 1989—
2004. Goodness-of-fit tests show that household aggregate (and age-conditioned)
consumption distributions are not log-normal. Rather, their logs can be invariably char-
acterized by asymmetric exponential-power densities. Departures from log-normality
are mainly due to the presence of thick lower tails coexisting with upper tails thin-
ner than Gaussian ones. The emergence of this irreducible heterogeneity in statistical
patterns casts some doubts on the attempts to explain log-normality of household
consumption patterns by means of simple models based on Gibrat’s Law applied to
permanent income and marginal utility.
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1 Introduction

In the last years, considerable effort has been devoted to the study of the distribu-
tional properties of key microeconomic variables and indicators. For example, a huge
amount of contributions has explored the statistical properties of wealth and personal
income distributions, both across years and countries (see, e.g.,Chatterjee et al. 2005,
and references therein). Similarly, in the field of industrial dynamics, a large body
of literature has successfully characterized the shape of cross-section firm size and
growth-rate distributions, and their evolution over time (cf. among others Axtell 2001;
Bottazzi and Secchi 2006a).

These studies show that, despite the turbulence typically detected at the microeco-
nomic level (e.g., entry and exit of firms; positive and negative persistent shocks to
personal income; etc.), there exists an incredible high level of regularity in the shape
of microeconomic cross-section distributions, both across years and countries. For
instance, personal income distributions appear to be characterized by a log-normal
body with a Pareto upper tail in the majority of cases (Clementi and Gallegati 2005a;
Souma 2001). Furthermore, as far as growth-rate distributions are concerned, there
seems to emerge a sort of universality feature: the same family of distributions' is
indeed able to fit growth rates for firms in different sectors, industries and even coun-
tries (both cross-sectionally and along the time-series dimension; cf. Lee et al. 1998;
and Fagiolo et al. 2008).

Notwithstanding such successful results, the above line of research has not been
extensively applied, so far, to other key microeconomic variables for which detailed
cross-section data are available, namely household consumption expenditures (HCEs).
This is somewhat surprising for two related reasons (Attanasio 1999). First, under-
standing consumption is crucial to both micro- and macro-economists, as it accounts
for about two thirds of GDP and it decisively determines social welfare. Second, while
we know a lot about the statistical properties of aggregate consumption time-series and
microeconomic life-cycle profiles, our knowledge about the distributional properties
of cross-section HCEs is rather poor, as we almost always limit ourselves to the first
and second moments thereof.

The only exception to this trend is a recent contribution by Battistin et al. (2007).
They employ expenditure and income data from U.K. and U.S. surveys and show
that HCE distributions are, within cohorts, well approximated by log-normal distribu-
tions (or, as they put it, are “more log normal than income” distributions).” Battistin
et al. (2007) show that this evidence can be accommodated by assuming that a sort of

! That is, the exponential-power family of densities, originally introduced by Subbotin (1923). More on
this below.

2 Log-normality of HCE distributions in U.K. is confirmed by another early study in the econophysics
domain, see Hohnisch et al. (2002).
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Gibrat’s Law of Proportionate Effects (Gibrat 1931; Kalecki 1945) holds for permanent
income and, through intertemporal utility maximization, for household consumption
(Hall 1978).3

This is a nice empirical result, because it seems to establish a stylized fact hold-
ing across cohorts and, possibly, countries, i.e. the distribution of the logarithms of
HCEs is Gaussian. In turn, it implies that all the moments of the distribution exist but
we only need a two-parameter density to characterize the large majority of observed
HCE patterns. The main empirical message of the paper is therefore that, as far as
HCE distributions are concerned, there is no need to look at higher moments. Indeed,
skewness, kurtosis, etc., of logged HCE distributions would mimic the correspondent
Gaussian moments independently of cohorts, years and age classes. Furthermore, log-
normality of HCE distributions implies that one can explain them by means of simple
multiplicative growth models building upon the idea that consumption results from
“the cumulation of random shocks to income and other variables that affect utility”
(Battistin et al. 2007, p. 4). 4 1f confirmed, this would be a powerful insight, which
parallels similar ones obtained in industrial dynamics for firm size and growth rates
(Ijiri and Simon 1977; Sutton 1997).

In this paper, however, we show that log-normality is not generally the case for
Italian HCE distributions. We employ the “Survey of Household Income and Wealth”
(SHIW) provided by the Bank of Italy and we study HCE distributions with a para-
metric approach both in the aggregate and conditioned to the age of the household
head (as reported in the survey) for a sequence of 8 waves from 1989 to 2004.> Unlike
in Battistin et al. (2007), who only check goodness of fit (GoF) employing graphical
tools and Kolmogorov—Smirnov (KS) tests, we run a wider-range battery of GoF tests
that overcome the well-known power limitations of the KS test.

Our main result is that in Italy, for all the waves under study and for the majority
of age classes, the logs of HCE distributions are not normal but can be satisfactorily
approximated by asymmetric exponential-power densities. This family of distribu-
tions features five parameters and allows one to flexibly model asymmetries in both
the third and the fourth moment. Indeed, our statistical tests often reject the hypothe-
sis that logs of HCE display zero-skewness and normal kurtosis. On the contrary, one
invariably detects significant positive/negative skewness and asymmetry in the tail
behavior. More specifically, the large majority of logged HCE distributions exhibit
thick lower tails together with upper tails thinner than Gaussian ones. This evidence
is quite robust to a series of further checks involving, e.g., estimation with robust
statistics.

3 Of course, one can derive log-normality of consumption directly from the hypothesis that individual con-
sumption is approximately equal to permanent income (Friedman 1957). Notice, however, that permanent
income is not observable in practice.

4 Notice that log-normality of individual consumption stems from log-normality of permanent income
only if a long list of restrictions do indeed hold. Let aside the very hypothesis that individuals act as utility
maximizers, one also needs that the random-shock process obeys some form of central-limit theorem and
marginal utility is linear in log consumption.

5 Jtalian income distributions for SHIW data have been extensively studied in Clementi and Gallegati
(2005b). They find that income is log-normal in the body and power-law in the upper tail. More on the
relationships between income and consumption distributions is in Sect. 4.
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The basic message is that, at least for Italy, it seems impossible to come up with
a statistical description of consumption data that can compress the existing hetero-
geneity in HCE distributions, so as to avoid a higher number of degrees of freedom
in parametric characterizations. In other words, the existing, statistically-detectable,
departures from log-normality prevent us from providing a simple two-parameter den-
sity that fits both aggregate and disaggregate HCE distributions. This in turn casts some
doubts on the possibility to explain observable HCE distributions by means of simple,
invariant models based on permanent income and Gibrat’s law hypotheses.

The rest of the paper is organized as follows. In Sect. 2 we describe the database
that we employ in the analysis. Section 3 reports on our empirical results and related
robustness checks. Section 4 presents a speculative discussion on the implications of
our findings. Finally, Sect. 5 concludes.

2 Data

Our empirical analysis is based on the “Survey of Household Income and Wealth”
(SHIW) provided by the Bank of Italy. The SHIW is one of the main sources of
information on household income and consumption in Italy. Indeed, the quality of the
SHIW is nowadays very similar to that of surveys in other comparable countries like
France, Germany and the UK.©

The SHIW was firstly carried out in the 1960s with the goal of gathering data on
incomes and savings of Italian households. Over the years, the survey has been widen-
ing its scopes. Household are now asked to provide, in addition to income and wealth
information, also details on their consumption behavior and even their preferred pay-
ment methods. Since then, the SHIW was conducted yearly until 1987 (except for
1985) and every 2 years thereafter (the survey for 1997 was shifted to 1998). In 1989
a panel section consisting of units already interviewed in the previous survey was
introduced in order to allow for time comparison.

The present analysis focuses on the period 1989-2004. We therefore have 8 waves.
The sample used in the most recent surveys comprises about 8,000 households (24,000
individuals), distributed across about 300 Italian municipalities. The sample is repre-
sentative of the Italian population and is based on a rotating panel targeted at 4,000
units.

Available information includes data on household demographics (e.g., age of house-
hold head, number of household components, geographical area, etc.), disposable
income, consumption expenditures, savings, and wealth. In this paper, we employ
yearly data on aggregate HCEs.” We study both unconditional and age-conditioned
distributions, where age conventionally refers to the household head (on the problems
related to assigning household-level data to its members, see for example, Attanasio
1999, Sect. 2.2). Consumption figures have been cleaned from outliers and converted,

6 SHIW data are regularly published in the Bank’s supplements to the Statistical Bulletin and made publicly
available online at the URL http://www.bancaditalia.it/statistiche/indcamp/bilfait. We refer the reader to
Brandolini (1999) for a detailed overview on data quality and main changes in the SHIW sample design.
7 Data for disaggregated expenditure categories (e.g., nondurables, food, durables, etc.) are also available.
See Sect. 5.
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when necessary, to Euros (i.e., for the period 1989-2000). Furthermore, HCEs have
been weighted by using appropriate sample weights provided by the Bank of Italy.
Finally, we have deflated all consumption expenditure figures so as to obtain real HCE
distributions. To do so, we have employed the Consumer Price Index deflator (yearly
series based on year 2000) provided within the OECD Economic Outlook.®

More formally, our data structure consists of the aggregate distribution of yearly
household (real) expenditure for consumption {Cj ;}, where h = 1, ..., H; stands
for households and r € T = {1989, 1991, 1993, 1995, 1998, 2000, 2002, 2004} are
survey waves. Since in each wave there were many cases of unrealistic (e.g., zero or
negative) consumption figures, we decided to drop such observations and to keep only
strictly positive ones. We also dropped households for which consumption expendi-
tures were larger than yearly income (as reported in the SHIW). Therefore, we ended
up with a changing (but still very large) number of households in each wave (H;).
HCE distribution is complemented with information on the age of household head in
wave t (Ap,;). We employ this variable to condition HCE distributions. More specif-
ically, in line with Battistin et al. (2007), we consider the following age breakdown:
A = {Ay;...; Ag} = {<30; 31-35; 36-40; 41-45; 46-50; 51-55; 56-60; > 61},
which generates sufficiently homogeneous subsamples as far as the number of obser-
vations is concerned.? In each wave, we then build the distributions {Cy, ;|Ap s € Ak},
withk = 1, ..., 8. As usual, we will mainly employ natural logs of real consumption
expenditure figures, defined as ¢, ; = log(Cp ;). Age-conditioned distributions will
thus read {cj /|Ap; € Ak}, fork=1,...,8andtr € T.

3 Towards a characterization of household consumption expenditure
distributions

In this Section, we shall explore the statistical properties of Italian HCE distributions
and their evolution over time.!? We are interested in answering four related questions:
(i) Did HCE distributions exhibit structural changes over time? (ii) Can aggregate and
age-conditioned HCE distributions be well-approximated by log-normal densities?
(iii) If not, which are the causes of departures from log-normality? (iv) If HCE distri-
butions are not log-normal, can one find alternative, better statistical descriptions of
HCE distributions across age classes and time?

3.1 Time-evolution of HCE distributions

Let us begin with a descriptive analysis of HCE distributions and their evolution over
time. Table 1 reports descriptive statistics for (real) aggregate {C), ;} distributions.

8 Available at http://www.sourceoecd.org.

9 The only exception is the class (>61), which contains about 2,000 observation in each year. We decided
not to further disaggregate this class in order to keep the analysis as close as possible to Battistin et al.
(2007).

10° Additional details on the statistical analyses presented in this Section are available from the Authors
upon request. All exercises were performed using MATLAB®, version 7.4.0.287 (R2007a).
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Table 1 Moments of aggregate HCE distributions versus waves

Stats Waves

1989 1991 1993 1995 1998 2000 2002 2004
Mean 194.044  182.233  181.363  180.051  175.263  182.445 182.685 187.132
SD 250.789  251.174  226.596  190.695 190.301  200.845 220.376  213.916

Skewness 3.357 3.732 3.294 2.655 3.100 2.830 3.215 3.253
Kurtosis 18.503 22.892 17.486 12.655 17.777 14.304 17.709 17.546
N Obs 7424.000 7208.000 6241.000 6274.000 5606.000 6292.000 6376.000 6277.000

Sample Moments
w

1988 1990 1992 1994 1996 1998 2000 2002 2004
Waves

--<--Mean —3— StdDev —aA— Skewness —x— Kurtosis

Fig. 1 Moments of aggregate logs of HCE distributions versus waves

Simple inspection shows that HCE sample moments are quite stable over time. Such
evidence is confirmed by Fig. 1, where the first four sample moments of logged HCE
distributions {cj ;} are plotted against time. This means that, notwithstanding many
households did probably move back and forth across quantiles, HCE distributions did
not dramatically change their structural properties. This is a strong result, also in light
of the introduction of the Euro in 2002.

Surprisingly enough, HCE distributions appear to be quite stable over time also
when one conditions to age classes. Figure 2 reports plots of sample moments versus
waves for two age classes (left: 41-45; right: >61). As it can be easily seen, also within
age classes HCE distributions have remained quite stable over the years. Furthermore,
one does not detect any evident trends in the first moments of the HCE distributions
when, in each wave, they are plotted against age classes (see Fig. 3 for wave 2004).

Notice also that if HCE distributions were lognormal, their logs would have been
normally distributed, with zero skewness and kurtosis equal to 3. On the contrary,
Table 2 shows that for logged aggregate HCE distributions some positive skewness
always emerges, while kurtosis levels fluctuate slightly below the normal threshold.
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Fig. 3 Moments of age-conditioned logs of HCE distributions versus age classes in wave 2004

This holds true in general also for age-conditioned logged distributions, see again
Table 2. It is interesting to note that while logged HCE distributions appear to be
right-skewed for almost all age classes and years, kurtosis is in the majority of cases
below 3 (more on that below). Of course, to decide whether these departures from the
normal benchmark are significant or not, one needs a more formal battery of statistical
tests. This is what we shall do in the next section.

3.2 Are HCE distributions log-normal?

To check whether HCE distributions are log-normal (or equivalently if their logs are
normal), we have used a battery of three normality tests: Lilliefors (Lilliefors 1967),
Jarque-Bera (Bera and Jarque 1980, 1981) and Quadratic Anderson—Darling (Ander-
son and Darling 1954). These tests are known to perform better than comparable ones
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724 G. Fagiolo et al.

Table 2 Skewness (top panel) and kurtosis (bottom panel) of logged HCE distributions (on aggregate and
within age classes) versus waves

Age classes Waves
1989 1991 1993 1995 1998 2000 2002 2004

Skewness
Aggregate 0.201 0.128 0.231 0.103 0.059 0.124 0.248 0.221
<30 0.452 0.186 0.358 0.203 0.048 0.016 0.130 0.228
31-35 0.440 0.320 0.398 0.083 0.011 0.079 0.196 0.427
3640 0.329 0.289 0.403 0.030 0.164 0.060 0.289 0.372
41-45 0.254 0.161 0.388 0.224 0.089 0.156 0.249 0.051
46-50 0.258 0.107 0.132 0.095 0.080 0.176 0.408 0.251
51-55 0.278 0.136 0.265 0.038 —0.189 0.156 0.083 0.263
56-60 0.207 0.100 0.270 0.054 0.031 0.016 0.127 —0.074
>61 0.110 0.113 0.237 0.159 0.122 0.163 0.313 0.289

Kurtosis
Aggregate 2.778 2.824 2.836 2.652 2.629 2.699 2.638 2.848
<30 3.066 2.583 2.698 2.318 2.519 2.170 2.254 2.322
31-35 2.959 2.898 2.735 2.602 2.553 2.611 2.531 2.577
3640 2.753 2.866 2.909 3.440 2.828 2.748 2.597 2.839
41-45 2.558 2.687 2.798 2.530 2.492 2.501 2.628 3.022
46-50 2.631 2.628 2.648 2.649 2.650 2.575 2.617 2.854
51-55 2.791 2915 2711 2.486 2.596 2.529 2.687 2.950
56-60 2.750 3.011 2.764 2.712 2.622 2.975 2.797 2.872
>61 2.632 2.794 2.862 2.609 2.670 2.812 2.632 2.873

(e.g., KS test) in terms of power (see D’Agostino and Stephens 1986; Thode 2002,
for details). More specifically, the Lilliefors test adapts the KS test to the case where
parameters are unknown. In this sense, it can benchmark results obtained in Battistin
et al. (2007), who, as already mentioned, only employ the less-performing KS test.
Finally, the Jarque-Bera test is known to perform better in presence of outliers, which
is a commonly-detected problem for consumption data (more on this in Sect. 3.3).

Table 3 reports GoF results for logs of aggregate and age-conditioned HCE distri-
butions. Aggregate distributions are never log-normal, while in the age-conditioned
case, only for 9 distributions (out of 64) the three tests are simultaneously unable to
reject (at 5%) the null hypothesis of log-normality (in boldface). Log-normality seems
to be slightly more pervasive in age classes 36—40 and 56-60, and in the years 1991,
1995 and 1998.

The above GoF evidence casts some doubts on whether consumption distributions
can be well-approximated—in Italy—by log-normal densities. This seems to be true,
for all waves under study, both at the aggregate level and after one conditions to age
classes.
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Fig. 4 Aggregate 2004 HCE distribution. Left QQ-plot of the quantiles of the empirical HCE distribu-
tion versus the quantiles of lognormal fit (log scales on both axes). Right Cumulative distribution function
F(x) = Prob{X < x} for the smallest 30% of observations (top) and complementary cumulative distribu-
tion function 1 — F(x) = Prob{X > x} for the largest 30% of observations (bottom). Log scales on both
axes

Our statistical findings are also detectable through standard graphical analyses. As
an example, the left panel of Fig. 4 presents for wave 2004a QQ-plot of the aggregate
HCE distribution versus its log-normal fit (cf. for details Embrechts et al. 1997; Adler
etal. 1998; Reiss and Thomas 2001). Even a simple visual inspection suggests that the
empirical HCE is not close to a log-normal. Departures from log-normality emerge not
only in the tails, but to some extent also in the central part of the distribution. What is
more, the lower (respectively, upper) tail seems thicker (respectively, thinner) than its
counterpart in the lognormal fit. This is confirmed by a magnification of the lower and
upper tail behavior of the cumulative distribution function (CDF), see the right panels
of Fig. 4. Notice how the CDF of aggregate 2004 HCE data is larger (respectively,
smaller) than the associated log-normal fit for the smallest (respectively, largest) 30%
of the distribution.

A more robust way to assess the relative thickness of the distribution tails is to take
a non-parametric perspective and apply the Hill estimator (Hill 1975). Table 4 reports
estimates for Hill’s tail parameter « together with optimal tail sizes k* and asymptotic
standard deviations.'! Tt is easy to see that right tails appear to be thinner than left
ones, as the associated point estimator for « turns out to be larger. Notice, however,
that standard deviations of w-estimates are in general relatively large. This is because
the procedure to optimally choose the cutoff parameter k* often selects a relatively
small tail size (on this point, cf. Embrechts et al. 1997, p.341). In fact, the simple
stability statistic suggested by Loretan and Phillips (1994) to test for the difference

1 In order to select the most appropriate value for the cutoff (tail-size) parameter (k*), we have employed
here the procedure discussed in Drees and Kaufmann (1998). See Lux (1996, 2000, 2001) for details. Stan-
dard deviations have been computed by exploiting asymptotic normality, see e.g. Hall (1982); Embrechts
et al. (1997).
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between upper and lower Hill’s tail estimates'? provides mixed indications: for 49%
of (aggregate and age-conditioned) distributions, there appears to be no statistically-
significant difference between the upper and lower tail estimates, whereas in all other
cases the left tail is statistically thicker than the right one (at 5%).!3

All that hints to the necessity of studying in more detail the possible asymmetries
emerging between the lower and upper HCE tails, e.g. by extending our parametric
analysis and going beyond a simple two-parameter statistical model. We shall go back
to this issue in Sect. 3.4.

3.3 Robustness checks

As discussed in Battistin et al. (2007), consumption and income data generally suffer
from under reporting (especially in the tails) and outliers, and Italian data are not an
exception (Brandolini 1999). In order to minimize the effect of gross errors and outli-
ers, we have studied distribution moments and normality GoF tests with two alternative
strategies.

First, we have employed robust statistics to estimate the moments of HEC distribu-
tions (Huber 1981). More specifically, following Battistin et al. (2007), we have used
median (MED) and mean absolute deviation (MAD) as robust estimators for location
and scale parameters. Furthermore we have estimated the third moment with quar-
tile skewness (Groeneveld and Meeden 1984) and kurtosis using Moors’s octile-based
robust estimator (Moors 1988). Results confirm, overall, our previous findings. Robust
moments for the logs of HEC are stable over time (and within each wave, across age
classes). Aggregate and conditioned (logs of) HEC distributions display a significant
excess skewness, while robust kurtosis values are statistically different (according to
standard bootstrap tests) from their expected value in normal samples (i.e. 1.233).
Again, upper tails appear to be in general relatively light. Furthermore, we have com-
puted normality tests on logs of consumption distributions standardized using robust
statistics. More formally, for any given logged consumption distribution {c}, we have
computed Lilliefors, Jarque-Bera and Quadratic Anderson—Darling tests on:

s ¢~ MED() o
MAD(c)

Table 5 reports p-values for the three tests in the aggregate and age-conditioned
cases. Overall, results confirm the evidence obtained without robust standardization:
aggregate distributions are never log-normal, whereas now for 11 conditioned HCE

12 Thatis (5 — 7)/[62() + o 2(P)1/2, where P = &, and 7 = &l_l are the reciprocal of right and
left Hill tail estimates, and 02(~) is their sample variance.

13 The results of the Hill-estimator analysis must be taken with a little caution (see the discussion in Pictet
et al. 1998). Indeed, it is known that asymptotic results are valid only under a number of regularity condi-
tions that are often impossible to test in finite samples. This may introduce a relevant bias in the analysis.
Furthermore, and most important here, the Hill statistic is a maximum-likelihood estimator only if some
stringent parametric assumptions on the underlying HCE distributions are made, which may not necessarily
apply to the case studied in this paper.
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Table 4 Estimates for Hill’s « tail statistic

(a) Left Tail

‘Waves

Age Class  Statistic 1989 1991 1993 1995 1998 2000 2002 2004
a 2.545 2.248 3.089 2.813 2154 2.804 2.667 2.927

Aggregate k* 180 165 133 345 388 226 138 181
o(a) 0.190 0.175 0.268 0.151 0.109 0.187 0.227 0.218
a 1.762 2285 2415 2.194 2143 2.507 2.099 2.765

<30 k* 201 111 78 127 145 84 71 69
o(a) 0.124  0.217 0.273 0.195 0.178 0.274 0.249 0.333
a 1.829 1.709 2227 1.934 1.682 1.803 1.737 1.973

31-35 k* 54 156 79 137 177 148 161 235

o(&) 0.249 0.137 0.251 0.165 0.126 0.148 0.137 0.129

& 1.822 1.759 2.185 2.067 2.015 2.021 2.086 2.287

36-40 k* 90 131 118 168 104 120 130 268
o(&) 0.192  0.154 0.201 0.159 0.198 0.185 0.183 0.140

a 2275 2.113  1.919 2.143 2.535 2.171 1.964 2.430

41-45 k* 61 78 97 129 78 116 125 309
o(&) 0.291 0.239 0.195 0.189 0.287 0.202 0.176 0.138

& 1.845 2132 2166 2.125 2147 2.363 1.976  2.526

46-50 k* 50 59 102 110 114 85 99 180
o(&) 0.261 0.278 0.215 0.203 0.201 0.256 0.199 0.188

& 1.925 1496 1.981 2.175 2561 1.882 1.655 2.335

51-55 k* 62 126 94 110 7 163 167 304

o(&) 0.244 0.133 0.204 0.207 0.292 0.147 0.128 0.134

a 2.021  2.140 1.922 2472 2304 1.812 2.266 2.332

56-60 k* 68 72 133 63 143 188 83 530
o(&) 0.245 0.252 0.167 0.311 0.193 0.132 0.249 0.101

& 2,172 1.858 2.083 1.850 2.307 2.504 1.835 2.805

> 61 k* 61 107 118 111 85 48 120 331
(&) 0.278 0.180 0.192 0.176 0.250 0.361 0.168 0.154

(b) Right Tail

‘Waves
Age Class  Statistic 1989 1991 1993 1995 1998 2000 2002 2004
a 3.296 3.913 3.478 3.099 2.524 3.546 3.583 3.151
Aggregate k* 540 495 399 1035 1164 678 414 543
o(a) 0.142  0.176 0.174 0.096 0.074 0.136 0.176 0.135
a 4.029 2.635 3.434 3.084 3.578 3.037 2.696 2.800
<30 k* 106 68 68 93 61 82 115 194

o(&) 0.391 0.320 0.416 0.320 0.458 0.335 0.251 0.201

& 2,387 2,122 2.027 2277 2934 2329 2455 2.480

31-35 k* 88 73 158 179 81 88 116 351
o(&) 0.254 0.161 0.217 0.170 0.326 0.248 0.228 0.132
& 2.467 2.848 5.725 3.562 2.462 3.581 3.082 3.144

36-40 k* 67 54 41 58 122 63 74 130
(&) 0.301 0.388 0.894 0.468 0.223 0.451 0.358 0.276
& 2,326  3.491 2511 2924 3,995 2.702 3.116 3.263

41-45 k* 100 69 134 102 7 139 97 141
o(&) 0.233 0.420 0.217 0.290 0.455 0.229 0.316 0.275

& 2.755  2.743  2.253  2.412  2.365 2.707 2.468 2.876

46-50 k* 69 107 146 150 181 194 144 230
o(&) 0.332  0.265 0.186 0.197 0.176 0.194 0.206 0.190

a 2.868 2.410 3.002  3.043 2.595 2.579 2.705 3.218

51-55 k* 87 115 81 100 165 144 119 152

(&) 0.308 0.225 0.334 0.304 0.202 0.215 0.248 0.261

& 2,410  2.427 2,653 2971 2316 2.709 2.482 3.025

56-60 k* 209 93 103 94 118 111 119 150
(&) 0.167 0.252 0.261 0.306 0.213 0.257 0.228 0.247

a 2.081 2.517 3.395 2.227 2.811 3.292 2.568 3.238

> 61 k* 79 71 61 156 78 54 191 171
o(&) 0.234 0.299 0435 0.178 0.318 0.448 0.186 0.248

Left and right tail estimates for aggregate and age-conditioned HCE distributions versus waves are reported
together with the optimal tail size k* (selected with the Drees and Kaufmann (1998) procedure) and
asymptotic standard deviations o (&) of « tail statistic estimates
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Table 5 Robustly-standardized distributions

‘Waves
Age Class Test 1989 1991 1993 1995 1998 2000 2002 2004
Lilliefors  0.000 0.000  0.000 0.000 0.002 0.000 0.000 0.000
Aggregate JB  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000

AD2  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000

Lilliefors  0.000 0.114 0.112 0.008 0.071 0.027 0.003 0.101
<30 JB  0.000 0.074 0.023 0.027 0.032 0.039 0.042 0.055
AD2 0.000 0.057 0.022 0.000 0.119 0.006 0.003 0.013

Lilliefors  0.008 0.030  0.003 0.438 0.068 0.065 0.006 0.010
31-35 JB  0.001 0.009  0.006 0.164 0.016 0.029 0.047 0.011
AD2  0.000 0.001  0.000 0.097 0.041 0.074 0.003 0.000

Lilliefors  0.001 0.000 0.118 0.333 0.459 0.566 0.008 0.000
36-40 JB  0.006 0.014 0.000 0.108 0.213 0.405 0.011 0.010
AD2  0.000 0.000 0.001 0.169 0.431 0.539 0.000 0.000

Lilliefors  0.000 0.021  0.001 0.020 0.210 0.048 0.001  0.602
41-45 JB  0.002 0.035  0.002 0.012 0.032 0.024 0.017 0.875
AD2  0.000 0.002  0.000 0.001 0.037 0.001 0.001 0.610

Lilliefors ~ 0.018 0.077 0.045 0.058 0.268 0.018 0.000 0.026
46-50 JB  0.003 0.051 0.082 0.101 0.116 0.017 0.001 0.029
AD2  0.001 0.012 0.028 0.079 0.164 0.003 0.000 0.007

Lilliefors  0.001  0.358 0.020 0.361 0.023 0.019 0.019 0.000
51-55 JB 0.010 0.234 0.010 0.026 0.018 0.011 0.149 0.029
AD2 0.000 0.114 0.001 0.029 0.001 0.005 0.018 0.000

Lilliefors  0.000 0.064 0.003 0.449 0.465 0.036  0.474 0.029
56-60 JB  0.027 0.140 0.012 0.240 0.138 0.081 0.233 0.057
AD2  0.001 0.016 0.000 0.516 0.521 0.044 0.233 0.022

Lilliefors  0.143 0.000  0.001 0.000 0.010 0.043 0.000 0.000
> 61 JB  0.003 0.010  0.000 0.000 0.003 0.001 0.000 0.000
AD2  0.003 0.000  0.000 0.000 0.002 0.003 0.000 0.000

Monte-Carlo (one-tailed) p-values for goodness-of-fit tests. Null hypothesis: normal logs of HCE distri-
butions. JB Jarque-Bera test, AD2 Anderson-Darling test. Boldface entries: The null hypothesis is never
rejected (at 5%)

distributions log-normality cannot be rejected (2 more than before). All this implies
that existing statistically-significant departures from log-normality are not due to
outliers.

Second, we used both our original data and robustly-standardized samples to com-
pute normality tests on sub-samples of logged HEC distributions obtained by trun-
cating the upper or lower tail. More precisely, we defined left- and right-truncated
distributions by cutting either the lower or the upper x % of the distribution. We then
ran standard truncated-GoF normality tests (Chernobay et al. 2005) by allowing x €
{5, 10, ..., 25, 30}. In all our exercises (not shown), we ended up with p-values which
were even lower than those obtained for the full samples, irrespective of whether the
x% of the lower or the upper tail was removed.

3.4 Fitting asymmetric exponential-power densities to HCE distributions

The foregoing analysis shows that HCE distributions can hardly be described by
means of log-normal distributions. In other words, the same family of two-param-
eter density is not able to describe the existing, statistically-detectable, heterogeneity
in HCE distributions. This is true both at the aggregate level and at the age-conditioned
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level, across years. The underlying cause of this distributional heterogeneity seems
to be the presence/absence of: (i) positive/negative skewness; (ii) leptokurtic/platy-
kurtic behavior of the distribution as a whole. However, it may well be that any
given HCE distribution displays tails that look different between each other. This
can happen if e.g. the upper (respectively, lower) tail is thinner (respectively, thicker)
than a normal one. Furthermore, HCE distributions might exhibit a variability that
is larger on the right (left) of their median or modal value than it is on its left
(right).

To possibly accommodate all these departures from a well-behaved log-normal
statistical model, we propose here to fit the logs of HCE distributions with a higher-
parameterized, more flexible, distribution family known as the asymmetric exponential
power (AEP). The density of the AEP family'* reads:

—l|>"_m|bl
K e o' x<m

; @

x>m

g('x;al9ar7bl7bram)= X*mlbr
ar

1
K le o

where K = albl]/b’F(l +1/by) +a,b3/b’ I'(141/b,), and I' is the Gamma function.
The AEP features five parameters. The parameter m controls for location. The two a’s
parameters control for scale to the left (¢;) and to the right (a, ) of m. Larger values for
a’s imply—coeteris paribus—a larger variability. Finally, the two b’s parameters gov-
ern the left (b;) and right (b, ) tail behavior of the distribution. To illustrate this point,
let us start with the case of a symmetric EP, i.e. when ¢; = a, = a and b; = b, = b.
It is easy to check that if b = 2, the EP boils down to the normal distribution. In
that case, the correspondent HCE distribution would be log-normal. If b < 2, the EP
displays tails thicker than a normal one, but still not heavy. In fact, for b < 2, the EP
configures itself as a medium-tailed distribution, for which all moments exist. In the
case b = 1 we recover the Laplace distribution. Finally, for b > 2 the EP features tails
thinner than a normal one but still exponential.

It is easy to see that when one allows for different left-right a- and b-parameters, the
AEP can encompass a wealth of different shapes. In Fig. 5 we plot the log-density !>
of the AEP in both the symmetric and asymmetric case for different parameter values.
Notice how the AEP can easily pick up across-distribution heterogeneity in skew-
ness and kurtosis, but also within-distribution heterogeneity concerning variance and
tail-thickness behaviors.

In what follows, we fit AEP densities to both aggregate and age-conditioned logged
HCE distributions. Parameters are estimated via maximum likelihood.!®

To check whether logs of HCE distributions can be satisfactorily described by AEP
densities, we firstly estimate AEP parameters via ML and then we employ a battery

14 The AEP density turns out to be a very good statistical model for many economic variables, like firm
growth-rates and market-price returns. See Bottazzi and Secchi (2006b) and references cited therein for
details.

15 Thus, in the normal case one would end up with a parabolic log-density shape.

16 Gee Agro (1995) and Bottazzi and Secchi (2006b) for technical details. Estimation has been carried out
with the package SUBBOTOOLS, available online at http://www.cafed.eu.
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Fig. 5 The asymmetric exponential-power density (logs) for different parameter values. Top-Left
Symmetric case for increasing shape-parameter (a). Other parameter values: m = 0, b = 1. Top-
Right Symmetric case for increasing tail-parameter (b). Other parameter values: m = 0, a = 1.
Bottom-Left Asymmetric case for increasing right shape-parameter (a, ). Other parameter values: m = 0,
b; = by = 1. Bottom-Right Asymmetric case for increasing tail-parameter (b;). Other parameter values:
m=0,aq =ar =1

of GoF tests based on empirical distribution function (EDF) statistics. More specif-
ically, we run three widely-used EDF-based GoF tests: Kuiper (KUI), Cramér-Von
Mises (CVM) and Quadratic Anderson—Darling (AD2), with small-sample modifi-
cations usually considered in the literature (the AD2 test statistic employed here is
analogous to that used above to test for normality: for more formal definitions, see
D’Agostino and Stephens 1986, Chapter 4, Table 4.2). We also compute a KS test
to benchmark our results to those in Battistin et al. (2007). Notice, however, that the
former three tests are known to perform better—in terms of e.g. power—than the KS in
all practical situations (Thode 2002). All p-values for the test statistics are computed
by running Monte-Carlo simulations (1,000 replications) under the null hypothesis
that the empirical sample comes from an AEP with unknown parameters; see Capasso
et al. (2009) for a discussion.

Table 6 reports test statistics and Monte-Carlo p-values for the four GoF tests.
Notice how AEP fits perform dramatically better than normal ones. p-Values are
almost always larger than 0.05, meaning that (if one takes 5% as the relevant signif-
icance level) in almost all the cases the logs of HCE distributions can be statistically
described by AEP densities (and not by normal distributions). There are only three
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exceptions to this rule (in boldface). Indeed, for the age class 41-45, all four tests
are rejected at 5% for the 1989 and 1995 waves. Borderline cases (still at 5%) are
represented by the aggregate distribution and the 51-55 age class in 1989. However,
if one lowers the significance level at 1% in almost every situation all four tests pass.

The main reason why AEP distributions are able to better explain, from a statistical
perspective, the logs of HCE distributions appears to be evident from Table 7, where
ML estimates of AEP parameters are shown. Let us focus on a’s and b’s parameter
point estimates (the estimate for the location parameter m is not relevant, as it closely
tracks the mode of the distribution). It is easy to see that in about 79% of cases (i.e.,
57/72) the right tail of the distribution appears to be thinner than the left tail (by > by).
Furthermore, about 89% of all distributions display a right tail which is thinner than a
normal one (b > 2). Conversely, in 47% of times b[ < 2, meaning that the left tail is
thicker than a normal one. Right thin tails are also associated to higher a’s parameters.
In fact, about 90% of distributions obey the condition d, > da;.

To assess more robustly whether the left tail parameter is statistically smaller than
the right tail parameter (i.e., whether the lower tail is thicker than the upper tail), one
should firstly study the distributions of b, and b; estimators; then accordingly compute
confidence intervals; and finally perform hypothesis-testing exercises. Unfortunately,
the analytical distributions of the estimators are not available and can only be prox-
ied using simulation. As this typically requires a huge computational effort (cf. for
example Fagiolo et al. 2008), here we take a more direct (but less precise) approach
and we employ the results in Bottazzi and Secchi (2006b) to compute the asymptotic
standard errors (SEs) of all our parameter estimates (see Table 7, in round brack-
ets). Notice that SEs are not always negligible, especially for tail parameters. More
precisely, let us follow Agro (1995) and take as a reference Cramér-Rao confidence
intervals (CRCI) of the form [l;* —2SE (l;*), l;* +2SE (l;*)], where * € {r, [}. Simple
back-of-the-envelope calculations show that only in 13 out of 72 cases (18%) either
I;r belongs to the CRCI of 51 or viceversa. This signals that, for such distributions,
more rigorous small-sample hypothesis tests could possibly accept the hypothesis that
the tail parameters are equal. Notice, however, that only 8 out of these 13 cases refer
to distributions for Wthh b; < b Hence, in the 86% (i.e., (57-8)/57) of cases where
point estimates satisfy by < by, this inequality appears to be also statistically robust.!”
Furthermore, as far as aggregate logged HCE distributions are concerned, the inclu-
sion of either point estimate in the opposite CRCI arises only in one single case (i.e.,
in 1989 b, belongs to the CRCI of by). This may indicate that the impossibility to
reject tail-estimate equality could indeed depend on the relatively smaller sample size
of age-conditioned HCE distributions: a further look at the distributional properties of
the estimators in finite samples seems therefore required. '

17 A more stringent criterion is to check for the occurrences of overlaps between the two CRClIs. This
happens for 17 distributions only, 12 of which satisfy b; < by

18 A possible, but very computationally-expensive, way to address this issue (and one of the first points
in our agenda) would be to set up log-likelihood (LL) ratio tests where one compares the LL obtained
under the null hypothesis of symmetric EP fit versus the LL obtained by fitting the AEP. By simulating the
distribution of the LL ratio test, one could check whether the relative gain in fitting an AEP to the data is
statistically significant or not. In the positive case, this procedure can allow one to more-robustly conclude
that b, # l;l (for an application to data with smaller sample sizes, cf. Fagiolo et al. 2008).
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Nevertheless, if one focuses on goodness of fit and point-estimate results, the over-
all evidence seems to confirm our conjecture about the existence of a double-faced
heterogeneity in HCE distributions. On the one hand, HCE distributions, even if they
belong to the same family, are characterized, as expected, by very different parameter
values. On the other hand, each HCE distribution displays very different structural
properties as far as its left and right tails are concerned: the right tail is typically
thinner than the left tail. This implies that a two-parameter, log-normal distribution is
not enough to statistically model HCE distributions. As a consequence, one needs to
employ higher-parameterized distributions that, as happens with the AEP, are able to
account for these two levels of heterogeneity.

To further elucidate this point, Fig. 6 plots AEP fits to aggregate HCE distributions
in the period considered (similar patterns emerge also for age-conditioned HCE dis-
tributions). Notice how AEP densities are able to satisfactorily characterize aggregate
data. This is true especially as far as asymmetry in tail thickness of logged den-
sity is concerned, a feature that could never be accommodated by a two-parameter
density like the normal one. Figure 7 shows instead some examples of AEP fits to
age-conditioned distributions (in wave 1991). Again, despite the smaller sample size
of age-conditioned HCE distributions, all plots seem quite satisfactory at least from a
visual perspective.

4 Discussion

The foregoing findings convey two methodological messages. First, moments
estimators (whether they are robust statistics or not) are not always able to shed light on
within-distribution heterogeneity. Whereas HCE kurtosis levels hinted to the presence
of tails thinner than normal as a whole, EP fits have shown that this could be probably
due to the presence of a thick left tail coexisting with a thin right tail. Therefore, our
study not only suggests that moments higher than the second one do indeed matter,
but it also stresses the importance of investigating the existence of within-distribution
asymmetries in higher moments. Second, and relatedly, the use of too generic statisti-
cal models (like the log-normal) might hinder the exploration of more subtle statistical
properties, as the co-existence of tail asymmetries.

In fact, the AEP turned out to be an extremely flexible, but still parsimonious, fam-
ily of densities capable of accounting for the extreme heterogeneity found in the data.
This is important because without the AEP one should have employed two different
distributions in order to account for different left and right tail behaviors. Having a
single distribution that does the job is not only more elegant, but also more parsimo-
nious from a statistical viewpoint.

Furthermore, our exercises show that alternative families of densities like the Lévy-
stable (Nolan 2006) and the generalized hyperbolic (Barndorff-Nielsen 1977), which
can only account for tails thicker than normal ones, are not able to statistically describe
our data, in the sense that GoF tests are always rejected. This implies, once again, that
a key feature of the logs of HCE distributions is within- and cross-distribution heter-
ogeneity in tail behavior.

@ Springer
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Fig. 6 AEDP fits for aggregate HCE distributions
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No matter whether a symmetric or asymmetric exponential-power fits the data,
the existence of tails different from Gaussian ones for the logs of HCE distributions
implies that the results in Battistin et al. (2007) do not apply for Italy. Furthermore,
even the weaker statement that consumption is more log-normal than income seems to
be rejected by our data. Indeed, it is well-established (Clementi and Gallegati 2005b)
that Italian household income is log-normal in the body and power-law in the tail. Our
results about thick-left and thin-right tails in HCE distributions suggest that, if any,
it is income that is more log-normal than consumption. In other words, income and
consumption distributions seem to belong to two different density families. Log of
income displays a thick upper tail but features a standard-normal lower tail. On the
contrary, logged consumption displays a thinner-than-normal upper tail and features
a thicker-than-normal lower tail.

What does the foregoing statistical description add to our understanding of con-
sumption? To begin with, a parametric approach can shed light on the nature of the
existing heterogeneity in cross-section HCE distributions. The fact that the logs of HCE
distributions can be robustly characterized—over the years—by AEP densities with
thick lower tails and thin upper tails, enable us to better understand how consumption
is distributed across households and to go beyond standard representative-hypothesis
assumptions where only the first (and sometimes the second) moment matters. Since
heterogeneity has been shown to be of crucial importance for aggregation (Forni and
Lippi 1997), adeeper knowledge of HCE distributional properties might hopefully help
to better grasp the statistical properties of consumption dynamics at the macro level.

A second important reason why knowledge of cross-section HCE distributional
properties may be important is that they can be considered as stylized facts that
theoretical models should be able to replicate and explain. Of course, their
“unconditional-object” status prevents us from univocally finding the generating pro-
cess: as discussed in Brock (1999), there can be many alternative generating processes
that could generate a given unconditional object such as a HCE distribution as their
long-run equilibrium.

Nevertheless, knowledge about distributional properties of unconditional objects
may help us in restricting the scope of the analysis. In other words, knowing that logs
of HCE are not log-normal but AEP-distributed gives us some information on which
generating processes one may exclude. For example, rejection of the null hypothesis
that consumption is log-normally distributed irrespectively of disaggregation casts
some serious doubt on whether some sort of Gibrat’s law is at work. If one indeed
assumes—Tlike in Battistin et al. (2007)—that a simple multiplicative process applies
to permanent income and marginal utility, the resulting limit HCE distributions would
be log-normal. If this were the stylized fact to be replicated, one would have come
very close to Champernowne’s indication about the strategy to follow in modeling
economic phenomena (in his case, income dynamics):

The forces determining the distribution of incomes in any community are so var-
ied and complex, and interact and fluctuate so continuously, that any theoretical
model must either be unrealistically simplified or hopelessly complicated. We
shall choose the former alternative but then give indications that the introduction
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of some of the more obvious complications of the real world does not seem to
disturb the general trend of our conclusions. (Champernowne 1953, p.319)

On the contrary, it appears that our results suggest to leave the “unrealistically sim-
plified” domain: if stylized facts to be replicated are much more complicated than
what a Gibrat’s law would have implied, also their theoretical explanation in terms of
Gibrat’s dynamics could hardly hold.

However, the fact that our data reject simple multiplicative models a la Gibrat does
not necessarily mean that the alternative explanation is “hopelessly complicated”. The
idea is that a fruitful strategy to replicate and explain what we have found in Italian
data is to build simple-enough stochastic equilibrium models like those developed in
industrial dynamics to explain the emergence of power-laws and Laplace distributions
for firm size and growth rates (Bottazzi and Secchi 2006a; Fu et al. 2005). Along
similar lines, one might attempt to single out the basic forces driving the generating
process of cross-section distributions (e.g., imitation, innovation, fulfilment of basic
needs, optimal choice under budget constraints, etc.) and find necessary conditions
for the emergence of the observed stylized facts.'”

5 Conclusions

In this paper we have studied the statistical properties of Italian household consumption
expenditure (HCE) distributions. We have found that, contrary to Battistin et al. (2007),
HCE distributions, both in the aggregate and within homogeneous age classes, are not
log-normally distributed. Goodness-of-fit tests have allowed us to conclude that HCE
distributions can be well approximated by asymmetric exponential-power densities.
We have shown that departures from log-normality are due to a pervasive heteroge-
neity that is present at two different levels. First, given the same parametric model,
consumption distributions differ, as expected, in their parameters. Second, within each
given distribution, the lower tail behaves differently from the upper tail. More spe-
cifically, our results indicate that, in the majority of cases, logged HCE distributions
display a thick lower tail coexisting with a thin upper tail. These results hold vis-a-vis
a series of further checks involving e.g. robust-statistic estimation.

The fact that the AEP performs better than a normal density in statistically describ-
ing HCE distributions suggests not only that higher moments matter, but also that
within-distribution asymmetries in tail behavior can be important. It must be also
noticed that the AEP density has been extensively used to statistically model many
economic variables and indicators related to growth rates or returns expressed as dif-
ferences between log levels (e.g., growth rates of firm size, returns of log prices, etc.;
see Bottazzi and Secchi 2006b). To our best knowledge, this is the first time that the
AEP density is shown to provide a good approximation for the logs of the levels of a
given variable (i.e., consumption expenditures).

Several extensions to the present study can be conceived. First, it would be interest-
ing to apply the same methodology employed above to U.K. and U.S. data to investigate

19 This is quite in tune with the evolutionary agenda on the economics of micro- and macro-consumption
patterns, see for example Aversi et al. (1999). Complementary ideas are in Witt (2001, 2007).
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whether one could detect in other countries the same departures found in Italian HCE
distributions. This could enable us to compare more thoroughly our findings with those
in Battistin et al. (2007).

Second, one might explore the distributional properties of HCE data disaggregated
over consumption categories (durables, non-durables, etc.) and study whether the tail
behavior observed in the aggregate can be traced back to some particular consumption
category or it is the mere effect of aggregation. Furthermore, since HCE distribu-
tions for consumption categories are likely to be correlated, it would be interesting to
characterize the distributional properties of the joint G-dimensional HCE distribution
(where G is the number of observable consumption categories).

Finally, another issue worth to be addressed concerns the statistical characteriza-
tion of consumption budget-share (CBS) distributions (where for any given household
the consumption budget-share for good g is simply a number in the unit interval
defined as the share of expenditure for good g over total household consumption
expenditure). Indeed, the fact that HCE distributions—disaggregated over consump-
tion categories—are not statistically independent makes very hard to make predictions
about the shape of CBS distributions, even if we knew how HCE marginals are dis-
tributed.
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