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Abstract. Population learning in dynamic economies with endogenous network formation has been
traditionally studied in basic settings where agents face quite simple and predictable strategic situations
(e.g. coordination). In this paper, we start instead to explore economies where the payoff landscape
is very complicated (rugged). We propose a model where the payoff to any agent changes in an
unpredictable way as soon as any small variation in the strategy configuration within its network
occurs. We study population learning where agents: (i) are allowed to periodically adjust both the
strategy they play in the game and their interaction network; (ii) employ some simple criteria (e.g.
statistics such as MIN, MAX, MEAN, etc.) to myopically form expectations about their payoff under
alternative strategy and network configurations. Computer simulations show that: (i) allowing for
endogenous networks implies higher average payoff as compared to static networks; (ii) populations
learn by employing network updating as a “global learning” device, while strategy updating is used to
perform “fine tuning”; (iii) the statistics employed to evaluate payofts strongly affect the efficiency of
the system, i.e. convergence to a unique (multiple) steady-state(s); (iv) for some class of statistics (e.g.
MIN or MAX), the likelihood of efficient population learning strongly depends on whether agents
are change-averse in discriminating between options associated to the same expected payoff.

Key words: adaptive expectations, dynamic population games, endogenous networks, fitness land-
scapes, population learning

1. Introduction

The study of population learning in dynamic economies with many interacting
agents has received an increasing attention in the last two decades (Kirman, 1997;
Fagiolo, 1998). In particular, a major effort has been recently devoted to the in-
vestigation of dynamic population games with endogenous network formation.!
In these models, agents are placed on the nodes of a graph and receive a payoff
from repeatedly playing some bilateral, non-cooperative, game (e.g. coordination)
against the agents they are currently connected with. Links may be costly and can
be established (or removed) either unilaterally or bilaterally. Any agent is periodi-
cally allowed to revise the (pure) strategy it currently plays in the game. Moreover,
from time to time, agents are called to adjust the set of agents they interact with by
adding or removing single links. Strategy and link adjustments are typically carried
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out through simple best-response rules based on expected payoffs (Blume, 1993).
Expectations are formed myopically: agents compute tomorrow’s expected payoff
by observing today’s strategy and network configurations.

These studies have shed light on the importance of interactions and individual
behaviors in shaping the outcomes of population learning. For instance, the type
of behavioral rules employed by the agents to adjust their states and to form their
expectations has been shown to affect dramatically the long-run behavior of the
system, both in terms of its qualitative features (e.g. convergence to steady states,
cycles, etc.) and in terms of its quantitative properties (e.g. efficiency).>2 Moreover,
the geography of interactions has been proved to strongly influence the outcomes
of population learning, especially when agents can only adjust their strategy over
time for an exogenously given network.’

However, existing works have been exclusively focusing on economies where
population learning takes place in very simple, predictable environments. Indeed,
in all settings studied in the literature, individual players face very simple strategic
situations (e.g. coordination). Furthermore, there is no uncertainty whatsoever in the
economy: individual payoffs are common knowledge and each agent always plays
the same game against any other agent in the population. Finally, the payoff of any
single agent typically depends on some average levels of the behaviors of players
belonging to its interacting set. This implies that individual payoffs are relatively
invariant to permutations which preserve the frequency of agents currently playing
a given strategy in the group. As a result, the overall payoff landscape over which
population learning takes place is typically very smooth and is characterized by few
peaks (i.e. local optima).

In this paper, on the contrary, we start to explore dynamic population games
with endogenous network formation in the presence of very complicated (rugged)
payoff landscapes. We focus on economies where individual payoffs are ex-
tremely sensitive to any small variation in the configuration of strategies and
change almost unpredictably. This analysis is motivated by the observation that, in
real-world situations, agents are typically uncertain about ‘which game to play
with whom’ in any time period and, consequently, about the payoff that they
might expect from any bilateral interaction (cf. Taylor (1987) for a quite similar
perspective).

We propose a model where N agents are repeatedly called to revise both their
binary strategy and their interaction group, that is the links with their opponents in
the game. In order to describe population games where agents face complicated,
multi-peaked, payoff landscapes, we employ the following three key assumptions.
First, we suppose that there exists an underlying payoff structure defined as a
random map. This map associates to each of the 2" possible combinations of
strategies a vector of N payoff realizations (one for each agent) of an i.i.d. random
variable uniformly-distributed over [0, 1]. This underlying payoff landscape is given
once and for all and represents a metaphor of an extremely complicated strategic
situation.
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Second, we suppose that agents can periodically revise both the strategy they
play in the game and the set of agents they interact with by employing simple best-
reply rules. To do so, they form myopically their expectations about next-period
payoffs by observing current strategies and networks. In line with existing literature,
we assume that the realized (and expected) payoff to any agent i only depends on
the strategy played by 7 and the (expected) strategies played by those who interact
with 7.

Third, we assume that agents form their expectations about next period payoff
by summarizing the information about payoffs. Indeed, any agent i who interacts
with & other agents faces a distribution of payoffs containing 2V~ values (one
for each combination of strategies played by the remaining N — & — 1 agents). We
suppose that agents try to summarize this large amount of information by computing
some simple statistics on such distribution (e.g. MEAN, MAX, MIN). These rules
(or criteria) might be interpreted as heuristics employed by the agents to cope with
the uncertainty of the system. For instance, agents using the MIN (resp. MAX)
criterion might be labeled as “pessimistic” (resp. “optimistic”).

We study the long-run behavior of the model in two different settings. First, as
a benchmark exercise, we explore an economy where agents can only update their
strategy over time for an exogenously, initially given, interaction structure (static
networks). This exercise allows us to study how the structure of the interaction
network (e.g. its connectivity) affects population learning. Second, we study random
population games with endogenous networks, i.e. a setup where agents can both
adjust their strategies and decide whether to build or remove links with other agents
in response of expected payoffs.

Due to the ruggedness of the underlying payoff landscape, the coevolution be-
tween strategies and networks induces a non-trivial adaptation process for the
population of agents. In particular, we are interested in answering the follow-
ing questions: Does endogenous network formation favor population learning, as
compared to static networks? Under which behavioral conditions (e.g. expectation
criterion employed) is the system able to climb (and settle upon) local or global
optima? Which types of networks are likely to emerge in the long-run (e.g. highly
vs. weakly connected)?

Computer simulations show that, for any given expectation rule, populations
that can endogenously adjust networks as well as strategies systematically reach
higher average payoff levels, as compared to populations that adapt over static
interaction structures. We also find that agents employ network updating as a “global
learning” device that allows them to attain major payoff improvements through
Jjumps in the payoff landscape. On the contrary, strategy updating is typically used
as a fine tuning device. Agents employ it to climb local (or global) optima once
network adjustment has found a promising region of the payoff landscape. We then
study how expectation criteria affect learning dynamics. Simulations indicate that
“pessimistic” agents (i.e. using MIN) tend to develop highly connected networks but
they never reach local (or global) optima. However, they attain a higher performance
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if they are change-averse (i.e. if they refuse network changes delivering the same
payoff). On the contrary, populations with “optimistic” agents (i.e. using MAX)
converge to weakly connected networks and are able to reach a global optimum
only if individuals are change-lovers (i.e. they accept network changes even if they
deliver the same payoff).

The rest of the paper is organized as follows. In Section 2 we formally describe
the model and we present a simple example to illustrate its main features. In Sec-
tion 3 we illustrate simulation results and we discuss their robustness with respect
to departures from the basic model. Finally, Section 4 draws some conclusions and
sketches future research.

2. The Model

Consider a finite population of agents I = {1,2,..., N}, N > 3, placed on the
nodes (or vertices) of a non-directed graph. Time is discrete. In any period ¢ =
0,1,2,... each agent i € [ plays a game with binary pure-strategy set S =
{—1, 41} against all (and only) agents it is currently connected with through a
bilateral link (i.e. an edge). We call interaction group the set V! € I — {i} of
players with whom i plays the game at time ¢. Since we study a system where
interactions are symmetric (i.e. i € V} & j € VD), at any 1 there exists a one-to-
one relation between the interaction structure (V;)"_, and the non-directed graph G,
containing all bilateral links currently in place in /. We also assume that interactions
are costless for both agents (i.e. links can be built and removed for free).* Let us
now turn to describe the payoff structure and the dynamics of the system.

2.1. PAYOFFS

In our economy, individual payoffs are extremely sensitive to any small variation
in the configuration of strategies and change almost unpredictably. More formally,
define by:

7 {—=1,+1}¥ = [0, 1] (1)

the payoff map which associates to each strategy configuration Q € {—1, +1}" a
payoff x (to agent i) defined as a realization of a random variable X ~ U[0, 1], i.i.d.
both across i’s and Q.° In what follows, we suppose that (r;)Y_, are given once and
for all from the beginning of the process.

The underlying payoff structure (7r;)"_, sets the stage where expected and re-
alized payoffs are defined. Indeed, in line with existing literature, we assume that
realized payoff u{(Q', G") of any agent i who plays s € {—1, +1} and interacts with
agents in V C [ — {i} only depends on the configuration of strategies currently
played by the agentsin V =V U {i}:

ui(Q, G" = ul(Q(V)) :=uj(s; s}, j € V). (2)
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Agents are allowed to revise, at the beginning of (+ — 1, 7], their current strategy s; -
and interaction group V! ~! on the basis of expected payoffs E ! - [ul(s; st]-, jev,
where (s, V) are some alternative strategy and interaction group® and E| ~! denotes
the expectation of agent i at the beginning of the time interval (r — 1, ¢]. Since agents
do not know the strategy their current and prospective partners will play at ¢, they
must form an expectation about s;, Jj € V. We suppose that agents are myopic, i.e.
that E;~'(s}) = /7', j € I, j # i. Therefore:

E; [ui (@' (V)] = ui (@1 (V)), v

How do agents evaluate payoffs uﬁ_l(Q’ ~1(V))? We assume that individuals try
to summarize the information coming from the underlying payoff landscape (i.e.
the maps ;) by employing some “criterion” (or statistics) N. In fact, given the
strategy configuration prevailing in V = {i, ji, ..., j,} at time ¢ — 1, any agent
i faces 2V ="~ payoff values, each one associated to any possible combinations
of strategies played by the N — m — 1 agents not currently linked with it.” To
summarize this distribution, agents compute expected payoffs as:

Q7YY = (@i 7H(V), }

where ®/(V) = {m;(Q), @ € ©'(V)} and ©/7'(V) C {1, +1}" is the set of
all configurations Q2 = (a)i)lNzl e {—1, +1}" for which w; = s;_l,j e V, while
strategies w;, j ¢ V are allowed to vary in {—1, +1}¥~IVI=1

We suppose that all agents employ the same criterion )it during the entire dynamic
process. We will experiment with the following three statistics: (i) ) = MEAN;
(i) ;M = MIN; (iii) N = MAX. Notice that if agent i interacts with all the others,
the statistics will be trivially applied to a single value (i.e. the underlying payoff
value associated to the current global configuration ©'~'). Thus, in this case, all
statistics coincide. Conversely, if an agent is currently isolated (i.e. V = {i}), then
< will be computed over a distribution whose size is 2V ~!. In general, the higher
the number of links held by any agent, the smaller the cardinality of @l’._l .

2.2. DYNAMICS

Let us now describe the dynamic process governing individual strategy and network
updating. Suppose that at time ¢ = 0 a strategy configuration Q° € {—1, +1}¥
and a graph G over I are randomly drawn. In line with existing literature (Goyal
and Vega-Redondo, 2001), we assume that at the beginning of any subsequent time
interval ( —1, ¢], ¢t > 1 agents undergo a two-stage asynchronous updating process.
In the first stage, two agents are drawn at random to update their networks given
the current strategy-configuration '~!. In the second stage, one agent is drawn at
random to update its strategy given the graph resulting from first-stage decisions.
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In the first stage, two agents meet at random (say 7 and j). They evaluate their
current payoffs (i.e. their expected payoff under the current state):

w ' =w (QTUVTY), h=i ) )

If i and j are not connected, a link between them is tentatively added. To do so, they
define their alternative interacting sets: V, = \_/h’ Ty {k},h,k =1i,j,k #h.On
the contrary, if i and j are already connected, they consider whether to remove the
existing link and define V, = Vh’*] —{k}, h,k =i, j, k # h. Then, both agents
compute expected payoffs under the proposed change as:

o =u( QTN VY), k=i, . (6)

We suppose that agents make their decisions by employing a deterministic, myopic,
best-reply rule. In other words, agents simply compare payoffs before and after the
proposed change and pick the choice delivering the highest expectation.

We consider two alternative tie-breaking rules (TBRs), namely: (i) TBR without
neutrality: accept the change if and only if both agents are strictly better off under
the change, i.e. add/delete ij if and only if @, > w,™', h = i, j; (ii) TBR with
neutrality: Accept the change if and only if no agent is strictly worse off under
the change, i.e. add/delete ij if and only if @' > w}~',h = i, j. Notice that
according to the first TBR (without neutrality) agents might be labeled as change-
averse, because they prefer to stick to their current choices unless the alternative
option is associated to strictly larger payoffs for both. Conversely, agents using
the second TBR (with neutrality) might be labeled as change-lovers, because they
prefer to change even if the new choice is associated to the same payoff, i.e. they
accept payoff-neutral changes.’

Network updating is therefore defined as follows:

G'~'U{ij} ifthelink has been added
G' = {G'"! —{ij} ifthelink has been deleted,

G'! otherwise

where we denote by ij € G’ the fact that in the graph G’ agents i and j are linked.

In the second stage, strategy updating takes place given G'. We assume that
an agent (say i) is drawn at random from 1. Given (s/~', V) and current payoff
W HQITNWVY) =t (s, QEN(VY), it will switch to —s! ! at the beginning
of period ¢ if and only if:

wi(—=s7H Q7N V) > ul T (s (V). (7

1
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After the two updating stages, next time iteration starts given the new state of the
system (Q', G").’

2.3. A SIMPLE EXAMPLE

In order to further clarify how the model works, let us present a simple example.
Let us consider a population of N = 3 agents: I = {1, 2, 3}. The underlying
payoff map (7‘[,')?21 faced by any agent i is defined once and for all by assigning
to each combination of strategies played by the 3 agents a realization of a i.i.d.
random variable uniformly distributed over [0, 1]. Since each agent faces 2V ~! = 4
possible configurations for each s; € {—1, 41}, the underlying payoff associated
to the complete graph will be a matrix with 2 - 2N-1 = 8 rows (i.e. ; (s, 52, 53))
and three columns, see Table I for an example.

Individual payoffs to any agent i depend on both the strategy s' ~!it currently
plays and the strategies currently played by the agents which i is connected with.
Therefore, if a link between i and j exists, payoffs of both i and j are affected by
whether the other chooses —1 or +1. In order to compute expected payoffs and
revise its current state, it computes statistics on the distribution of payoffs associated
to all combinations of strategies played outside its interaction group. For instance,
if agent i = 1 is connected with both 2 and 3 and currently plays si_l = —1,itwill
face (irrespective of the expectation rule employed) a payoff:

0.56 if (57, s47") = (
o 0.77 if (sy',s57") = (=1, +1)
w19 T) =0 s i Esz_l SZ”; ( '
(537857 = (

0.55 if (sj7 ', 547!

Let us assume that si_l = —1 and that the statistics employed by agent 1 is the

arithmetic mean (MEAN). If 1 is currently connected with 2 only, then for each

Tablel. AnExample of the payoff landscape with N = 3.

(81,82, 83) T T2 3

(-1,-1,-1) 0.56 0.11 0.24
(-1, —-1,4+1 0.77 0.54 0.17
(-1,4+1,-1) 0.58 0.31 0.45
(=1, 41, +1) 0.55 0.59 0.19
+1, -1, -1 0.78 0.42 0.70
(+1, —-1,4+1) 0.32 0.54 0.25
(+1,+1, —1) 0.04 0.44 0.78

(+1, +1,+1) 0.80 0.67 0.44
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possible choice of agent 2, it faces a distribution of only two payoffs (each one
associated to the strategy that agent 3, the not connected one, might play). Thus:

1
- 5056 +0.77) if st =—1
11)1(—1;s2 ) =11 ‘
5(0-58+0.55) if st =41

Along the same line, if 1 is currently connected with no other player, its payoff
will be:

1
wi(=1) = 2(0.56 +0.77 +0.58 + 0.55).

Finally, if agent 1 decides to consider payoffs associated to choosing 41 and con-
necting with 3 only, it will get:

1
~(0.78 4 0.04) if s =1
wl(—i—l;sg_l) = % )
5(0.32+0.80) if syt =41

Suppose now that at some time + — 1 > 0 the current strategy configuration
is (+1, +1, 4+1) and that agent 1 is connected with 2 but not with 3, while 3 is
isolated. If 1 and 3 are drawn for a network update, they will consider to add a
link between them. Agent 1 will compare its current payoff %(0.04 + 0.80) with
the payoff after link addition, namely 0.80. Agent 3 will compare its old payoff
1(0.17 + 0.19 + 0.25 + 0.44) with the new one 1(0.25 + 0.44). In this case both
agents are (strictly) better off under the change and the link will be added. After
network updating, player 3 is connected with 1 only. If it were called to strategy
updating, it would switch to —1 since 2(0.70 + 0.78) > 1(0.25 + 0.44).

It is worth pointing out that the coevolution between strategies and networks
will induce a non-trivial adaptation process for the population of agents. Due to
the ruggedness of the underlying payoff landscape, interesting questions concern
the ability of the population to climb local (or global) optima and whether the
effectiveness of population learning is affected by the class of rules employed by
the agents to form their expectations about payoffs.

3. Simulation Results

Unless otherwise specified, we employ the following simulation design. For a
given population size N, we first generate an underlying payoff landscape IT =
(71,-)11.\’: |- To allow for easier comparisons, we study adaptation of populations over
the same IT.!° We run Montecarlo experiments to explore how different behavioral
assumptions affect population learning. Therefore, our independent variables will
be the expectation rule )i and the kind of TBR (neutral vs. non-neutral) employed
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by the agents. For each choice of our independent variables, we let M populations
evolve given different initial conditions (i.e. strategy and network configurations).
Our dependent variables, i.e. the statistics we shall study, are the number of links
held by each agent, its current payoff, as well as population averages of these
variables. These statistics are typically computed when the system has reached
either a steady-state or a sufficiently stable behavior. In what follows, all results
referto N = 15and 10 < M < 100.1!

3.1. STATIC NETWORKS

In order to appreciate how networks affect the dynamics of the system, we first run a
set of simulations where agents can only modify their strategies for a given, initially
drawn, interaction structure (i.e. the first stage of updating process is suppressed).'

In this case, it is easy to see that a population of totally disconnected agents will
converge to a steady state very quickly. Since individual payoffs do not directly
depend on the strategies played by the others, each agent will compute its expected
payoff over the largest set of values (2¥~!). As these values are drawn from a
uniform random variable, all payoffs will be very close to the expected value of the
statistics (0.5 if R = MEAN, O0if # = MIN and 1 if # = MAX). On the other hand,
if one initializes the system with a complete network (i.e. all agents hold N — 1
links), the population never settles to a stable state because any single strategy
switch influences all others’ payoffs in a random way. As a result, a fully connected
population will continuously move across the payoff landscape. Population learning
will not be very effective, as average payoffs will keep oscillating in [0, 1]. Again,
the criterion employed will not affect these results because all statistics always
return the same value if a complete network is in place.

But what happens in the intermediate cases? To answer this question, we have
studied how the long-run distribution of individual payoffs changes as one increases
the average number of links in the economy.'? Figures 1-3 show the distribution
of long-run individual payoffs stemming from all M = 100 populations in each of
the three behavioral setups (MEAN, MIN, MAX) as a function of the connectivity
of the interaction structure. As one might have expected, the results show that for
all three statistics the higher the number of links, the smaller the size of the payoff
pool, and the more dispersed the payoffs.

Network connectivity also affects the dynamic behavior of the system in the long-
run. Indeed, populations with a relative high number of links do not tend to converge
to a steady-state. Agents always prefer to switch their state, thus influencing each
other’s payoff. This prevents population learning from reaching any stable strategy
profile. On the contrary, populations characterized by few links tend to learn easily
how to climb on a local optimum and stay there, because each agent can act in a
relatively autonomous way.

Nevertheless, even in weakly connected populations, there can be cases where a
stable state is never reached. Figure 4 provides an example where the average payoff
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Figure 1. Static Networks with agents employing the MEAN evaluation rule. Scatter-plot of
individual payoffs (y-axis) vs. individual number of links (x-axis) in the steady-state (across
100 populations of 15 agents).
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Figure 2. Static Networks with agents employing the MIN evaluation rule. Scatter-plot of
individual payoffs (y-axis) vs. individual number of links (x-axis) in the steady-state (across
100 populations of 15 agents).
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Figure 3. Static Networks with agents employing the MAX evaluation rule. Scatter-plot of
individual payoffs (y-axis) vs. individual number of links (x-axis) in the steady-state (across
100 populations of 15 agents each).
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Figure 4. Static Networks with agents employing the MEAN rule. Time-series of population
average payoffs for a weakly connected population where two linked agents have incompatible
payoffs (see Table II at page 12).

of a population characterized by very few links (on average 0.5) cycles among four
payoff levels. To see why this can happen, suppose at one extreme that only two
agents in the population are linked and that their underlying payoff matrices are as
in Table II.

Inspection of Table II shows that, irrespective of the expectation rule employed,
the population will cycle forever among the four strategy combinations associated
to the two linked agents.'*
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Table I1. A payoff matrix for two linked agents leading to a never ending cycle. Payoffs
in bold text indicate the agent who prefers to switch state.

Strategies Payoffs
S 52 Agent 1 Agent 2
0 0 0.7 0.2
0 1 0.2 0.7
1 1 0.4 0.3
1 0 0.3 04

3.2. ENDOGENOUS NETWORKS

Let us now turn to the more general case where agents are allowed to perform
both strategy and network updating. We are interested in two main issues. First,
we ask whether, for a given statistics )R, the performance of a system with en-
dogenous network updating is higher than in the case where networks were static
(e.g. in terms of average payoffs). Second, we study the behavior of the system in
different settings. Notice that in the presence of network updating the latter exer-
cise is not only confined to the comparison of populations endowed with different
expectation criteria. In fact, depending on the statistics employed, whether agents
use neutral vs. non-neutral TBRs in network updating may have important conse-
quences. To see why, simply recall that the addition (resp. deletion) of a link causes
the set of values over which the statistics )i is computed to shrink (resp. enlarge).
Agents using the MEAN statistics will therefore obtain different payoffs when their
networking structure is changed: whether they are change-averse or not in under-
taking network decisions is completely irrelevant. Conversely, by using MIN or
MAX it is well possible that payoffs remain constant when a link is added or re-
moved. In these cases, agents employing neutral vs. non-neutral TBRs might behave
differently.

3.2.1. MEAN Payoff Statistics

Consider first a population composed of agents employing the MEAN statistics to
compute expected payoffs. The first question we ask is: Do endogenous networks
systems favor population learning, as compared to static networks? In Figure 5
we report average payoffs for two groups of 10 populations each. Both groups
are initialized with the same average number of links (%(N — 1) = 7 in this
exercise). In the first group, all populations contain agents which are only al-
lowed to update their strategies, while in the second group agents can modify
their links as well as strategies. The group of populations with endogenous net-
works clearly outperforms their peers living in a static network. Thus, the pos-
sibility to act upon the link structure proves to be an advantage as compared
to agents adapting over fixed networks. This is because endogenous networking
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Figure 5. Time-series of population average payoffs for two groups of populations where
agents use the MEAN rule. The first group (black series) contains populations adapting over
static networks. The second group (grey series) contains agents where endogenous network
updating is allowed. For each group, data refers to averages across 10 populations initialized
with 7 links (on average).

agents have more ways to improve their payoff (for a similar finding, cf. Fagiolo
(2004)).

Although this result may seem obvious, it is nevertheless interesting to spell out
the sources of such an advantage. We run for this purpose a simulation using 50 pop-
ulations living in an endogenous network system. Each population is initialized with
a different number of links per agent. All populations with endogenous networks
reach a steady state, albeit at different times. However, each population settles in a
different global configuration, showing that there are a multiplicity of local optima.
In these local optima agents tend to build networks with intermediate connectivity.
Indeed, in our simulations all populations end up with a number of average links
per agent ranging between 6 and 11, irrespective of the initial number of links.

Furthermore, the average steady-state number of links tends to be positively
correlated with average steady-state payoffs, as Figure 6 shows. Therefore, popu-
lations which succeed in reaching a steady-state with highly connected networks
enjoy higher payoffs on average. We have seen however that in these cases agents
find it more difficult to coordinate. This is why we typically observe many popula-
tions that get stuck in weakly connected networks. By reducing interdependencies
agents are able to find a Pareto-efficient configuration. More in detail, Figure 7
provides the scatter plot of steady-state individual payoffs as a function of steady-
state individual number of links. If we compare this plot with its equivalent in the
case of static networks (cf. Figure 1), it is easy to see that endogenous networks
allow agents to occupy the upper half of the payoff distribution.

A less obvious result concerns the characteristics of the dynamic process through
which population learning approaches a steady-state. All populations exploit for a
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while both network and strategy adjustments. In all cases, the number of successful
network innovations is larger than successful strategy switches (about 24% more).
This is quite surprising if we recall that network updating need mutual consent,
while strategy switches are unilateral decisions. Moreover, while approaching a
stable state all populations reach firstly a stable network structure. From then on
they perform only strategy switches until a local optimum is found.

The robustness of such result deserves a closer investigation. In fact, irrespective
of the criterion employed, our populations seem to use network updating as their
main tool for getting major learning improvements (i.e. big jumps in the payoff
landscape). Only when big improvements are not possible anymore, they start to
“fine tune” their global configuration by exploring the strategy space for a given
network structure. Of course, it may frequently happen that in the last step of local
search, the best strategy configuration is not compatible with the current network
structure for some agents. In these cases, network exploration begins once again.
This result supports the hypothesis that partner selection is more effective than
strategy revision as far as exploration of completely new regions of the payoff
landscape is concerned. However, strategy updating becomes the best device when
the population needs to exploit realized improvements and perform cumulative
learning.

3.2.2. MIN Payoff Statistics

A richer set of results can be obtained when one introduces the hypothesis that
agents employ the MIN payoff evaluation rule. We can consider this payoff rule
as the one played by “pessimistic” individuals. Indeed, take all combinations of
strategies played by the agents currently not linked to i as the ones outside i’s
control. If i employs the MIN rule, it will try to maximize its payoff in the worst of
the uncontrolled cases.

Contrary to what happens with the MEAN rule, here the system (almost) never
reaches a steady-state.'> Moreover, results heavily depend, as expected, upon ac-
ceptance of neutral network updating. We begin by comparing the behavior of three
groups consisting of 10 populations each. In the first group networks are static, while
in the other two groups endogenous networks are assumed. The latter two groups
differ because the second uses a TBR with neutrality (agents are change-lovers)
while the third uses a TBR without neutrality (agents are change-averse).

Figure 8 shows the average payoffs for the three groups. The highest average
payoff is reached by populations adapting over endogenous networks which refuse
neutral network changes; the intermediate level refers to the populations with en-
dogenous networks and accepting neutral changes; the lowest average payoftf is
produced by populations with static networks.

Some considerations are in order. First, notice that populations with endogenous
networks tend to increase the number of links up to (almost) its maximum. In fact,
the statistics used to compute expected payoffs cannot decrease by removing a
link, while it might increase by adding a link. Thus, the group of populations with
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Figure 8. Endogenous networks. Time-series of population average payoffs for three groups
of populations where agents use the MIN rule. Black series: endogenous networks and refusal
of neutral changes. Light grey series: endogenous networks and acceptance of neutral changes.
Dark grey series: static networks. For each group, data refers to averages over 10 populations.

constant networks suffers from the existence of populations characterized by an
initially weakly connected network.

Second, our results show that refusing payoff neutral network changes provides
a strong advantage. The reason is that TBRs without neutrality prevent the agents
to reach stable, fully connected networks. In fact, it can happen that agents holding
too many links reach the same payoff by removing a single link. However, this
change enlarges the set over which the minimum is computed and makes it easier
for subsequent strategy switches to generate a sensible drop in the payoff. Simu-
lations indeed show that populations accepting neutral changes experience payoff
drops which are typically larger than those where agents are change-averse. In this
latter case, agents quickly form many links. Although continuously changing, their
payofts will be always the MIN over singleton sets, and therefore, on average,
higher than in the case the MIN is computed over larger sets.

Finally, note that the “pessimistic” attitude of agents using a MIN criterion
is well in line with the result that agents tend to develop many links. Indeed,
agents use a decision criterion based upon the comparison between the worst pos-
sible conditions out of their control. Therefore, the resulting behavior should con-
sist in extending as much as possible the ability to observe others’ strategies. In
other words, a “pessimistic” attitude generates a tendency towards over-control.
At the population level, this in turn implies persistent payoff oscillations and poor
learning.

3.2.3. MAX Payoff Statistics
When using the MA X payoff evaluation criterion, agents adopt a sort of “optimistic”
criterion, as they base their decisions upon the best value which they could derive
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Figure 9. Endogenous networks. Time-series of population average payoffs (x10) for two
groups of populations where agents use the MAX rule. Black series: endogenous networks
and refusal of neutral changes. Grey series: endogenous networks and acceptance of neutral
changes. For each group, data refer to averages over 10 populations.

from the behavior of unobservable agents. For similar albeit antithetical reasons,
also in this case endogenous network updating favors population learning as com-
pared to static networks. Agents adopting the MAX statistics are never worse-off
by removing a link, since this enlarges the set over which the criterion is computed.
As a result, populations with endogenous networks quickly reduce their links and
improve their payoff in the early stages of the process.

Contrary to the MIN case, change-lovers agents earn higher payoff values (see
Figure 9) as compared to change-averse ones. Indeed, by accepting neutral network
modifications, agents continue to change their network structure over time. Never-
theless, all populations, for all initial conditions, reach the same (global) optimum.
In these steady-states, all agents get a payoff very close to 1 because of the MAX
statistics. To see why this happens, consider agent / and call s;; the strategy associ-
ated to the highest payoff value m; in its payoff map . If any two agents i and j do
not currently play (s, s;f), it is sufficient for them to avoid forming a link. If they
instead play the two compatible strategies (s, s7), they can always reach (", 77)
regardless the presence of a link, because they are “optimistic” and change-lovers.
This result is depicted in Figure 10, where we plot individual steady-state payoff
values attained by change-lover agents in 10 populations. On the horizontal axis,
we distribute our 10 populations side by side. The cyclical pattern proves that each
agent gains the same, highest as possible, identical payoff in each population.'¢

Conversely, populations where agents are change-averse do not reach the unique
global maximum, but only a local one. Which local optimum is reached depends
on initial conditions. Agents in such populations keep removing their initially as-
signed links until no further improvement is possible. Typically, any two linked
agents get stuck in a state where they enjoy a relatively high payoff but the only
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possible improvement is associated to a reciprocal strategy switch. Since link re-
moval requires a strict improvement on both sides and strategy updating cannot be
simultaneously performed, the “final” jump to the global optimum can never be
attained.

Notice that “optimistic” agents act as if the strategies played by those who are not
their partners were the most profitable ones. Hence, they typically tend to ignore the
actual behavior of the others and to avoid the exploration of large parts of the payoff
landscape. However, in order to obtain the best from this behavior it is necessary to
act as “change-lovers” and accept network changes even when they do not appear
to engender immediate, strictly positive, improvements. These apparently useless
changes may allow to escape local optima and to climb the global one. On the
contrary, change-averse agents get trapped in local optima because, by refusing
apparently neutral changes, they prevent themselves from exploring other, possibly
more profitable, regions of the payoff landscape.

3.3. BEYOND THE BASIC MODEL

In this Section we discuss some alternative specifications of our basic model. We
are interested in checking the robustness of the foregoing results under alternative
assumptions concerning the mechanisms governing network updating and expec-
tation formation.

3.3.1. Unilateral Link Removal
We first modify the network updating rule to allow for unilateral link deletion.
In the model presented above (see Section 2), both link formation and deletion
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Figure 11. Unilateral Link Removal. Time Series of population average payoffs for 3 groups
of populations where agents use the MIN rule. Black series: Bilateral link removal and agents
refusing neutral changes. Light grey series: Bilateral link removal and agents accepting neutral
changes. Dark grey series: Unilateral link removal. For each group, data refers to averages over
10 populations.

require mutual consent. This assumption is consistent with idea that whether any

non-directed links ij is in place or not depends on common agreement by the two

nodes. Suppose instead that adding a link still requires both agents to agree, while

for a link removal it suffices that at least one agent is better-off under the change.!”
Network updating with neutral TBR would then read:

Glulijy it = w k=il
t_ —1 .. e ~1—1 t—1 ~
G' =G —{ij} ifw; > w; or W

G'! otherwise

where zb;_l (resp. wﬁl_l) are expected payoffs with (resp. without) the proposed
change.'® In this new setup, sustaining highly connected networks becomes harder,
as any agent tends to avoid interactions as soon as they become unprofitable. Thus,
an interesting question concerns whether “pessimistic” populations still attempt to
over-control their environment. In fact, simulations show that agents using the MIN
statistics tend to build less links and attain a lower payoff as compared to their peers
performing bilateral link removal (see Figure 11). A similar result can be obtained
also for agents using the MEAN criterion, cf. Figure 12. On the contrary, unilateral
link formation does not affect “optimistic” agents. In particular, those accepting
neutral payoff changes are still able to climb the global optimum.

3.3.2. Costly Links
Suppose now that links are costly. In line with Goyal and Vega-Redondo (2001) and
Jackson and Watts (2002), we assume that each agent must pay a cost ¢ € (0, 1) to
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Figure 12. Unilateral Link Removal. Time Series of population average payoffs for 2 groups
of populations where agents use the MEAN rule. Black series: Bilateral link removal. Grey
series: Unilateral link removal. For each group, data refers to averages over 10 populations.

form a link. Of course, this additional assumption does not affect strategy updating,
as the latter is performed given networks. On the contrary, our network updating
rule changes as follows:

G'-lulijy ifal !t —wi!
G'={G""—{ij} ifw,'—w>—c, h=i,}j,

1

A%
~
=
Il

~

G'! otherwise

where 11);,_1 and w;_l are expected payoffs with and without the proposed change.
Notice that now whether agents accept neutral network updating or not is irrelevant
even if agents use MIN or MAX since c is picked on the real unit interval. Moreover,
as ¢ increases, link formation becomes less frequent because it requires larger and
larger payoff improvements. Conversely, agents should perform more link dele-
tions since they are willing to delete a link even if the net payoff change turns out to
be negative but greater than —c.!” For these reasons, a costly-link system behaves
similarly to an economy where a unilateral link removal rule is assumed. More
specifically, as one increases c, the behaviors of populations employing MEAN,
MIN and MAX rules converge to a long-run steady-states characterized by “iso-
lated” agents, with average payoffs close to their expected values.

3.3.3. Sampling and Expectation Formation

In our model, agents form expectations about the payoff they could get under
any alternative state (s, V) by computing statistics on the distribution of payoffs
associated to all possible strategy combinations that agents outside V can notionally
play. This means that any agent i computes the criterion 9t on 2" ~!VI=1 payoff values,
where |V| is the number of links held by i. Assume instead that agents can only
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take into account no more than m such values, where 1 < m < 2V~ In fact,
agents can have a bounded computing and/or memory capability (or some budget
constraint) that prevents them from recalling all possible values if their number
exceeds m.

We will then assume that agents now form their payoff expectations as follows. If
Vis such that 2V ~VI=1 <, they simply consider 2V~IVI=! possible payoff values
and behave as before. If, conversely, the computational burden required exceeds
their capacity m, agents randomly sample (with replacement) m payoffs values and
compute N on such a restricted pool.

To investigate this setup, we study how long-run individual payoffs depend on
the individual number of links in 50 populations using the MEAN statistics and
adapting over static networks for m = 100 (cf. Figure 13). It is easy to note that
agents holding a low or an intermediate number of links now suffer from a higher
payoff variability (compare to Figure 1). To see why, recall that for any (sufficiently
small) value of m, agents now face a “double” trade-off between holding few and
many links. We already know that if m = 2V~VI=! for any V, agents with a
smaller number of links face a payoff distribution which is closer to the “true”
one. Conversely, agents with no capacity constraints and many links form their
expectations using a distribution involving a lot of payoff variability. If however
such capacity is bounded, there exists another source of payoff variability: if an
agent holds few links but m is small, it may well be the case that the sampled
distribution departs remarkably from a U[0, 1] even if the one it would have faced
if m = 2V=IVI=1 is very close to the “true” one. For the same reason, strongly
connected agents behave as if they had no constraints whatsoever.

Consider now the case of endogenous networks. Our simulations show that
the introduction of a capacity constraint destroys the positive correlation between
individual payoffs and individual number of links that we found in Figure 7. Indeed,
as depicted in Figure 14, agents employing the MEAN criterion still tend to develop
an intermediate number of links, but only those who end up isolated are able to
converge to steady-states where the average payoff is larger than 0.5. For such
agents, the capacity bound seems to be beneficial.

4. Conclusions

In this paper, we have proposed a preliminary investigation of population learn-
ing over ‘rugged’ landscapes, where agents face a strong uncertainty about ex-
pected payoffs from bilateral interactions. Our results seem to indicate that, in
presence of complicated payoff landscapes and rather uncertain rewards, the de-
tails of the process governing the co-evolution between networks and strategies
become crucial to understand the outcomes of population learning. In particu-
lar, the properties of the expectation formation rule strongly affect long-run net-
work connectivity. The latter is indeed higher when agents are “pessimistic” and
lower when they are “optimistic”’. Notice however that, unlike standard literature
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(e.g. Goyal and Vega-Redondo (2001)), here highly connected networks typically
imply more payoff volatility and coordination problems. Therefore, populations that
are able to build weakly connected networks can also reach higher local or even
global optima. If this is the case (e.g. agents using MAX), population learning be-
comes efficient only if agents manage to avoid lock-ins by accepting changes which
are payoff neutral. In general this can be done by employing neutral network up-
dating to attain major payoff improvements through jumps in the payoff landscape.

Although our findings seem to be quite robust to alternative specifications of the
basic model, many issues remain to be explored.

First, one might consider alternative formulations for the underlying payoff
landscape (JTi)lN: 1~ So far, we have assumed that population learning takes place
over a payoff landscape characterized by the highest possible ruggedness. Indeed,
any occurrence of 7; is supposed to stem from a uniform random variable and to
be totally uncorrelated across agents and strategy configurations. This generates
an environment where the underlying games have no structure whatsoever and
population learning (with endogenous networks) can be studied as if individual
rewards from any bilateral interaction were completely unpredictable.

Such extreme assumptions can be weakened in two ways. On the one hand, one
might assume that occurrences of 77; stemming from the same strategy configuration
are correlated across agents (but still completely uncorrelated across configurations
for each agent). For example, one might assume that across-agents correlation is 1,
i.e. that each agent has the same payoff map 7; = m. The resulting payoff landscape
will then admit (for N sufficiently large) a unique maximum, which is associated
to the strategy configuration (s,-)lN: , (i.e. to the row of the matrix) delivering the
highest level of . An interesting question here concerns whether MAX populations
endowed with neutral TBRs are able to climb this global maximum (as they do in
correlated landscapes).

On the other hand, one might explore a setup where for each agent there exists
some correlation across configurations (but for any given configuration payoffs are
uncorrelated across agents). For instance, we can suppose in line with Kauffman
(1993) that: (i) each agent is ex-ante connected through bilateral links with (on
average) K other agents, where 0 < K < N — 1; (ii) for each agent i, all QN-K-I
payoffs values 7r; associated to all strategy combinations played by the non-linked
agents are constant; (iii) the 2X ! payoff values associated to all strategy combina-
tions played by i and by its partners are i.i.d. U[0, 1]. Here K becomes a parameter
governing the smoothness of the underlying payoff landscape. The higher K, the
more rugged the payoff landscape over which population learning takes place (in
our basic model K = N — 1). Put it differently, by considering lower values for K
we could model economies where the underlying payoff structure is less interde-
pendent and individual payoffs are actually affected by subgroups of other players
(e.g. firms in different industries). An interesting question here concerns whether
population learning is able to recover the underlying network structure, both from
an aggregate point of view (i.e.: Does the long-run average number of links converge
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to K?) and from an individual point of view (i.e.: To what extent all agents hold
exactly K links in the long-run?).

Second, one needs a more careful investigation of the robustness of our results
with respect to alternative strategy/network updating processes. For example, the
introduction of idiosyncratic (low-probability) flips in strategy updating (or more
generally of stochastic best-reply rules such as log-linear ones) may allow agents
to better explore the environment and avoid lock-ins.

Finally, one might study the effects of introducing (across-agent) heterogeneous,
time-varying and/or endogenously changing evaluation rules. For instance: What
happens if we split the population in two subsets, one using MIN and the other MAX
throughout the entire process? What happens when one introduces exogenous mu-
tation in criteria? And, similarly: Which is the effect of allowing for endogenously
changing (e.g. imitation-driven) evaluation rules?
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Notes

ISee for instance Goyal and Vega-Redondo (2001), Jackson and Watts (2002), Droste, Gilles and
Johnson (2000) and Fagiolo (2004).

2An interesting example concerns the consequences of assuming stochastic vs. deterministic indi-
vidual best-reply rules, see Brock and Durlauf (2001).

3Cf. local-interaction models where agents are placed on regular lattices and play a game with their
nearest-neighbors. See, inter alia, Young (1998), Ellison (1993), Nowak and May (1993) and Nowak,
Bonnhoefer and May (1994).

4This assumption will be relaxed in Section 3.3.2.

SWe briefly discuss the consequences of employing correlated payoff maps in Section 4.

6Typically,s = —s;_l and V differs from Vl.t -1 by a single link addition or removal (see below).

7In Section 3.3.3 we explore an alternative specification of the model where agents can only observe
(sample) a limited number of payoff values.

8Both link formation and deletion require mutual consent. In Section 3.3.1 we introduce an al-
ternative specification where link deletion can be performed unilaterally as in Jackson and Dutta
(2000).
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9Whether agents accept payoff neutral updates or not does not affect our results.

10Notice that since TT contains N -2% i.i.d. realizations of a U [0,1], the associated payoff distribution
is very close to the expected one even for small N (e.g. N > 10). Therefore, there is no gain whatsoever
in allowing for heterogeneous initial payoff landscapes across Montecarlo replications.

UThese values have been chosen in order to trade-off a sufficiently high variability of the payoff
landscape with a reasonable computational burden. All results presented below are not substantially
altered by increasing N and M.

12gych static networks systems look quite similar to those explored by Kauffman in his NK model
(with K = N — 1, cf. Kauffman, 1993). Notice however that in the NK model global (instead of
individual) payoff signals drive adaptation: a new configuration is chosen if its global (e.g. average)
fitness is higher.

13More precisely, each set of M replications is characterized by populations whose initial network
is drawn at random and each link has the same probability p € (0, 1) to be in place.

14Cycles typically arise in our model whenever networks are static and some competition emerges
among linked agents who hold incompatible payoffs. This kind of behavior is quite similar to frustra-
tion emerging in “‘spin glasses” models, see Fischer and Hertz (1991). Note, however, that if network
updating is allowed agents might want to remove such links. This can indeed destroy cycles.

15The size of the subset of initial conditions for which there exists at least a population which finds
a unique steady state is very close to zero. Thus, we do not investigate its properties further.

16Recall that underlying payoffs are the same for all populations. Therefore, all ith agents are
identical as far as their payoff vector m; is concerned.

7Notice that in this case network updating implies some form of selfish behavior on the side of
the agents, because anyone can unilaterally refrain from interacting with their partners. Indeed, for
our agents choosing an interaction network means choosing the game to play. Requiring common
agreement in both link formation and link deletion (as we do in the basic model) implies that agents
commit themselves to play a certain game until there is no common interest in playing another game.

18T get the corresponding rule under non-neutral TBR simply replace weak with strict inequalities.

9Notice that we are implicitly assuming that each agent earns a net payoff where total networking
costs are linear in the number of links it holds. Since gross payoffs (before networking costs) are not
monotonically increasing with the number of links even if ¢ is very small, we are not positing any
positive network externality effect a la Goyal and Vega-Redondo (2001). More specifically, allowing
for a positive link cost in our model introduces strong negative network externality effects. Indeed,
the higher ¢, the more agents prefer to keep a smaller number of links. See Fagiolo (2004) for a
complementary perspective in coordination games.
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