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Population learning in dynamic economies traditionally has been studied in
contexts where payoff landscapes are smooth. Here, dvnamic population games
take place over “rugged” landscapes, where agents are uncertain about payoffs
from bilateral interactions. Notably, individual payoffs from playing a binary
action against everyone else are uniformly distributed over [0, 1]. This random
population game leads the population to adapt over time, with agents updating
both actions and partners. Agents evaluate payoffs associated to networks thanks
to simple statistics of the distributions of payoffs associated to all combinations
of actions performed by agents out of the interaction set. Simulations show that:
(1) allowing for endogenous networks implies higher average payoff compared to
static networks,; (2) the statistics used to evaluate payoffs affect convergence to
steady-state; and (3) for statistics MIN or MAX, the likelihood of efficient
population learning strongly depends on whether agents are change-averse or
not in discriminating between options delivering the same expected payoff.
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1. INTRODUCTION

Interaction-based models were notably used to study decentralized econo-
mies composed of consumers and /or firms that repeatedly interact over time
(Kirman, 1997; Fagiolo, 1998). Interactions come from externalities because
the outcome of the decision of an agent depends upon the behaviors of other
agents in the population (Blume and Durlauf, 2001). If individual expecta-
lions are modelled as myopic or adaptive, individual decisions depend on
past observed behaviors of others actors. Therefore, any aggregate measure
of the behavior of the system (e.g., some statistics computed on individual
choices) follows a Markovian process (Brock and Durlauf, 2001).

The most investigated instances of interaction-based models are
dynamic population games. A dynamic population game (Blume, 1993) is
an interaction-based description of a decentralized economy where agents
play non-cooperative, simple games against other agents in the population.
Interactions and externalities are modelled through payoff matrices
describing the outcome of bilateral games. Agents have myopic or adaptive
expectations about the behaviors of their opponents in the games and use
simple boundedly rational decision rules to choose their strategies.
Examples range from deterministic and myopic best-response to stochastic
rules such as the log-linear rule or the best-reply with noise. A key
assumption is that behaviors are reversible. Therefore, agents can, from
time to time, revise their current choices.

The study of dynamic population games raises three related questions:
(1) Under which conditions does the system converge in the long-run?
(2) Which efficiency properties do long-run aggregate outcomes possess?”
(3) To what extent direct interactions, as well as individual rationality,
affect population dynamics and long-run properties?

Such questions have been addressed in two different interaction
settings. First, many scholars have studied population games where the
interaction structure, defining who plays with whom at each time, does
not evolve through time. The basic exercise is to assess how different
interaction structures affect the long-run behavior of the system. Interac-
tion structures range from global ones, where each agent has a positive

"For instance, in population games where all agents play a coordination game, one is often
interested in studying whether the system converges to a configuration where all agents play
the Pareto-efficient Nash equilibrium against a risk-dominant one (Kandori, Mailath, and Rob,
1993).
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probability of playing the game with any other agent, to local ones, where
each agent always plays the game with her “nearest neighbors.” In local
structures, players are placed in some metric space (e.g., regular lattices)
and interact only with agents located in their neighborhoods. The spatial
dimension of the economy reflects some underlying socio-economic
dissimilarity, defined in a space of unobserved variables assumed to change
very slowly compared to the pace at which individual actions are revised.
The assumption of a static interaction structure is justified because the
frequency at which agents update their partners in the game is so small
that this additional revision process would not affect the properties of the
one governing strategy updatingg.

Second, a complementary and more recent line of research has originated
from the observation that, when agents change their partners at a frequency
that is comparable to that at which they update their strategies, it becomes
crucial to study the interplay between the two revision processes in a
co-evolutionary manner (Goyal and Vega-Redondo, 2001; Jackson, 2003;
Droste, Gilles, and Johnson, 2000; Fagiolo, 2004). Such models describe
dynamic settings where agents have the option of repeatedly updating both
the strategy and the set of their partners®. Network updating becomes
endogenous and often occurs on the basis of expected payoffs in different
alternative networks. Once again, a crucial assumption concerns whether
agents can freely select any other agent in the population, in a sort of global
matching process, or can only adapt to the set of their interacting partners
locally, in some pre-defined neighborhood structure.

Dynamic population games have focussed upon the roles of agents’
rationality and of the structure of interactions, starting from relatively
simple strategic situations, such as pure coordination games, “prisoners’
dilemma,” and “hawk-dove.” However, they have ignored economies where
the payoff landscape generated by individual stage-games played by agents
isnot smooth. Inall these settings, individual payoffs are common knowledge,
there is no uncertainty about payoffs, and each agent plays the same game
against any other agent in the population. Moreover, the learning process
acts at a population-level on landscapes where the payoff of any single
agent depends on some average levels of the behaviors of players belonging

“Kandori, Mailath, and Rob (1993), Young (1996) and Young (1998) study dynamic games
where agents play against everyone else in the population, with interaction structures global
and static. On the contrary, spatial games with locally interacting players and static networks
are investigated in Ellison (1993), Young (1998), Nowak, Bonnhoefer, and May (1994) and
Nowak, Bonnhoefer, and May (1994).

*See also Goyal and Janssen (1997), Skyrms and Pemantle (2000) and Mailath, Samuelson,
and Shaked (2000). Dynamic models of non-cooperative network formation only, without
simultaneous choice of a strategic variable, are studied in Bala and Goyal (2000), Watts
(2001) and Jackson and Watts (2002).
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to her interacting set. For instance, in population coordination games,
individual payoffs are a linear function of the total number of coordinated
agents in the network. This implies that individual payoffs are invariant to
permutations preserving the frequency of agents currently playing a given
strategy in the network. As a result, the payoff landscape is relatively
smooth because it does not change very much across configurations
characterized by the same distribution of local frequencies of agents
playing coordinated actions across different networks.

On the contrary, in many real-world settings, agents facing much less
smooth payoff landscapes, are uncertain about which game to play with whom
in any time period and, consequently, about the payoff that they might expect
from any bilateral interaction. If the type of each prospective opponent is
unknown, at least at the beginning of the process, and if agents can change the
game they play both over time and in different encounters, the metaphor of a
smooth payoff landscape with homogenous stage-game payoff matrices can be
misleading (Bednar and Page, 2002; Calvert and Johnson, 1997; Taylor, 1987).
Such situations are characterized by a strong heterogeneity of stage-game
payoffs matrices and, in turn, a high variability of payoffs experienced by
agents after each bilateral game. Specifically, expected and actual payoffs of
each economic agent can be sensitive to small changes in the configuration of
actions currently performed by actors in her network.

We suggest a preliminary model to capture population game settings
where agents face high uncertainty about expected payoffs from bilateral
interactions. Further we suggest that, at least as a first approximation,
individual payoffs from playing a certain strategy, given the current config-
uration of population choices, can be modelled as being i.i.d. random
variables. We assume that if an agent interacts with everyone else in the
population, the payoff she receives, conditional to any possible combination
of actions performed by the others, is distributed as a uniform i.i.d. random
variable with support [0, 1]. We call this setting a “random population game.”

We do not model how agents learn “to play the right game,” while they
discover the “types” of their opponents (cf. Bednar and Page (2002) for an
alternative approach based on individual learning). On the contrary, we
study how the population adapts over time, when agents can adjust both
their actions and their network. We assume that from time to time agents
can either delete or add links®. Agents hold Markovian expectations based
only on last-period observations and use deterministic best-reply rules so
as to maximize their expected payoffs. Maintaining a link is assumed
costless and link addition or deletion require mutual consent. Finally, we

*Network updating rules are similar to those in Jackson (2001), Watts (2001) and Jackson
(2003). Unlike these models, however, we impose mutual consent in both link addition and
deletion.
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allow payoff tie-breaking rules to account either for change-averse players
(who always stick to current choice when a tie occurs) or change-lover
players (who always accept to change even if their payoff does not change).

In order to compute expected payoffs associated to local networks where
a player does not interact with all others, we assume that players use simple
statistics computed on the distribution of payoffs associated to all possible
combinations of actions performed by agents outside their local networks.
We will study four simple statistics: average of such payoffs (MEAN hen-
ceforth), their maximum value (MAX), their minimum value (MIN) and a
random draw thereof (RND). These rules are heuristics used by individuals
to form expectations on the payoff associated to new environments. A rule is
understood as the way agents cope with the uncertainty of the system. For
example, if an agent uses a MIN rule to compute the expected payoff of the
network associated to a link deletion, she is “conservative” or “pessimistic.”

The above criteria have a direct interpretation in terms of the trade-off
between mean and spread of experienced payoffs. Since the cardinality of
the set of payoffs associated to all possible choices of agents outside the
network increases as the total number of her links decreases, the
distribution of the expected payoffs of an agent using a MIN criterion
becomes concentrated around a decreasing mean as the agent reduces
her network. Conversely, the expected payoffs of an agent using a MAX
criterion become concentrated around an increasing mean as she
keeps deleting links. Therefore, different criteria will have non trivial
consequences on individual and population-wide fitness landscapes.

We study the long-run behavior of the model in different setups. First,
we explore the case where nelworks are exogenously given and time-
invariant®. Our original contribution here is to compare systems char-
acterized by an increasing average total number of links and different
payoff criteria (MIN, MAX, MEAN, and RND). Simulations show that if the
average number of links is sufficiently large, then no steady-state is ever
reached. All populations further explore the landscape, and the serial
correlation between average payoffs is not significant. The long-run rela-
tionship between the distribution of individual payoffs and the total
number of links held by agents is driven, for any payoff rule, by the trade-
off between average and spread. The set of payoffs associated to all pos-
sible choices of agents outside the network becomes larger because an
agent reduces her total number of links. Then the variance of the payoffs
decreases with the total number of links, for a mean of 0.5.

°In this case, the model has a structure similar to that of Kauffman’s NK class of formaliza-
tions (Kauffman, 1993), but also with some substantial differences which we will discuss
below.
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Second, we explore random population games with endogenous net-
works. We run Montecarlo simulations to investigate the effect of initial
network and strategy configurations, payoff criteria and tie-breaking rules
on long-run average outcomes. We show that both the long-run convergence
to steady-states and the short-run dynamic properties are affected by the
payoff rule and whether players are change-averse or not. We find that if
agents use the MEAN rule, then, irrespective of the degree of change-
aversion, the system has many steady states. Populations climb local optima
by first using action- and network-updating together and then network-
updating only. Climbing occurs through successful adaptation and generates
long-run positive correlation between the total number of links and average
payoffs. With MIN or MAX rules, the long-run behavior of the system is
instead affected if players are change-averse. If they use the MIN rule, then
the network converges to a steady-state where all agents are almost fully
connected but strategies are not, so that average payoffs oscillate. If agents
use the MAX rule then the system has many steady-states, in both networks
and actions, characterized by few links and different levels of average
payoff. If agents are change-lovers, then the population can explore a larger
portion of the payoff landscape. With agents using the MIN rule, the network
converges to completion, but exploration on strategies goes on forever.
Under the MAX rule, the system has a unique optimum. All populations
converge to the same payolf distribution but neutral network updating will
continue forever, without affecting realized payoffs.

In Section 2 we briefly discuss the relevant pieces of literature and
introduce the model presented in Section 3. Simulation results are presented
in Section 4. Finally, Section 5 concludes and summarizes the main results.

2. POPULATION GAMES, PAYOFFS AND ENDOGENOUS
NETWORKS

Dynamic population games are games played over time by large popu-
lations of boundedly rational players. The standard framework common to
dynamic population games consists of a set of N individuals who play a
game in discrete time. At any time t > 1, each individual i plays a strategy
st € S.If' S = (-1, +1}, two agents i and j play a bilateral game
whose symmetric payoff matrix is given by:

a b
a_[c d].
with a, b, ¢, d € R.

All agents play the same game, they know that the others do the same
and that G is common knowledge. Assume that at each time, any agent i
plays a bilateral game defined by G against all agents j belonging to the set
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V{ C I. The collection (V{),_, is called the interaction structure at time
{4, At any t, an agent i is chosen at random from I to revise her current
state (sf, or V!, or both). Agent i then forms Markovian expectations about
her next- penod payoff under different actions or interaction structures,
and takes a decision rule to choose her next-period state, either s‘+l or
VI+! or both. Decision rules differ in the introduction of idiosyncratic noise,
interpreted as the possibility of experimentation or mistakes. In the absence
of noise, the rule is deterministic and is usually based on local best-reply
dynamics. For instance, if V! are exogenously given and do not change over
time, agents will pick their next-period strategy by taking the rule:

sit! = argmax w(s;s),j € Vi)

se{+1,-1}

where total individual payoffs w(s;sj, j€ V! to i from interacting with
agents in the network are defined as the sum (or the average) of all payoffs
from bilateral games. A stochastic term can reverse, with some small
probability, the decision maximizing local payoffs. The “mistake” can in
turn be either constant as the relative frequencies of players choosing -1
or —1 in each V/ change (noisy best-reply rules, Ellison (1993)) or state-
dependent (e.g., the log-linear rule, where the probability of choosing
against the majority becomes very small, although not null, as the
“majority” grows larger (Brock and Durlauf, 2001; Blume, 1993)).

A dynamic population game is therefore completely defined with the
payoffs in the matrix G and the interaction structure at each time, or the
rule that governs how the interaction structure changes over time,

Most” models are focussed on either coordination or prisoners’
dilemma games with static interaction structures, where V‘ V:vt>1.
However, a few contributions have pointed out that endogenous network
dynamics might strongly affect long-run equilibrium patterns and their
efficiency properties®.

“This scheme is known as asynchronous updating. The consequences of assuming
synchronous updating schemes, where agents perform a parallel updating, or incentive-based
updating schemes, where agents revise their choices depending on the state of the system, are
studied in Page (1997).

"Exceptions are provided by Nowak and May (1993), Nowak, Bonnhoefer, and May (1994)
and Herz (1994).

5These contributions posit dynamic population games where agents, from time to time,
have access to a network updating decision, either deterministic or noisy, and often modelled
as a best-reply rule. A crucial ingredient is to know if agents choose their next-period network
V,‘*‘ in comparing expected payoffs from every possible network (Goyal and Vega-Redondo,
2001) or they just have the option of adding or deleting a small number of links in any
choice-stage (Jackson, 2003). In this latter case, agents choose any other agent in the popula-
tion as a new partner with a positive probability (Droste, Gilles, and Johnson, 2000) or must
choose their networks with respect to some underlying geographical structure (Fagiolo, 2004).
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In coordination games, “static interactions” yield a robust foundation for
equilibrium selection. Whenever the underlying 2 x 2 game G has two Nash
equilibria, one of which is Pareto efficient and the other is risk-dominant,
Kandori, Mailath, and Rob (1993), Young (1996), Blume (1993), and
Ellison (1993) showed that the unique long-run equilibrium is the risk-
dominant one and that local interactions can speed up the rate of
convergence. Convergence to an efficient outcome is the case when non-
exclusive conventions are assumed, so that agents can pay to remain
flexible, choosing not to choose (Goyal and Janssen, 1997); or when players
are mobile (Bhaskar and Vega-Redondo, 1996; Ely, 1996; Oechssler, 1997;
Dieckmann, 1999)% or when interaction structures are endogenous and
agents are free to select any partner in the population (Goyal and Vega-
Redondo, 2001). On the contrary, when geographical barriers isolate indi-
viduals from each other, population learning is more likely to converge to
risk-dominant equilibria (Fagiolo, 2004).

Similar results were obtained in dynamic population games where agents
play prisoners’ dilemmas'’, No matter whether interactions are static or
evolving endogenously, the iterated prisoner dilemma played by Markovian
agents allows cooperation to be sustained, unlike in standard game-
theoretic models. If players can refuse interactions with other individuals,
and interaction structures become partly endogenous, the population tends
to cooperate more than in the case ol a compulsory prisoner dilemma
(Zimmermann, Eguluz, and San Miguel, 2001; Hanaki and Peterhansl,
2002).

The analysis of decentralized economies where agents face more
complicated payoff structures remains to be done. Indeed, the baseline
model of a dynamic population game shares the assumptions that all
agents know that everyone plays the same game and stage-game pay-
offs are common knowledge. This implies that the payoff landscape
where the population learning takes place is quite smooth, so that
individual payoffs vary little as the frequency of agents playing the
same strategy slightly changes. Therefore, the long-run behavior of the
system is directly interpretable in terms of bilateral games played by indi-

“The selection of partners is made endogenous by assuming the existence of a fixed num-
ber of spatial locations. Players are mobile and can select their future partners by choosing the
place they want to move to, on the basis of the expected net payoff each location.

'"Dymimic prisoner dilemma (DPD) population games with static interaction structures
were studied in Axelrod (1984), Herz (1994), Nowak and May (1993), Nowak, Bonnhoefer,
and May (1994), Oliphant (1994), Oltra and Schenk (1998) and Tieman, Houba, and van
der Laan (1998). Population games where agents play DPD and can choose not to interact with
an opponent (PD with ostracism or refusal) were instead investigated by Hirschleifer and
Rasmusen (1989), Kitcher (1993), Smucker, Stanley, and Ashlock (1994), Stanley, Ashlock,
and Tesfatsion (1994), Ashlock, Smucker, Stanley, and Tesfatsion (1996) and Hauk (1996).
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viduals. For example, in coordination population games, the purported agent
homogeneity of stage-games and the nature of the game to be played imply
that the payoff to any agent i playing, say, +1 is a linear function of the total
number of agents in s network currently playing +1. Individual payoffs are
invariant to any permutation of individual choices that keeps local frequency
constant. Hence, the aggregate state of the system, when all play +1, is a
state of maximum coordination.

2.1 The Model: An Informal Description

We account for situations in which agents may ignore the game their
opponents will play in the next encounter, and in which stage-game
payoffs can be uncertain or change endogenously. Thus, we model
environments where network payoffs capture the interdependencies
between agents and the high sensitivity of payoff landscapes to
changes in the strategies of other players.

We consider a population of N > 3 agents, I = {1,..., N}, and a binary
strategy space s! € {—1,+1}. Agents live in a world where everyone is
connected with anyone else. Their payoffs change in unpredictable ways
whenever a change in the current configuration of the system occurs, that
is whenever an agent changes either her strategy, or her partners, or both.

Suppose, for the sake of exposition, that N=23. Consider first the payoff
landscape defined over the complete-network population game. Since the
payoff of any agent i depends on the choices of the remaining k; — 2 agents,
each one faces 2V-*+1 = 4 possible configurations for each st € {—1,+1}
and thus 2.2N¥-%*! =8 individual payoffs m;(st,s%,s,). Uncertainty is
rendered by assuming that m;(s!, s}, s}) are i.i.d. and uniformly distributed
over the interval [0,1]''. Table 1 presents an example of a complete payoff
landscape, i.e., random drawings of possible payoffs for all combinations of
strategies in the case of a fully connected network. Actual payoffs depend
on the links an agent maintains with the others.

Links are bilateral and costless. A player can hold any number of links
between 0 (isolated agents) and N — 1 (complete connectivity), and the

MIf the system adapts using an asynchronous updating mechanism and individual best-
reply decision rules, population dynamics are similar to standard adaptation over rugged
fitness landscapes in Kauffman's (1993) NK model where K = N — 1. Kauffman uses global
payoff (fitness) to drive adaptation: a new configuration is chosen if its global fitness is higher.
On the contrary, we use local payoff criteria: a link is established or deleted, and a strategy is
switched, if the payoff of the single agent(s) involved (single bits) increases, regardless of the
rest of the population (rest of the string). This difference has important consequences on the
dynamics and in particular on the likelihood of lock-in into local optima. In Kauffman's model,
the assumption of complete connectivity is taken to reflect the highest possible level of
ruggedness of the fitness landscape where the population adapts.
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TABLE 1 An Example of Payoff Landscape with N=3.
(s{,s},s4) are the Combinations of Strategies that the Three
Agents can Play; my, mg and 73 are Individual Agents’ Payoffs

(8}, 85, 83) m L 3

(-1, -1, -1) 0.56 0.11 0.24
(-1,-1, +1) 0.77 0.64 0.17
(-1, +1,-1) 0.58 0.31 0.45
-1, +1, +1) 0.55 0.59 0.19
(+1, -1, -1) 0.78 0.42 0.70
(+1,-1, +1) 0.32 0.54 0.26
(+1, +1, -1) 0.04 0.44 0.78
(+1, +1, +1) 0.80 0.67 0.44

total number of links can differ among agents, so that the resulting graph is
not homogeneous. Given the payoff landscape =;(s!, s}, s%), each agent is
fully characterized at each time period by her current choice s§ and the set
V! C I containing all her current partners.

If a link between i and j exists, experienced payoffs of both i and j are
affected by the choice of the partner. Therefore, if agent 1 is connected with
both 2 and 3 and plays, say, sﬁ = —1, she will face a payofl which changes as
soon as either one of her partners switches her strategy, according to
mi(st, s}, ) entries in Table 1. If an agent, conversely, is not connected with all
N — 1 other agents in the population, she will use a simple statistics in order to
compute expected payoffs from playing a given strategy. This statistics will be
computed on payoffs associated to all combinations of strategies that could be
played by agents outside the current network. For example, suppose that
s{ = —1 and that the statistics employed by agent 1 is the arithmetic mean
(MEAN)I‘“'. If 1 is currently connected with 2 only, then she faces only two
possible payoffs, according to what agent 3 plays. Each payoff is computed
as the MEAN of payoffs associated to any possible choice for sf:

! T
e JEO0B640.77)  if st = —1
WI( 1!32)‘— {;(0-58+0.55) lf Szt =+l .

If 1 is currently connected with no other player, her payoff will be:
w(—1) = 3(0.56 + 0.77 + 0.58 + 0.55)

Finally, if agent 1 considers payoffs associated to choosing -1 and con-
necting with 3 only, she gets:

2Alternative choices are MAX, MIN or RND. The latter consists in picking one of the
2Nk payoff entries at random.
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1(0.78+0.04)  if 53t = —1
l 3
wi(=1;83) = {% (0.32+0.80)  if s3 = +1

Assume that at time ¢ = 0 a random initial configuration (s, V") for
i=1,...,N is given, We study a population dynamics governed by an
asynchronous updating process both on strategies and bilaterally on local
networks. At each £>1 a pair of agents h and % is randomly drawn to
attempt graph updating given the current strategy configuration. If a link
connecting h and k already exists, the link is tentatively removed, if it does
not, the link is tentatively added. Decisions are made by best-responding
deterministically to current local configurations under the different alter-
natives. We consider two different tie-break rules. In network updating
without neutrality, a link is removed or added if and only il both agents are
strictly better-off after the change. This implies that agents are change-
averse, because they prefer to stick to their current choices unless the
alternative option is associated to strictly larger payoffs for both. In
network updating with neutrality, a change is accepted even if it implies
the same payoff that both agents experienced before the change. This
implies that agents are change-lovers, because they prefer to change their
current choices even if the new one is associated to the same payoff for
both'?,

Next, an agent, say A, is drawn at random to update her current strategy
s} given the network configuration obtained in the first stage. We assume
that agent h, best replying deterministically to the current local config-
uration, chooses the strategy s that strictly maximizes my(s: s J € V}),
while keeping sj, if a tie occurs.

Consider the case in which the current configuration is (+1, +1, +1)
and suppose that agent 1 is connected with 2 but not with 3, who is
isolated. If 1 and 3 are drawn for a network update, they contemplate the
possibility of forming a link between them. Agent 1 compares her current
payoff %(0.04 + 0.80) with the payoff after link addition, namely 0.80. Agent 3
compares her former payoff % (0.17 + 0.19 + 0.25 + 0.44) with the possible
new one 5 (O 25+ 0.44). In this case both agents are strictly better off.
under the change and the link is added. After network updating, player 3 is
connected with 1 only. If she is called to strategy updating, she switches to
—1 since %(0.70 +0.78) > 5(0.25 +0.44).

These updating rules define a population dynamics whose long-run
outcome (absorbing state, cycle, ete.) and effciency properties (aggregate
payoff, across-agents distribution, etc.) depend upon the criterion

'%The term neutrality refers to the fact that, under the associated tie-breaking rule, agents
accept neutral changes, they add or delete a link even if they both continue to get the same
payoff. Decisions are made on the basis of payoffs observed by agents at the time of the choice.
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employed to form expectations over networks (as well as by whether or not
updating rules permit neutrality).
We now formally present the model and study it through simulations.

3. THE MODEL

Consider a fixed population of agents I = {1,2,...,N}, N > 3 and assume
that time is discrete. At any time ¢, an agent i € [ is characterized by her
current strategy s; € {—1,+1} and the set of agents of her opponents in
the game V! C I — {i}. The underlying links connecting agents are bilat-
eral: i € V‘ @ j € V!, and maintaining a link is costless for both agents.
ThesmeofV‘isk‘ Ve K={0,1,2,. —1}and1etV Viu{i}.
The sets { V NS I } induce a non- dlrected graph G; € P(N), where P(N)
is the set of all non-directed graphs over I. We denote ij € G* the fact that
in the network G' agents i and j are linked. At any time, the system is
characterized by the pair {Q', G}, where Q' = (s!),.; € {-1,+1}".

A random population game is defined through the following payoff
structure. Let u!(Q', G') be the payoff to agent i at time ¢, given the current
state of the system. For any subset JJ C I, define a J—restricted config-
uration of actions by Q'(J) = (a})jes- We assume that the payoff to i at ¢
does not change if the strategies currently performed by all agents in I who
are not partners of { under the current graph G; change:

ul(Q', G') = n(Q(V})) = mia(slishj € V),

To model uncertain envaronments we assurmne that if all agents were
connected with anyone else, or V = I,Vi € I; or, equivalently, if G* were
completely connected: kf = N — l‘Vz then:

T(Q(V) ~ X

where X are i.i.d. random variables with p.d.f. F. From now on, we assume
that X~ U [0, 1].

To form expectations aboul payoffs ] H{eX (V,-)) associated to local
networks V such that k < N, agents use a statistics ®. R is computed
over mdmdual payoffs an agent i would earn if individual strategies within
her network V! were fixed, while mdmdual strategies of agents
j€I—{V}}can change freely in {—1,+1}V~ k=1 Let:

I=V1UW-‘ V-OW-’=@

where V’;_{ijl, g} and WE={hy,... hy_ Ki- 1}. Define P!C
{-1, +1} as the set of all possible conﬁguratlons F =(gt );e! €
{—1,+1}" for which Q‘(V ) are kept constant while Q'(W?) vary freely. We
assume that if &f = 0,...,N — 1 then:
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(QU(V))) = R(E(QY,Q € P - it),

ie. m( (Q(V V )) are computed by employing statistics R over all possible
conﬁguratlons where only the strategies of agents outside V can take all
admissible values.

Agents use one out of four criteria to evaluate such payoffs:
() ®=MAX; (ii) R=MIN; (iii) R=MEAN; (iv) ® =RND. In the last case,
agent ¢ computes her payoff by picking a payoff at random out of the
admissible ones.

At time ¢=0, a strategy configuration Q" € {1, +1}N and a graph G°
over [ are drawn at random. At any time period ¢ > 1, agents update their
networks, given Q', then update their strategies given the just updated
graph. Given (£, G;), any two agents i and j, either connected in G; or not,
are picked up at random from I. They evaluate current payoifs as:

: =T (Q,(V‘))
j =T (Qt( )
If i and j are not connected (ij ¢ Gy), define V= V U {j} and V‘

[

V U {i}. If ¢ and j are already connected (ij € Gy), deﬁne V2 = V {1}

and V‘ V.= {i}. Accordingly, define payoffs under addition or deletlon
! = m(Qu(VY),

1

@} = (V).

Agents decide bilaterally to add or delete the link by comparing current
payoffs before and after the change and by selecting the network with
higher payoff. We consider two alternative tie-breaking rules:

1. Add or delete the link if and only if both agean are strictlv beu;er off
under the change, ie., if and only if w!> w! and w o w This
tie-breaking rule is c‘al]ed without neutrahty

2. Add or delete the link if and only if no agent is strictly worse off under

the change, if and only if w! > w! and @ w > w‘ This tie-breaking rule is
called with neutrality.

Network updating is therefore defined as follows:

1 G = G‘ U{ij} if the link is added
G™* G"*' = G'— {ij} if the link is deleted
Gl = G’ otherwise

After network updating, strategy updating takes place given G,.,. An
agent i is drawn at random from 1. Given (sf, V1) and her current payoff
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aif = af (s,‘-,Q‘ I_/:H)), she will switch to —s! at the beginning of period
t+ 1 if and only if:

t(—st, 0 (Vﬁ“)) > wl,

We now provide results about the long-run behavior of the process
governing the evolution of the pair {Q, G'}.

4. SIMULATING THE SYSTEM

Unless otherwise specified, all results refer to Montecarlo averages across
50 independent populations. Each population includes 15 agents, each
using an independently drawn payoff matrix containing 2'° entries,
uniformly distributed in the [0, 1] interval, for a total of 2'° x 15 random
values. Such payoff matrices are used for all populations in the same
simulation, so that we can compare the results from different populations.
Given distributional assumptions on payoff values, our results do not
change qualitatively with different payoff landscapes across independent
sets of simulations.

Before presenting our results, a brief comment on payoff specification is
in order. Our agents are assigned a payoff that depends on the strategies of
all other agents, besides their own strategy. The network structure deter-
mines both the amount of missing information (i.e., the strategies of the
unconnected agents) and the amount of information that is perfectly
known to any individual (i.e., the strategies of connected agents).
Evaluation criteria determine how missing information is elaborated,

We chose to use random payoffs uniformly distributed to avoid any
possible bias in the results due to a specific exogenous structure of the
payoff distribution. In fact, we were interested in observing the emergence
of endogenous networking structures caused by the use of given evaluation
rules. We did not want the results to depend on a specific payoff
distribution, however realistic this might have been.

In this section we start simulating agents with “frozen” networks: agents
are allowed only to change their strategies but not their links, fixed in the
beginning of the simulation run. These exercises will tell how a given
structure influences the agent’s payoff. We will present the results from the
full model, where strategy and network updating take place given different
evaluation rules.

4.1 Fixed Networks

In order to appreciate how the connectivity of the network influences
payoffs, we first simulate agents who can modify their strategies but not
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their links. We generated 100 random networks kept fixed in the rest of the
simulation. We let the probability that, taken two agents, a link is estab-
lished between them to range from 0.01 (almost totally unconnected
network) to 1.00 (fully connected one).

Simulations show that, if the average total number of links is sufficiently
large, then no steady-state is ever reached and all populations continue to
explore the payoff landscape. Figure 1 presents the main results with the
MEAN evaluation statistics. The expected value of payoff is always 0.5, but
the variance increases with the total number of links. Agents with no or few
links have always payoffs very close to 0.5, because this value is computed
as the average over a large number of random values. As the total number
of links increases, payoffs become more and more scattered on the interval
[0, 1], because the MEAN statistics is computed on smaller and smaller sets
of uniformly distributed random values.

Simulations using the MIN and MAX payoff rules produce similar results,
with payoffs for unconnected agents concentrated around 0 and 1 for the
minimum and the maximum respectively. In turn, simulations with RND
payoff rule exhibit payoffs ranging over the entire interval [0, 1], indepen-
dently of the total number of links.
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FIGURE 1 Fixed networks with players employing MEAN evaluation rules. Seat-
ter-plot of individual payoffs (y-axis) vs. individual number of links (x-axis). Values
at T=10000. 50 populations, 15 agents each.
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FIGURE 2 Fixed networks with players employing MEAN evaluation rules. Scat-
ter-plot of population average payoffs at time t 4 1 (y-axis) vs. population average
payoffs at time t (x-axis). Values after 10000 time steps. 50 populations, 15 fully
connected agents each.

Beside the absolute values of payoffs, the total number of links an agent
holds also affects how many updates improving the population average
payoff are performed. In fact, when agents with fewer links switch their
strategies, they affect only the few agents to which they are connected.
Changes in strategy have therefore little effect on the population average
payoff. Conversely, populations of highly connected agents have highly
volatile average payoffs, because any strategy mutation alters the payoff of
many agents. In Figure 2 we report the phase diagram for the population
average payoff when agents are fully connected'®. The graph plots the
population average payoff at time ¢ + 1 as a function of the same variable
at time f. As agents are change-averse with respect to action-updating,
points on the diagonal indicate all cases in which no strategy switch has
taken place. When a switch happens (off-diagonal), the distribution of
points shows no significant correlation.

" The graph refers to a simulation with the MEAN payoff rule, although practically the
same result is obtained also for any other type of pavoff rule.
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FIGURE 3 Fixed networks with players employing MIN evaluation rules. Scatter-
plot of individual payoffs (y-axis) vs. individual number of links (x-axis). Values at
T =10000. 50 populations, 15 agents each.

The MIN and MAX evaluation statistics show similar patterns. The
expected payoff distribution for agents holding few links is concentrated
around 0 for MIN or around 1 for MAX, as Figures 3 and 4 show. Therefore,
when static networks are assumed, the long-run relationship between the
distribution of individual payoffs and the total number of links held by the
agents is driven for any payoff rule by the trade-off between average and
variance induced by the chosen criterion.

4.2 Endogenous Networks

4.2.1 Mean and RND Evaluation Rules

Agents now change adaptively not only their strategies but also the set
of neighbors with whom they interact by adding and deleting connections.
We use 50 populations made of 15 agents, and the same payoff matrices for
all populations.

We start again by considering the MEAN evaluation statistics and we
initialize our simulations with totally unconnected networks and random
initial strategies.
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FIGURE 4 Fixed networks with players employing MAX evaluation rules. Seatter-
plot of individual payoffs (y-axis) vs. individual number of links (x-axis). Values at
T =10000. 50 populations, 15 agents each.

Irrespective of neutrality, the system displays many steady states.
Figure 5, showing the average number of links for each population,
suggests that all populations display a similar dynamic pattern character-
ized by distinct phases, though the duration of these phases may vary. At
the outset, all agents in the population produce successful updating both
on strategies and on graphs, by exploring different strategies and networks.
They stop updating their strategies but still modify their networks, adding
or removing links. Finally, network updating stops, with the agents making
no further modifications. Payoffs and links for the 15 agents in the steady-
state configuration widely differ within each simulation and across simu-
lations. The total number of links can range from 1 to 13 and payoffs from
0.1 to 0.98. Population averages range between 6.7 to 11.1 for the total number
of links (Figure 5), and between (.48 to 0.69 for payoffs. These various stable
points differ from one population to another, and the system displays many
“local optima” corresponding to lock-in points for updating rules.

On Figure 6 we report the scatter plot of agents' payoffs as a function of
the number of their links. Compared to frozen networks (see Figure 1),
endogenous network updating allows agents with wider neighborhood sets
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FIGURE 5 Endogenous networks with players employing MEAN evaluation rules.
Time series of population average number of links. 50 populations, 15 agents each.

to persistently reach higher payoffs: agents adapt so as to concentrate on
the highest portion of the payoff space.

These results are not affected by the initial conditions. The dynamic
behavior of a system based on a RND evaluation rule is instead similar to that
displayed by static networks. Indeed, a RND rule fails to exhibit a positive
relationship between the total number of links and average payoffs. More-
over, strategy and network go on being updated indefinitely and a stable
structure is never achieved. This result is consistent with the observation
that agents who use this payoff evaluation rule have no reason to prefer few
to many links, because the payoff is always obtained randomly.

4.2.2 MIN Evaluation Rule

When agents use the MIN payoff evaluation rule, they compute their
payoff as the minimum of the values in their payoff matrix corresponding to
all combinations of strategies used by the agents with whom there is no
direct interaction. This payoff rule is played by “pessimistic” agents, in that
they maximize the payoff in the worst possible case, considering these as
the unobservable strategies from the non-linked agents.

Contrary to the previous cases, results heavily depend upon the
acceptance of neutral network updating (i.e., whether agents add or
remove a link although their payoff remains unchanged). Increasing or
decreasing the total number of links held by an agent respectively narrows
or widens the set of payoffs from which the minimum is taken. It often
happens that adding or deleting links leaves the minimum value of such a
set unchanged. These network changes are “neutral” with respect to the
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FIGURE 6 Endogenous networks with players employing MEAN evaluation rules.
Scatterplot of individual payoffs (y-axis) vs. individual number of links (x-axis).
Values at T =50000. 50 populations, 15 agents each.

payoff evaluation. Whether such neutral changes are acceptable or not is
thus important to the dynamic of the network structure.

Figures 7 and 8 present the time series of the average number of links
for the 50 simulated populations and the plot of average payoffs against
total number of links respectively, assuming agents accept a payoff-neutral
change. Independently of the connectedness of the initial graph, the
structure of the network and the choices of strategy never converge to a
steady-state. The long-run average number of links fluctuates between
about 10 and 13. A positive correlation between average payoffs and
average number of links, although weak, still comes out (Figure 8).

If on the contrary agents do not accept neutral network updating (they
are change-averse), simulations show convergence to multiple steady
networks, but strategies, and therefore payoffs, never settle. In fact, in this
case a link between any two agents can never be deleted, because the
minimum payoff cannot increase'”, new links can always be formed. The

"“This is the case because, if an agent removes a link, the pool of payoffs across which the
minimum is computed strictly contains the payoff set associated to the network with that link
still in place.
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FIGURE 7 Endogenous networks with players employing MIN evaluation rules and
accepting payoff-neutral network changes. Time series of population average
number of links. 50 populations, 15 agents each.
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FIGURE 8 Endogenous networks with players employing MIN evaluation rules and
accepting payoff-neutral network changes. Scatter plot of average payoff (y-axis) as
a function of the average number of links (x-axis). Values at T=50000. 50
populations, 15 agents each.
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FIGURE 9 Endogenous networks with players employing MIN evaluation rules but
NOT accepting payoff-neutral network changes. Time series of population average
number of links. 50 populations, 15 agents each.

network becomes highly connected and almost all agents maintain a total
number of links close to the maximum (14), as illustrated on Figures 7 and 9.

When agents accept neutral updates, further changes in the network
structure are very likely to occur, but this in turn changes individual payoffs
importantly. The system never climbs an optimum, even local. Conversely,
il agents are change-averse with network updating, they typically get stuck
in one of the many local maxima. Strategy updating never stops, because
changes of an agent's strategy induce considerable changes in the other
agents’ payoffs, and in general offer opportunities for some of them to
change, in turn, their strategies.

Our result means that pessimistic agents, who base actions on worst-
case considerations, tend to increase more and more their span of control
in order to reduce the risk of unexpected worst cases. However, this
behavior collectively generates instability, especially when payoff-neutral
network updating is always accepted, and when players can explore a
larger portion of the payoff landscape.

4.2.3 Max Evaluation Rule

With the MAX payoff evaluation criterion, agents adopt a sort of optimistic
criterion, as they base their decisions upon the best payoffs obtainable from
the behavior of agents outside their own neighborhood. As with the MIN
criterion, results depend upon the acceptance of neutral network updating.
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FIGURE 10 Endogenous networks with players employing MAX evaluation rules
and accepting payoff-neutral network changes. Time series of population average
payoffs (multiplied by 10). 50 populations, 15 agents each.

In case of acceptance, agents tend to develop networks with very few
connections, because adding a link can never strictly increase the max-
imum payoff'®. On the contrary, link deletion can increase the maximum
payoff and then can be accepted. As the population tends to produce
scarcely connected networks, agents can tune their actions in order to
reach the global optimum payoff. Figure 10 reports the average payoff for
the 50 populations and shows that each population always converges to the
same highest payoff, very close to 1'7. If one disaggregates the average
payoff in each population, all populations converge to the same strategy
profile and the same maximum individual payoffs, for a given payolf matrix
and from any initial condition. Once the optimal strategy profile is reached,
some payoff neutral network changes are still possible and therefore the
network structure never stabilizes. However, all network structures over
which the population keeps cycling indefinitely are payoff equivalent.

Results differ if agents cannot make strategy or network changes unless for
a strictly higher payoff (non neutrality). If the initial network is unconnected,
no link is ever established as none of them is strictly payoff-increasing. If the

"*The new payoff is computed as the maximum of a set which is strictly contained in the
one associated to the network containing that link. Only if the maximum is still contained in
the subset can the link addition be accepted under neutrality.

""One population fails to converge, though it is still a matter of time. Sooner or later all
agents discard almost all the links and individuate the state producing the maximum payoff,
though this may need some time.
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FIGURE 11 Endogenous networks with players employing MAX evaluation rules
but NOT accepting payoff-neutral network changes. Time series (¢ = 2000, ...,
3000) of population average payoffs (multiplied by 1000). 50 populations, 15 agents
each.

initial network is fully or highly connected, denying payoff neutral changes
deters agents from climbing the entire payoff landscape and they end up
locked into local optima. The deletion of a link requires that both agents in a
pair are strictly better off after deletion: if one of them is indifferent, the link
cannot be removed and the other agent is locked into a suboptimal set of
neighbors. Figure 11 plots the average payoffs for the 50 populations given the
same payoff matrix, starting with fully connected agents, and not accepting
neutral changes. Populations lock into different local optima depending on
initial conditions'®, Therefore, allowing for changes in the payoff neutral
network leads to many steady-states, in both networks and actions, char-
acterized by few links and different levels of average pavoff.

5. CONCLUSIONS

Population learning in dynamic economies has been traditionally studied in
simplified settings where all agents play the same bilateral stage-game
against any opponent and stage-game payoffs reflect very simple strategic
situations.

We have investigated dynamic population games over rugged land-
scapes, where agents face a strong uncertainty about expected payoffs
from bilateral interactions. We suggested to model payoff landscapes

"SAverage payoffs are very high because the MAX rule is used.
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through random population games where the population adapts, over both
strategies and network structures, using deterministic, myopic, best reply
rules. The key assumption concerns how agents evaluate payoffs associated
to networks which imply local interactions. We explored settings where
players use very simple statistics computed on the distributions of payoffs
associated to all combinations of possible actions of agents outside the
interaction set.

Computer simulations showed that: (1) endogenous networks imply
higher average payoffs as compared to exogenous static networks; (2) the
statistics employed to evaluate payoffs strongly affect the dynamic prop-
erties of the system, and in particular its convergence to a unique or
multiple steady state; and (3) for the MIN and MAX statistics, the like-
lihood of efficient population learning depends on whether agents are
change-averse or not in discriminating between options yielding the same
expected payoff.
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