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The establishment of in vitro cultures of Echinacea angustifolia D.C. was obtained directly from sections
of flower stalks of adult plants. The shoot formation was obtained from this plant material placed on a
modified MS basal medium named CH supplemented with 0.5 mg L~! 6-benzylaminopurine (BA). The
in vitro propagation procedure of E. angustifolia consisted of three distinct phases: an initial
regeneration phase from stalk sections (IP shoots on basal medium with 0.25 mg L~ BA), an elongation

Keywords: phase on active charcoal and an axillary proliferation of the shoots (AP shoots on basal medium with
Alkamides 1

. 0.5mgL™" BA).
Flavonoids

Regenerating calli were established from leaves of in vitro shoots cultured on CH medium
supplemented with 3 mg L~! BA and 0.5 mg L' indole-3-butyric acid (IBA). Developed shoots from the
callus cultures were subcultured on the CH medium with 0.5 mg L~ BA (leaf regenerated shoots: LR
shoots). The secondary metabolite content of the in vitro plant material was compared with that of the
greenhouse growing plants. The quali-quantitative LC-DAD-ESI-MS analysis on the extracts from axillary
proliferation shoots (AP shoots) showed significant production of caffeic acid derivatives while leaf
callus and LR shoots, accumulated mainly alkamides. These results showed that the proper choice of the
procedures for in vitro multiplication allowed us to obtain plant biomass able to produce the active
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Echinacea angustifolia
Flower stalk

In vitro shoots
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compounds typical of E. angustifolia plants.
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1. Introduction

The genus Echinacea belongs to the Asteraceae family and has
nine species (McGregor, 1968). At present, only three species are
used in phytotherapy: Echinacea angustifolia D.C. (De Candolle) var.
angustifolia (syn. Rudbeckia angustifolia L.), E. pallida (Nutt.) Nutt.
and E. purpurea (L.) Moench. Echinacea spp. are native of North
America (McGregor, 1968) and belonged to the rich Pharmaco-
poeia of the native Americans, who used them for hundreds of
years for infections, inflammations and insect bites (Lloyd, 1921).

The chemistry of Echinacea species is well known and caffeic
acid derivatives, flavonoids, polyacetylenes, alkamides, pyrrolizi-
dine alkaloids, polysaccharides and glycoproteins were isolated
and characterized (Bauer and Foster, 1991; Bauer and Wagner,
1991; Bauer and Reminger, 1989; Bauer et al., 1989, 1988a).

In the last few years, the increased demand of natural remedies
in Europe has caused an enhancing industrial request in the
production of standardized plant material and extracts.
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Echinacea is an Extra European genus and the certified plant
material for propagation of E. angustifolia is not available yet (Li,
1998). Moreover, plants of the genus Echinacea are characterized
by their difficult germination caused mainly by seed dormancy
(Baskin et al., 1992; Macchia et al., 2001; Feghahati and Reese,
1994; Sari et al., 2001) and by elevated population variability
among the species (Binns et al., 2002).

Progress in medicinal plant clonal propagation has been
requested, especially for species such as Echinacea with an
agricultural production not sufficient for the growing pharma-
ceutical industry demand. For this purpose, it is important to
develop a reproducible protocol for cloning E. angustifolia.

Till now, the reports concerning the in vitro procedures for the
establishment of E. angustifolia, describe protocols starting from
seedling (Harbage, 2001; Lakshmanan et al., 2002) whereas there
are no reports about the E. angustifolia in vitro regeneration using
flower stalk sections as explant source.

Difficulties to promote E. angustifolia tissue cultures from
selected adult plants were mainly caused by the rosette habit of
this species. The short internodes and the vegetative apices located
near the ground caused initial contaminations difficult to
eradicate. The selection of important medicinal species is an
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essential step to improve the agronomic and pharmaceutical
features in particular when a high phenotypic variability is present
as in plant belonging to the Echinacea genus. Regarding the
biosynthesis of the typical secondary metabolites, the presence of
echinacoside, caffeic acid derivatives, and polysaccharides was
shown only in cell suspension cultures from seedling tissues of E.
angustifolia (Smith et al., 2002). Most of the works about the
production of caffeic acid derivatives, alkamides and anthocyanins
were carried on other species of the Echinacea genus cultivated in
vitro (Schollhorn et al., 1993; Sicha et al., 1991; Luczkiewicz and
Cisowski, 2001; tuczkiewicz et al., 2002). Moreover, no data on the
influence of different in vitro culture systems of E. angustifolia on
secondary metabolite production are available in the literature. In
this work E. angustifolia in vitro cultures were established from
flower stalks of adult plants. Extractions and LC-DAD-ESI-MS
analysis were performed in order to evaluate the main secondary
metabolite production in shoots derived from two different in vitro
regeneration protocols. Secondary metabolite content was com-
pared with that of the greenhouse plant material harvested in
reproductive phase.

2. Materials and methods
2.1. Plant material

Open field E. angustifolia mother plants were furnished by the
Department of Agronomy of the University of Pisa. Plants were
transferred to the greenhouse and conditioned (phase 0 of
micropropagation process according with Debergh and Maene
(1981) by spraying them twice with 0.10 g L' Benomy! fungicide
(Du Pont Agricultural Products, Wilmington, Delaware, UK) every
15 days; the shoots were cut after an additional period of five days
without treatments (Mensuali Sodi et al., 1997). Leaf explants and
flower stalks were employed as starting material for tissue culture.

2.2. E. angustifolia tissue cultures from adult plants

Leaves and flower stalks, removed from mother plants, were
subjected to a first washing in tap water for 16 h. After reducing
explant size, they were sterilized in a 15% of sodium hypochlorite
(8% Cl active) aqueous solution stirred for 15 min followed by
three final rinses in sterile distilled water. Under laminar flow
cabinet the flower stalks were cut in slices 1-2 mm thick and the
leaf explant were cut in portions of 0.25cm? containing the
central vein. To the basal medium, named CH, which consisted in
MS (Murashige and Skoog, 1962) macro and micro elements, B5
vitamins (Gamborg et al., 1968), 300 mg L~ reduced gluthatione
(GSH), 500 mg L~! 2-(N-morpholino) ethanesulfonic acid (MES),
30gL 'sucrose, 7gL™' agar, pH 5.8, two arrangements of
growth regulators were added: 0.01 mg L~! 1-naphthaleneacetic
acid (NAA) plus 1mgL™!' 6-benzylaminopurine (BA) or
0.5 mg L~! BA alone. Both media were added with 0.3% of Plant
Preservative Mixture, Plant Cell Technology Inc., U.S.A. (PPM).
Each type of explants was placed in a climatic chamber 25 4+ 1 °C
either in the darkness or at 16 h of photoperiod with irradiance of
50 wmol s~ m~2.

Callus formation and shoot regeneration were detected after
three weeks of cultures. E. angustifolia regenerated shoots were
subcultured in vessels containing CH medium with 0.25 mg L~! BA
(initial proliferating shoots: IP shoots) and then with 0.5 mg L~! BA
(axillary proliferating shoots: AP shoots). Between the two cultures
on BA enriched media, it was inserted an another one on a
hormones-free CH medium with half mineral and vitamins
strength, 15 g L~! sucrose and 5 g L™ active charcoal.

To study a different protocol for shoot regeneration, leaves from
in vitro growing shoots were excised and explants (0.5 cm?) were

cut from the middle area of the lamina (four pieces/leaf). Two
different culture media were used named CHe and CHe* containing
basal medium CH added with 3 mgL~! BA/0.5mg L™ indole-3-
butyric acid (IBA) or 6mgL~! BA 1mgL~! IBA, under light
conditions. Regenerated buds from this experiment were then
proliferated on the same basal medium added with 0.5 mg L~! BA
(LR shoots).

All media tested in these experiments were sterilized by
autoclaving at 121 °C at 1 atm for 20 min. In vitro cultures were
maintained in a growth chamber at 22 + 1 °C with an irradiance of
80 wmol s~! m~2 and photoperiod of 16 h.

2.3. E. angustifolia greenhouse plants

E. angustifolia D.C. achenes were obtained from Gargini
Sementi S.n.c. (Lucca, Italy). Achenes were sowed in Petri dishes
and incubated at 25 £+ 1 °C with a 16 h photoperiod (cool white
fluorescent light 70 wumol m~—2 s~'). To overcome seed dormancy the
inoculated achenes were previously subjected to stratification at
4 °C in the dark for 11 days in the presence of 1 mM ethephon (2-
chloroethylphosphonic acid) (Macchia et al., 2001). After germina-
tion seedlings were transplanted in multi-pots containing pit-
perlite soil (50:50, v:v) under greenhouse conditions. Leaf samples
for extraction were collected at the beginning of the flowering
period.

2.4. Plant experiments and statistical analysis

Explants used for shoot induction from adult plants were
positioned in Petri @ 6 cm dishes (5 explants/dish, 10 dishes/
treatment). During the proliferation and growing phase explants
were subcultured into 175 mL glass culture vessels (5 explants/
vessel; 10 vessels/treatment) and in G7 Magenta vessels (6
explants/vessel; 5 vessels/treatment). In vitro leaf segments to
induce shoot regeneration were positioned in Petri @ 6 cm dishes
(5 explants/dish, 10 dishes/treatment). Shoot number per explant
and length during the proliferation stages were expressed as
mean = standard error. ANOVA statistical analysis (P < 0.05) was
performed and the Tukey test was used to separate means calculated
for the different parameters.

All the experiments were repeated twice and data were
recorded after three weeks of culture.

2.5. Phytochemical investigation

2.5.1. Chemicals

LC grade water, acetonitrile, methanol and formic acid (Backer)
were used for LC-DAD-MS Liquid Chromatography Diode Array
Detector Electrospray Ionization Mass analysis. Commercial
compounds were used as some reference materials: caftaric acid
(1) (10 mg, ChromaDex, lot: 01-03028-301), chlorogenic acid (2)
(10 mg, Extrasynthese, lot: 327-97-9), echinacoside (3) (10 mg,
ChromaDex, lot: 01-05020-101), cichoric acid (4) (10 mg, Chro-
maDex, lot: 00-03640-300) and, caffeic acid (5) (10 mg, Sigma-
Aldrich, lot: 60018). The flavonoids [quercetin (7), luteolin (8),
apigenin (9), kaempferol (10), p-cumaric acid (11), betulinic acid
(12), apigenin 7-O-B-glucoside (13), isorhamnetin 3-rutinoside
(14)] used as standard compounds were part of a home-made
database of natural compounds, isolated and identified by NMR
and MS experiments in our laboratory (HPLC purity grade 97-98%).
Alkamide (6) [dodeca-2E,4E,8Z,10E-tetraenoic acid isobuthyla-
mide] was isolated and characterized during a phytochemical
investigation of E. purpurea plants (E. purpurea var. bravado)
cultivated in Sanremo (Italy). Its spectroscopic data are in good
agreement with that reported in the literature for the same
compounds.
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2.5.2. Sample preparation and LC-DAD-ESI-MS analysis

The aerial parts (1.3 g) of the E. angustifolia plant material were
freeze-dried and extracted by ultrasonic apparatus with n-hexane
and methanol in turn (100 mL x 2 h, 3 times).

Each fraction was analysed by LC-DAD-ESI-MS. LC system
consisted of a Surveyor Thermofinnigan liquid chromatograph
pump equipped with an analytical Lichrosorb RP-18 column
(250 mm x 4.6 mm i.d., 5 mm, Merck), a Thermofinnigan Photo-
diode Array Detector and an ion trap LCQ Advantage mass
spectrometer. The analyses were carried out by a linear gradient
using water with 0.1% HCOOH (solvent A), CH3CN (solvent B) from
10:90 (v/v) (B-A) to 70:30 (15 min) (flow 0.7 mL/min, run time
40 min). The spectral data from the DAD detector were collected
during the whole run in the range 210-700 nm and the peaks were
detected at 254 (alkamides, flavonoids) and 330 nm (caffeolquinic
derivatives, flavonoids) for all analysed samples.

LC-ESI-MS analyses [negative ion mode for caffeoilquinic
derivatives (1-5) and flavonoids (7-14), positive mode for
alkamide (6)], SRM: Selected Reaction Monitoring, TIC: Total lon
Current (m/z 100 to 800 amu) were performed in the same
chromatographic conditions using the specific ESI values for caffeic
acid and alkamides (sheath gas flow-rate 62 arbitrary units,
auxiliary gas flow 9 arbitrary units, capillary voltage —16 V and
capillary temperature 280 °C) (Yasuda et al., 1981).

3. Results
3.1. In vitro shoots from adult plants of E. angustifolia

The contamination of E. angustifolia explants was a serious
problem consuming time to establish a protocol for the mother
plant management to pull down the micro flora of these plants.
Several treatments with fungicides on the in vivo mother plants
and the presence of the biocide PPM in the culture medium gave
40% of non-contaminated explants, which was sufficient to start
the culture. Callus formation was induced from leaf explants
cultured on the tested media in light and dark condition, but
only the white friable calli developed on the NAA with BA
medium in darkness showed shoot regeneration (Table 1).
However these calli, during the successive subculture, stopped to
provide shoot regeneration at all (data not shown). The flower
stalk slices give rise to cell proliferation when cultured on
0.5 mg L~! BA in the light (Table 1 and Fig. 1A). These green calli
showed purple spots which generally matched the outset of the
shoots so they could be considered as visible markers of the
regeneration process.

The new shoots developed in the light from flower stalk slices
placed on 0.5 mg L' BA medium were subcultured on the same
medium. During this first culture phase, hyperhydricity occurred
in new shoots. To reduce this phenomenon, the shoots were
subcultured in the same medium with half BA amount
(0.25 mg L) (initial proliferating shoots: IP shoots) (Table 2),

Table 1

but the successive subcultures showed a progressive deterioration
of the culture with abundant callus masses at the base of the shoots
which encountered hyperhydricity again. The successive culture
on the hormone-free medium with active charcoal, reduced the
callus formation, decreased the shoot number (Table 2) and
therefore increased the shoot quality. Subsequently E. angustifolia
shoots were cultured again on the initial medium with 0.5 mg L™!
BA. During this multiplication phase the explants produced new
shoots (axillary proliferating shoots: AP shoots) longer than IP
shoots (Table 2 and Fig. 1B) and the shoot quality was maintained
without the developing of hyperhydric symptoms and callus
formations. Interestingly, during this propagation stages both IP
and AP shoots showed a recurrent regeneration of de novo shoots
and ectopic leaf formations from the central vein of the intact
leaves (Fig. 1C).

A high morphogenetic potential was also observed when leaf
sections excised from AP shoots were cultured on CHe and CHe*
media. From the results summarized in Table 3 it was detected that
CHe medium with BA3 mg L~! and IBA 0.5 mg L~! produced a high
percentage of callus with vegetative buds and with purple spots
which could be considered “differentiation spots” as observed also
during the induction phase on flower stalk sections (Fig. 1D).
Growth regulators in a double concentration (CHe*) did not
improve the callus formation and the buds differentiated from this
type of callus did not develop into normal shoots (data not shown).
Developed shoots from the CHe callus cultures were subcultured
on the same basal medium with 0.5 mg L~' BA (leaf regenerated
shoots: LR shoots). The results described in Table 3 demonstrated
that shoot regenerated from in vitro leaves could provide a good
multiplication rate (one leaf could provide up to 60 new shoots).
These type of shoots continued to proliferate morphogenetic callus
at their basal end which could be a useful source to increase the
further E. angustifolia shoot proliferation.

3.2. Phytochemical analysis

Echinacea plant material, listed below, was investigated for the
production of secondary metabolites:

¢ Shoots from flower stalk of E. angustifolia plants and collected in
different culture phases (IP shoots and AP shoots);

e Regenerating calli from in vitro shoot leaves;

e Shoot developed from the regenerating calli (LR shoots);

e Leaves from greenhouse plants collected at the beginning of the
flowering period (GH plants).

The n-hexane and methanolic extracts were obtained by
ultrasonic apparatus from fresh plant material after freeze-drying.
LC-DAD-ESI-MS analyses were performed in order to evaluate the
production of alkamides, flavonoids and caffeolquinic derivatives.

The phytochemical screening was carried out by the compar-
ison of the retention time, UV and MS spectra for each peak in the

Influence of the plant growth regulators (PGR), explant source (flower stalk or leaf) and growth conditions (light or dark) on the callus formation and the initial regeneration
tendency (shoot number per explant) of E. angustifolia adult plants. Data are presented as coefficient (+ or —) or means =+ SE (n = 50).

Callus amount™ Callus quality Shoot number

Dark Light Dark Light Dark Light
Flower stalk
BA — +++ - Green, purple spots - 2.83 +0.45
NAA + BA - - - - — —
Leaf
BA ++ ++ Necrotic Necrotic - —
NAA + BA ++ ++ White, friable Necrotic 1.67 £0.33 -

* Callus amount; + = scarcely developed at the explant margins, ++ = medium developed covering half of the explant, +++ = largely developed covering all the explant.
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Fig. 1. (A) E. angustifolia flower stalk slice which gave rise to cell proliferation and shoot regeneration when cultured on CH basal medium with 0.5 mg L' BA in the light. (B) E.
angustifolia axillary proliferating shoots (AP shoots) during the propagation phase on CH basal medium with 0.5 mg L' BA. (C) E. angustifolia shoot regeneration from the leaf
central vein. Shoots in proliferation were cultured on CH basal medium with 0.5 mg L~ BA. (D) E. angustifolia leaf segment of in vitro shoots cultured on the CH basal medium
with BA (3 mg L) and IBA (0.5 mgL~!) named CHe. This explant showed several buds arisen from the callus mass.

Table 2

Shoot proliferation (shoot number and length of new formed shoots), and callus development at the base of E. angustifolia shoots in different phases of the propagation
process: initial proliferating shoots (IP shoots), hormone-free shoots and axillary proliferating shoots (AP shoots). The basal medium was added with different BA
concentrations. ANOVA statistical analysis (P < 0.05) was performed. Mean values (n = 50) the different parameters were separated by the Tukey test and different letters
corresponded to significant differences (P < 0.05).

Shoot number Shoot length (cm) Callus amount* Callus quality
BA (0.25 mg L") (IP shoots) 236 a 131a +[++ Friable light green
Hormone-free (active charcoal) 1.10 b 1.63 ab + Compact green
BA (0.5 mg L) (AP shoots) 1.77 ab 1.66 b + Compact green

* Callus amount; + = scarcely, ++ = medium, +++ = largely.

extract samples with those of the reference compounds (1-14). results (Lg/8dry plant material) fOr the selected constituents (1-6) in
The results showed that the flavonoids (7-14) were not present in the analysed samples is given in Table 4.

the extracts coming from E. angustifolia in vitro plant material and A smaller amount of alkamide (6) was accumulated in GH
in plants grown in the greenhouse. A summary of the quantitative plants in comparison with the in vitro grown material. In detail it
Table 3

Callus formation and shoot regeneration (shoot number per explant and length) of in vitro E. angustifolia leaf portions on CH basal medium with different amounts of growth
regulators (CHe and CHe*) and proliferation of shoots derived from CHe callus on basal medium with 0.5 mg L~! BA (LR shoots). Data are presented as means = SE (n = 50).

Shoot number Shoot length (cm) Callus amount* Callus quality
CHe (3mgL~' BA+0.5mgL"" IBA) 3.98 +0.69 0.54 +0.10 et Friable white + purple spots
CHe* (6mgL~! BA+1mgL~" IBA) 2.72 +1.57 0.42 +0.08 et Friable white
0.5 mg L' BA (LR shoots) 3.60 £+ 0.54 2.65 +0.36 + Friable at the shoot base

* Callus amount; + = scarcely, ++ = medium, +++ = largely.
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Table 4

LC-DAD-ESI-MS analysis of the aerial part of E. angustifolia in vitro and in vivo plant material. IP: Initial proliferating shoots; AP: axillary proliferating shoots; LR: leaf

regenerated shoots; GH plants: plants cultivated in greenhouse. Standard error (n = 3).

Compounds In vitro In vivo
(18/8dry plant) IP shoots AP shoots Callus LR shoots GH plants
Caftaric acid (1) 16.54 £0.17 2551.5 +33.6 - - 4283.7 +24.3
Chlorogenic acid (2) 54.61 +2.11 11230.5 + 145.5 - - 1176.4 £ 6.5
Echinacoside (3) 47.34 £0.98 5813.3 +£53.7 - - 5991.1 +46.1
Cichoric acid (4) 46.13 £1.23 30530.8 +456.0 - - 1534.3 +£10.6
Caffeic acid (5) 4.11 +£0.09 - - 16.78 +£0.16 116.4 +£2.45
Alkamide (6) 235.63 +9.86 107.35 £3.39 103.7 £ 0.36 367.95 +10.75 26.83 + 0.94

was detected as the unique metabolite in callus cultures and as the
main constituent in the n-hexane extracts of in vitro IP shoots and
LR shoots. Caffeic acid derivatives (1, 2, 3, 4) completely lacked in
callus and LR shoot samples.

Phenolic acids (1, 2,4, 5) and echinacoside (3) were produced in
much higher amounts in comparison with the alkamide (6) in the
AP shoots and in vivo GH plants. In particular the AP shoot samples
were characterized by a larger amount of cichoric acid (4) than GH
plant samples but they did not show any detectable content of
caffeic acid (5). Echinacoside (3) amount contained in AP shoots
was comparable with that detected in GH plants.

4. Discussion

In this work it was settled up the active shoot organogenesis
from flower stalks of E. angustifolia adult plants. The use of flower
stalk explants could be very convenient for growers and herbal
product companies to clone selected superior individuals for
enhancing E. angustifolia cultivation. In fact this method can be
applied without causing damage or completely destroying
individual plants as it occurs when the apical buds are excised
from the rosettes. Moreover, vegetative propagation from selected
plants is a reliable procedure because chemical profiles varied
significantly among seedlings within the species (Binns et al.,
2002; Murch et al., 2006). Plant propagation from flower stalks was
employed for in vitro regeneration of several species (Bajaj et al.,
1983; Tan Nhut et al., 2001; Martin et al., 2005) but it is an unusual
technique for tissue culture of Asteraceae plants. Shoot regenera-
tion was induced on flower stalk explants exposed to light on a
medium supplemented with 0.5 BA. This type of explant produced
a satisfied shoot proliferation in comparison with those observed
on E. purpurea petioles and leaves (Choffe et al., 2000; Koroch et al.,
2002). However, after the first subcultures E. angustifolia shoots
showed a high hyperhydricity, the development of abundant callus
and de novo shoot formations on the veins of the intact leaves
(Fig. 1C) as also observed by Lakshmanan et al. (2002) on in vitro
seedling leaves of different Echinacea species. Therefore, in order to
obtain E. angustifolia plantlets more suitable to produce continuous
multiple shoots, the BA content was halved. The procedure gave a
temporary improvement of the culture (IP shoots), but the
successive subcultures on the same medium showed again a
progressive deterioration. A mid-step culture phase without
growth regulators and using active charcoal (Debergh and Maene,
1981) was necessary to restore the shoot quality. These plantlets,
cultured again on 0.5mgL~! BA CH basal medium, gave
appropriate explants for the successive proliferation phases (AP
shoots). Summarizing, the in vitro propagation procedure of E.
angustifolia from flower stalk consisted of three distinct phases: an
initial regeneration phase from stalk sections (IP shoots), an
elongation phase on active charcoal and an axillary proliferation of
the shoots (AP shoots).

On the basis of the high organogenetic potential observed in
shoot foliage during the initial phase of the culture, another

regeneration pattern was investigated starting from AP leaf
explants. Zobayed and Saxena (2003) observed somatic embry-
ogenesis from leaves of E. purpurea in vitro seedling when IBA
(0.5 mg L") was used together with BA (2.5 mg L~ ). In this work
an analogous combination of IBA and BA added to the CH basal
medium was useful to produce conspicuous callus biomass with
vegetative buds. This in vitro plant material successively developed
shoots (LR shoots).

Concerning to the analysis of the active constituents, LC-
DAD-ESI-MS screening was carried out on the in vitro and in vivo
plant material to evaluate the production of the typical
antioxidant substances (1-14) of Echinacea species. The results
showed that none of the well-known flavonoids (7-14) of
Echinacea adult plants were present in the extracts coming from
in vitro plant material as well as in plants grown in the
greenhouse (Bauer and Wagner, 1991; Lin et al., 2002). This
behaviour is similar to that observed in Genista spp. where the
typical flavonoids (apigenin, luteolin) were not detectable in
callus cultures (Luczkiewicz and Gtod, 2003) of this species. The
lack of flavonoids could be related to the light conditions in the
growth environments. It is well known that flavonoids are UV-B-
inducible (Cockell and Knowland, 1999) while the lamps used in
the in vitro growth chamber did not provide wavelengths in the
range of the UV radiation. An analogous behaviour was showed
in callus cultures of Passiflora spp. where the UV-B irradiation
was able to increase the production of flavonoids (Antognoli
et al., 2007). The Echinacea plants grown under greenhouse,
were subjected to light conditions similar to the in vitro ones
since greenhouse covering materials screen UV radiations below
340 nm (Nelson, 1991).

The phytochemical profiles of the E. angustifolia (caffeic acid
derivatives and alkamides) showed differences among the in vitro
(IP, AP, LR shoots and callus) and in vivo plantlets (GH). Also for
other plant species it was often observed that secondary
metabolite patterns changed with the introduction of plant
material into in vitro conditions (Luczkiewicz and Gtoéd, 2003,
2005).

The main difference regarded the alkamide content of E.
angustifolia in vitro cultures. A larger amount of alkamide (6)
was accumulated in cultured tissues in comparison with the
leaves of plants grown in greenhouse (GH). The regenerated
shoots (IP, AP, and LR) produced alkamide (6) amounts (0.023,
0.017 and 0.036%, respectively) comparable to the typical
content of wild E. angustifolia leaves and stalks (Bauer and
Wagner, 1991; Bauer, 1998). As reported in the literature
regarding to the localization of alkamides in the aerial portion of
Echinacea plants, the reproductive stems of E. purpurea showed
alkamide contents much higher than the leaves (Perry et al.,
1997). In this study the reproductive origin (flower stalk
explants) of IP, AP and LR shoots might explain the presence
of the higher alkamide content than in GH plants. On the other
hand, the presence of alkamides could be discussed on the basis
of their potential roles in plant morphogenesis. Lopez-Bucio
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et al. (2006) demonstrated that alkamides regulate many
aspects of plant development by altering cell division and
differentiation process but these compounds required cytokinin
receptors for normal cellular response. Exogenous treatments of
Arabidopsis in vitro plantlets with alkamides alter cell determi-
nation, leading to the production of ectopic leaf blades along the
petioles (Lopez-Bucio et al., 2007). In our experiments a high
level of alkamides was present in BA-induced shoots which
frequently showed the formation of similar ectopic leaves. This
phenomenon was ascribed by Lakshaman et al. (2002) to the
accumulation of cytokinines but on the basis of these results, it
might be suggested a possible interaction of plant hormones
with alkamides on the differentiation processes. The high levels
of these compounds found in E. angustifolia callus and LR shoots,
might be ascribed to the high cytokinin content (3 mg L") used
for the callus culture induction. The hormonal composition of
the culture media is known to be one of the main causes of
morphological and physiological modification in regenerated
plantlets (Van Staden et al., 2006) and in turn it could alter the
plant biomass capacity to produce secondary metabolites
(Patnaik et al., 1999).

Regarding to the caffeic acid derivatives, the in vitro shoots in
the axillary proliferation phase (AP shoots) showed production of
caftaric, chlorogenic, and cichoric acids, together with echinaco-
side but no caffeic acid was evidenced. The yields of these
secondary metabolites were the highest among the in vitro
cultures and they were similar or higher than those reported in the
literature for the leaves of E. angustifolia adult plants (Bauer and
Wagner, 1991; Bauer, 1998; Pacifici et al., 2007). AP shoots were
well developed and showed phenotypic features similar to the in
vivo plants. This might be due to the appropriate in vitro
mixotrophic condition where the shoots could take advantage
of the high sucrose availability in the culture medium and to the
possibility to perform photosynthesis (data not show). It was
noted that a relationship occurs between different tissue culture
systems and the accumulation of secondary metabolites. In
particular, Murch et al. (2006) detected bioactive compounds in
well developed shoots growing in a temporary immersion system.
On the contrary, they did not observe significant productions of
secondary metabolites in E. purpurea callus, shoot or embryo. In
the same way also in Hypericum perforatum in vitro cultures, the
hypericin and flavonoid production increase during shoot
development from callus with vegetative buds to plantlets
without roots (Pasqua et al., 2003). These considerations pointed
out that the regeneration process chosen to amplify the in vitro
biomass not always could be right to give the secondary
metabolites of interest.

In conclusion, this is the first report on caffeic acid derivative
and alkamide production from in vitro regenerated shoots of E.
angustifolia adult plants.

It was underlined how the in vitro production of E. angustifolia
plantlets from adult plants and the development of the proper
multiplication procedures allowed us to obtain plant biomass able
to produce active compounds characteristic of this species.
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