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1 Mouse ®broblasts (NIH3T3) transfected with the full-length coding region of the Mel1a melatonin
receptor stably expressed the receptor, coupled to a pertussis toxin-sensitive G-protein(s) and exhibiting
high a�nity and adequate pharmacological pro®le.

2 The receptor protein had the tendency of a strong coupling to the G-protein and therefore low-
a�nity state was induced by uncoupling the receptor from its G-protein in presence of high
concentrations of NaCl (500 ± 700 mM) and/or GTPgS (100 mM). Thereafter, the a�nity of a series of
melatonin analogues was determined to both, high- and low-a�nity receptor states, thus providing a
basis for the prediction of their e�cacy, according to the ternary complex model.

3 The cells were subsequently used to study the agonist-induced G-protein activation, determined by
calculating the rate of GDP-GTP exchange measured in presence of 35S-labelled GTPgS. The natural
ligand melatonin induced a signi®cant increase in the GDP-GTP exchange rate, the presence of GDP
and NaCl being necessary to observe this e�ect.

4 The full agonists 2-phenylmelatonin, 2-bromomelatonin and 6-chloromelatonin equally induced an
increase of the GDP-GTP exchange. 5-Hydroxy-N-acetyltryptamine activated the GTP-GDP exchange
to a much lesser extent (53%) than melatonin, thus behaving as a partial agonist. As predicted by the
model, the melatonin antagonist (N-[(2-phenyl-1H-indol-3-yl)ethyl]cyclobutanecarboxamide) was without
e�ect on basal G protein activation. Coincubation of this compound with melatonin induced a dose-
dependent rightward shift in the melatonin concentration-e�ect curve, thus exhibiting the behaviour of a
competitive and surmountable antagonist.

5 Using the equation proposed by Venter (1997) we were able to determine that there were no `spare'
receptors in the system. Therefore, the approach proposed in the present work can be successfully used
for the determination of `drug action' at the level of the human Mel1a melatonin receptor and evaluation
of the e�cacy of new selective melatonin analogues.
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Introduction

Melatonin, the principal hormone secreted by the human
pineal gland, has a number of physiologically relevant actions

associated with the regulation of circadian-related phenomena
(Dollins et al., 1994; Hagan & Oakley, 1995; Lewy et al., 1995).
Melatonin actions are interceded through high a�nity binding

sites belonging to the superfamily of the seven-transmembrane
domain receptors that couple to heterotrimeric G-proteins
(Reppert et al., 1994; 1995). Currently, two subtypes of human

melatonin receptors have been identi®ed: Mel1a (preferentially
expressed in the brain) (Reppert et al., 1994) and Mel1b
(preferentially expressed in the retina) (Reppert et al., 1995).
Expression of the human melatonin receptor in CHO and COS

cells have also demonstrated receptor coupling to a pertussis
toxin-sensitive G protein (Reppert et al., 1994; 1995; Witt-
Enderby & Dubocovich, 1996).

Agonist occupation of the melatonin receptor leads to
inhibition of stimulated adenilyl cyclase and cyclic AMP
(Morgan et al., 1994), an event mediated by pertussis toxin-

sensitive G protein(s). The ability of forskolin to stimulate the
intracellular cyclic AMP accumulation and the capacity of
melatonin and its agonists to inhibit the e�ects of forskolin

have been employed to study the melatonin receptor signal-

transduction pathway and to determine the biological activity
of melatonin analogues in cells (e.g. ovine pars tuberalis, quail

optic lobes) that naturally express melatonin receptors
(Morgan et al., 1994; Spadoni et al., 1997; Tarzia et al.,
1997). Such methodology relies on fresh, non homogeneous

biological material, a measurement of secondary, downstream
events (quanti®cation of cyclic AMP) and is not very sensitive
and reliable. Moreover, these preparations generally contain a

heterogeneous receptor population and therefore do not lend
themselves to the unequivocal characterization of analogues
action at a speci®c receptor subtype. For these reasons, the
pharmacology and biochemistry of the human melatonin

receptor have not been adequately studied.
A cellular system stably expressing a single subtype human

melatonin receptor is the only way to avoid the intrinsic

problems associated with the study of the melatonin receptor
signal-transduction pathway in man and the activity of new
selective melatonin analogues at the receptor level. The recent

cloning of the human melatonin receptor Mel1a (Reppert et al.,
1994; Mazzucchelli et al., 1996) has allowed us to study the
pharmacology and biochemistry of this receptor subtype in

isolation.
One of the ®rst events following agonist occupation of the

receptor binding domain is the guanine nucleotide exchange
(Birnbaumer et al., 1990). GDP, bound to Ga subunit is

replaced by GTP. A dissociation of the Ga-GTP from the bg
subunits follows, with the subsequent downstream events

1Author for correspondence at present address: Department of
Pharmacology, University of Milan, V. Vanvitelli 32, 20129 Milan,
Italy.

British Journal of Pharmacology (1998) 124, 485 ± 492  1998 Stockton Press All rights reserved 0007 ± 1188/98 $12.00

http://www.stockton-press.co.uk/bjp



stimulated by both Ga-GTP and bg. Coincubation with the
non-hydrolyzable GTP analogue GTPgS results in permanent
activation of the G-protein, because GTPgS is not readily

susceptible to the intrinsic GTPase activity of Ga (Higashijima
et al., 1987). Using [35S]-GTPgS, the activation of pertussis
toxin-sensitive G proteins after agonist occupation of

membrane-bound receptors has been determined as an increase
of the binding of the labelled nucleotide to the membranes
(Hilf et al., 1989; Lorenzen et al., 1993; Lazareno & Birdsall,
1993; Tian et al., 1994).

A�nity and e�cacy are the two key factors that determine
the interaction between the receptor and its ligand. In this
study, we have used NIH3T3 mouse ®broblast cell line stably

transfected with the cloned Mel1a human melatonin receptor to
study agonist-mediated G-protein activation and the binding
of melatonin ligands under conditions favouring high- and

low-a�nity states of the receptor. The e�cacy of analogues
measured by means of [35S]-GTPgS binding correlated with the
magnitude of ligand a�nity ratio for the low vs high a�nity
states of the receptor. The increase of [35S]-GTPgS binding

stimulated by melatonin agonists is a ready `functional'
measure of agonist occupation of melatonin receptors and
thus, the system is able to distinguish compounds of di�erent

e�cacy and intrinsic activity.

Methods

Transfection

Full-length cDNAs coding for the human Mel1a melatonin
receptor, cloned from human cerebellum (Mazzucchelli et al.,
1996), was subcloned into pcDNA INeo and used to transfect

NIH3T3 mouse ®broblast cells by cationic liposome-mediated
transfection (lipofection), by use of the transfection kit
DOTAP (Boehringer Mannheim, New York, NY). In order

to obtain optimal results we performed a ®rst transfection with
8 mg/plate of cDNA and a second treatment after 24 h. The
NIH3T3 cells were plated at a density yielding approximately

60% con¯uency at the time of transfection. Cells were cultured
in Dulbecco's modi®ed Eagle's medium containing high
glucose (4,5 g71), 10% bovine calf serum, 1 mM sodium
pyruvate, in 5% CO2/95% air at 378. Selection with G418

(1 mg ml71) was started 48 h after transfection. Transformed
NIH3T3 cells were isolated and the single colonies were
selected by using 2-[125I]iodomelatonin binding (with a

radioligand concentration of 100 pM). Colonies expressing
more than 150 fmol mg71 of total cellular protein were plated
in 150 cm2 ¯asks.

Membrane preparation

NIH3T3 cells stably expressing the cloned human Mel1a
receptor were grown to con¯uence. On the day of assay cells
were detached from ¯asks with 4 mM EDTA in 50 mM Tris-
HCl (Ph 7.4 at room temperature) and precipitated at 10006g

for 10 min at 48C. The cells were then resuspended in 2 mM

EDTA/50 mM Tris-HCl, homogenized in 10 ± 15 volumes of
ice-cold 2 mM EDTA/50 mM Tris-HCl with Ultra-Turrax and

centrifuged at 500006g at 48C for 25 min. The ®nal pellet was
then resuspended in ice-cold 50 mM Tris-HCl assay bu�er.

In experiments with pertussis toxin cells were treated with

100 ng ml71 of pertussis toxin in culture medium for the 24 h
preceding the day of assay, and then prepared as described
above. Membrane protein levels were determined according to
the method of Bradford (1976).

2-[125I]-iodomelatonin binding

The ®nal membrane concentration was 5 ± 10 mg of protein

per tube. The binding conditions were described in detail
elsewhere (Stankov et al., 1991). The incubation time was
90 min. In preliminary experiments, for colonies selection,

studies on the e�ect of MgCl2 (2 mM), NaCl (300 mM),
CaCl2 (4 mM) and GTPgS (100 mM) and in competition
experiments, total 2-[125I]-iodomelatonin concentration was
100 pM. In saturation studies 2-[125I]-iodomelatonin was

added in the concentration range of 10 up to 1000 pM. In
competition curves with NaCl (700 mM) and GTPgS
(100 mM) the radioligand concentration was 200 pM (for

further explanations about this method (see Spadoni et al.,
1997 and Tarzia et al., 1997). 2-[125I]-iodomelatonin
nonspeci®c binding was measured in the presence of 0.1 mM
cold 2-iodomelatonin.

[35S]-GTPgS binding

Agonist-stimulated [35S]-GTPgS binding was studied by using
a modi®cation of previously published methods (Hilf et al.,
1989; Lorenzen et al., 1993; Lazareno et al., 1993; Tian et al.,

1994). The ®nal pellet, obtained as described above, was
resuspended in ice-cold 50 mM Tris-HCl assay bu�er to give a
®nal membrane concentration of 20 ± 30 mg ml71. Then

membranes (15 ± 25 mg of protein) were incubated for 30 min
at 308C, with and without various drugs, in assay bu�er
containing 0.3 ± 0.5 nM [35S]-GTPgS, 50 mM GDP, 100 mM

NaCl and 3 mM MgCl2. The ®nal incubation volume was
100 ml. Basal binding was assessed in the absence of drug and
nonspeci®c binding was measured in the presence of 10 mM
GTPgS. In preliminary experiments GDP 0.1 ± 100 mM and

NaCl 1 ± 100 mM were used. The incubation was terminated by
adding 1 ml of ice-cold Tris-HCl bu�er, pH 7.4, followed by
rapid ®ltration under vacuum through Whatman GF/B glass

®bre ®lters and by three washes with 3 ml of ice-cold Tris-HCl
bu�er, pH 7.4. Bound radioactivity was determined by liquid
scintillation spectrophotometry after overnight extraction in

4 ml Filter-Count scintillation ¯uid (Packard, Downers Grove,
IL).

Data analysis

Data are presented as mean+s.e. of at least three independent
experiments that were each performed in duplicates (2-[125I]-

iodomelatonin binding experiments) or triplicates ([35S]-
GTPgS binding experiments). The IC50, EC50 and Kd values
were determined by using nonlinear ®tting strategies. Satura-

tion curves were analysed with the one-site model compared
with the two-site model. A two-site model was accepted only
when the `goodness-of-®t' was signi®cantly (P50.05) im-

proved by this model, as tested using a partial F-test procedure
(De Lean et al., 1978). Ki values were calculated from the IC50

values using the Cheng-Pruso� equation (Cheng & Pruso�,
1973). The IC50 shifts induced by coincubation with GTPgS
and NaCl in competition experiments were calculated as the
ratio of IC50 in presence of GTPgS and NaCl vs IC50 in absence
of GTPgS and NaCl, and the relative indexes were calculated

as analogue IC50 shift/melatonin IC50 shift. The data from
[35S]-GTPgS binding experiments are given as percentage of
basal binding, where the basal binding was ®xed as 100%. The

relative intrinsic e�cacies are expressed as a fraction of
melatonin maximal net stimulation. The analysis of competi-
tive interaction between melatonin and N-[(2-phenyl-1H-indol-
3-yl)ethyl]cyclobutanecarboxamide was also made by non-
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linear ®tting by using the following equation as proposed by
Lew & Angus (1995):

�a� pEC50 � ÿlog��B� � 10pKb� ÿ logc

where the agonist pEC50 in presence of a given antagonist

concentration is plotted against the antagonist concentration
[B] and allows the estimation of the pKb value as a ®tted
parameter. The parameter 7logc is the di�erence between the

antagonist pKb and the agonist pEC50. Two other equations
were used (Lew & Angus, 1995) in order to test a possible
deviation from a simple competitive agonist-antagonist

interaction:

�b� pEC50 � ÿlog��B�n � 10ÿpKb� ÿ logc

that allows the molecularity of the agonist-antagonist
interaction to vary by allowing the exponent of [B] to vary

from unity, and

�c� pEC50 � ÿlog��B� �1� n�B�=10ÿpKb� ÿ logc

that allows a `quadratic departure' equivalent to a nonlinear
Shild plot. The signi®cance of these deviations were tested by

comparing the `goodness-of-®t' of equation (a) with those of
equations (b) and (c).

In order to test the possible presence of `spare' receptors in

our system (de®ned as the fraction of the total receptor pool
not required for maximal G protein activation in NIH3T3
cells) we used the equation proposed by Venter (1997).

H � ÿKa=Kb�H � eES

where H is the height of the concentration-e�ect curve, F is a
®xed concentration ratio [antagonist]/[agonist] and eES is an

e�ect-stimulus parameter, related to e�cacy, that may be
de®ned as eES= hm/Hm, that is maximum height of the
concentration stimulus curve/maximum height of the con-

centration e�ect curve. An eES= 1 indicates the absence of
`spare' receptors.

Drugs

2-[125I]-iodomelatonin (speci®c activity &2000 Ci mmol71)
and [35S]-GTPgS (speci®c activity 1070 Ci mmol71) were

purchased from Amersham (Buckinghamshire, U.K.). Mel-
atonin, N-acetyl 5'-hydroxytryptamine, pertussis toxin, GDP
and GTPgS were from Sigma Chemical Co. (St. Louis, MO).

2-Iodomelatonin was obtained from RBI (Natick, MA). 6-
Chloromelatonin was a gift from Ely Lilly laboratories
(Indianapolis, IN). 2-Bromomelatonin, 2-phenylmelatonin

and N-[(2-phenyl-1H-indol-3-yl)ethyl]cyclobutanecarboxa-
mide were synthesized as described elsewhere (Duranti et
al., 1992; Spadoni et al., 1993; Garrat et al., 1995).
Geneticin (G418) was purchased from GIBCO (Grand

Island, NY). General laboratory reagents including Tris
HCl, bovine calf serum, Dulbecco's modi®ed Eagle's
medium were from Sigma.

Results

Transfection

A number of clones (&30) were obtained and tested for Mel1a
receptor expression with 2-[125I]-iodomelatonin (100 pM). The
clone expressing the highest number of receptors (&400 pM;
single point assay) was chosen for subsequent studies, in order

to ensure a good e�ect-to-noise ratio in the G protein
stimulation assay.

Binding of 2-[125I]-iodomelatonin to the Mel1a receptor

Saturation experiments, conducted with a radioligand con-

centration range of 10 ± 1000 pM showed that, in the absence
of sodium ions and GTPgS, 2-[125I]-iodomelatonin binds to a
single class of high a�nity binding sites (Table 1 and Figure
1a), with a Kd of 21+3 pM and a Bmax of 620+35 fmol mg71

protein. The e�ect of coincubation with Mg2+ (2 mM), Ca2+

(4 mM), Na+ (300 mM) and GTPgS (100 mM) on 2-[125I]-
iodomelatonin (100 pM) binding was subsequently investigated

(data not shown). Both calcium and magnesium ions were
unable to a�ect 2-[125I]-iodomelatonin binding; these ®ndings,
together with the presence of a single high a�nity receptor

population shown in the saturation analysis, indicate that in
these conditions most of the melatonin receptors are in the
high a�nity, G protein-coupled state. Sodium ions caused a
signi®cant decrease (57% of total binding), while coincubation

of membranes with GTPgS caused a decrease to a lesser extent
than expected (20% decrease from the total binding), taking
into account the e�ect of GTPgS on the native receptor in the

human cerebellum (Fauteck et al., 1994). Both sodium ions
and GTPgS are known to uncouple the receptor-G protein
complexes, acting probably through two di�erent sites with

distinct mechanisms. Thus it appears that Mel1a receptors
expressed in NIH3T3 cells have retained their ability to couple
e�ciently with G proteins. In order to investigage further

receptor-G protein coupling, a series of saturation experiments
conducted in the presence of GTPgS and NaCl were performed
(data are summarized in Table 1). GTPgS (100 mM) caused a
signi®cant decrease of the a�nity (Kd values increasing from

21+3 to 40+5 pM) without any change in the Bmax. The
saturation curves obtained in the presence of 500 mM NaCl
(Figure 1a) were signi®cantly better described by the two-site

model, with 22% of receptors being in the high a�nity state,
Kd= 19+2.8 pM (Kdhigh in Table 1) and 78% in the low a�nity
state, with a Kd of 325+52 pM (Kdlow in Table 1). GTPgS and

NaCl (500 mM) showed a cumulative e�ect when coincubated
with the membranes; in fact the % of receptors in the high
a�nity state further decreased (from 22% to 11%) without any
change in Kdhigh, Kdlow or Bmaxtot (the sum of Bmaxhigh and

Bmaxlow) values. An increase in the NaCl concentration
(700 mM) was able to decrease further the number of high
a�nity binding sites (from 11% to 7.5%).

Table 1 E�ect of GTPgS and NaCl on 2-[125I]-iodomelatonin saturation binding isotherms

GTPgS NaCl GTPgS (100 mM) GTPgS (100 mM)
Tris HCl (100 mM) (500 mM) +NaCl (500 mM) +NaCl (700 mM)

Kdhigh (pM) 21+3 40+5 19+2.8 23+2.5 20+4.1
Kdlow (pM) ND ND 325+52 317+43 337+64
Bmaxtot (fmol mg

71 protein) 620+35 671+41 682+68 602+50 621+22
% high a�nity sites a a 22+2 11+2 7.5+1.2

ND=not detectable; a=in these cases the one-site model ®tted better than the two-site model. This model assumes 100% high a�nity
binding sites.
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Competition of the 2-[125I]-iodomelatonin binding by
melatonin and its analogues

The pharmacological pro®le of the transfected Mel1a receptor
was studied in a series of competition experiments, with a

number of known melatonin analogues (Figure 1b). Melatonin
showed a Ki of 291+12 pM (Table 2). The pharmacological
pro®le was: 2-phenylmelatonin52-bromomelatonin4melato-

nin4 6-chloromelatonin4N- [(2-phenyl-1H-indol-3-yl)ethyl]-
cyclobutanecarboxamide (we will refer to this compound as
compound 6)5N-acetyl 5-hydroxytryptamine (NAS) Ki values

are shown in Table 2).
According to the ternary complex model the e�cacy of a

receptor ligand is related to the Kdlow Kdhigh ratio (Wreggett &
De Lean, 1984). As seen from the saturation studies as well,

even in extreme conditions (700 mM NaCl+100 mM GTPgS) it
was not possible to shift the entire receptor population into the
low a�nity state. Therefore it was impossible to calculate the

`real' Kilow values through competition analysis. For that
reason, we decided to perform a series of competition
experiments conducted in the presence and absence of 100 mM
GTPgS and 700 mM NaCl, using 200 pM radioligand
concentration, in order to calculate the IC50-shift caused by
receptor-G protein uncoupling as a measure of the di�erence
between Kdhigh and Kdlow (Spadoni et al., 1997; Tarzia et al.,

1997). Data are presented in Table 2. The melatonin IC50-shift
value was &4 (Figure 2); similar shift values were calculated
for 2-bromomelatonin, 2-phenylmelatonin and 6-chloromela-

tonin. NAS showed a shift of 1.5 while compound 6, known to
be an antagonist (Garratt et al., 1995; Spadoni et al., 1997;
Tarzia et al., 1997) showed a 12 times decrease of the IC50

value in the presence of GTPgS and NaCl, with a calculated
IC50-shift value of 0.08 (Figure 2).

Conditions for [35S]-GTPgS binding

Initial studies varying GDP and NaCl concentrations were
carried out to determine optimal conditions to study [35S]-

GTPgS binding to NIH3T3Mel1a membranes. Increasing GDP
concentrations, from 1 nM to 0.1 mM (in the absence and
presence of 10 and 100 mM NaCl) caused a dose-dependent

decrease in basal [35S]-GTPgS binding; the GDP IC50 decreased
with the highest NaCl concentration (data not shown). Also
NaCl (1 ± 100 mM) decreased basal [35S]-GTPgS binding and

its e�ect was concentration- and GDP-dependent (data not
shown). The e�ect of GDP and NaCl on the melatonin-
induced increase in [35S]-GTPgS binding was subsequently
investigated, by attempting to maximize the speci®c stimula-

tion. The speci®c melatonin stimulation (100 nM) of [35S]-
GTPgS binding appeared to be both, GDP- and NaCl-
dependent. In the absence of either NaCl or GDP, the

melatonin-induced G-protein activation was negligible (Fig-
ures 3a and b). Increasing the GDP concentration, in the
presence of a ®xed concentration of NaCl (100 mM), caused a

decrease in both, basal and melatonin-stimulated [35S]-GTPgS
binding. However, the net melatonin stimulation increased
with the increase of GDP concentration, maximal e�ect being

a

b

Figure 1 (a) Representative saturation isotherms of 2-[125I]-
iodomelatonin binding to NIH3T3Mel1a membranes in the absence
and presence of 500 mM NaCl. The calculated Bmax in the absence of
NaCl was 596 fmol mg71 protein, taken as 100%; the Kd was 24 pM
(non-linear ®tting). The data in the presence of NaCl were
signi®cantly better described by the two-site model, with 23% of
the receptors being in the high a�nity state (Kdhigh of 25 pM) and
73% in the low a�nity state (Kdlow of 345 pM). (b) Competition of
melatonin and its analogues to 2-[125I]-iodomelatonin (100 pM)
binding to NIH3T3Mel1a membranes. The IC50 values were: 2-
phenylmelatonin: 8.59 E71142-bromomelatonin: 9.57 E7114mela-
tonin: 1.14 E7946-chloromelatonin: 7.11 E794NAS: 2.03
E764compound 6: 2.57 E76. The experiments were carried out as
described in Methods, for 90 min at 378C. The points are the means
of duplicates; the vertical lines indicate the s.e.

Table 2 Competition of [125I]-iodomelatonin binding and G protein activation from melatonin and its analogues

Competition of [125I]-iodomelatonin binding G protein activation
Ki GTPgS NaCl/GTPgS EC50 Maximal Intrinsic

Compound (pM) shift index (pM) e�ect activity EC50/Ki

Melatonin 291+12 3.95+0.22 1 598+45 372+35.4 1 2.05
2-Br-Mel 29+3 4.03+0.15 1.02 47+3.5 371+38.6 1 1.62
2-Ph-Mel 22+2.5 3.75+0.35 0.95 65+8 367+33.1 0.98 2.95
6-Cl-Mel 1860+173 3.87+0.4 0.96 2593+183 362+34.5 0.96 1.39
NAS 484000+25000 1.45+0.2 0.53 526400+15000 245+5 0.53 1.08
Compound 6 201000+16500 0.08+0.01 0.02 67400a+3500 no e�ect ND 0.33b

aKb value;
bKb/Ki.
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registered at 50 mM GDP (Figure 3a). Sodium ions also caused
a dose-dependent increase of the maximal net stimulation

elicited by melatonin, with a maximal e�ect around 100 mM

NaCl (Figure 3b). Therefore, 50 mM GDP and 100 mM NaCl
were used in all further experiments.

G proteins activation by melatonin and its analogues

The potency estimates and the intrinsic activities of the

analogues studied are summarized in Table 2 and in Figure
4a. In the absence of any receptor ligand the basal [35S]-GTPgS
binding to NIH3T3Mel1a membranes was &109 fmol mg71

protein. The data are expressed as stimulation over the
experimentally-determined basal values, arbitrarily taken as
100%. Melatonin caused a dose-dependent increase of the
basal binding, to reach a plateau at &370% with an EC50

value of 598+45 pM (Figure 4a). 2-Bromomelatonin, 2-
phenylmelatonin and 6-chloromelatonin also increased basal
binding with a similar maximum, EC50 values being

47+3.5 pM, 65+8 pM and 2593+183 pM, respectively. NAS

behaved as partial agonist increasing [35S]-GTPgS binding to

NIH3T3Mel1a membranes to a plateau of 245+5% over basal,
with an intrinsic activity of 0.53 and an EC50 value of
526.4+15 nM. Compound 6 was without any e�ect on basal

binding at any concentration tested.

Antagonistic properties of compound 6

The ability of compound 6 to antagonize melatonin-stimulated
[35S]-GTPgS binding was investigated by carrying out a series
of melatonin concentration-e�ect curves in the presence of

three di�erent compound 6 concentrations (0.3, 1 and 10 mM).
Compound 6 caused a dose-dependent shift of the melatonin
concentration-e�ect curve (Figure 4b), showing competitive

and surmountable antagonism. Analysis of these data using
the equation proposed by Lew & Angus (1995) permitted us to
calculate a Kb value of 67.4+3.5 nM (Table 2). The

antagonism appeared consistent with a simple competitive
interaction, as tested by using equations (b) and (c) (see
Methods): in fact, both equations did not result in an improved
`goodness of ®t', the n values being 0.998 for equation (b) and

0.002 for equation (c).
The same data were then analysed using the equation

proposed by Venter (1997), in order to investigate the presence

of `spare' receptors in our system. This equation gave a straight

a

b

Figure 2 Representative competition curves of melatonin and
compound 6 binding to NIH3T3Mel1a membranes, in the absence
or presence of 700 mM NaCl and 100 mM GTPgS and 200 pM 2-[125I]-
iodomelatonin. The experiment was carried out as described in
Methods, for 90 min at 378C. The points are the means of duplicates;
the vertical line indicate s.e. The melatonin IC50 in the absence and
presence of NaCl and GTPgS were 2.92 E79, respectively; the IC50

shift was 4.17. The compound 6 IC50 in the absence and presence of
NaCl and GTPgS were 5.91 E76 and 4.69 E77, respectively; the IC50

shift was 0.079.

a

b

Figure 3 E�ect of GDP and NaCl on the basal and melatonin-
stimulated [35S]-GTPgS binding to NIH3T3Mel1a membranes. The
melatonin concentration was 100 nM. The experiment was carried out
as described in Methods, for 30 min at 308C. The points are the
means of triplicates; the vertical lines indicate the s.e. (a)
Representative experiment of the e�ect of varying GDP concentra-
tions, in the presence of 100 mM NaCl, on basal and melatonin-
stimulated [35S]-GTPgS binding. (b) Representative experiment of the
e�ect of varying NaCl concentrations, in the presence of 50 mM GDP,
on basal and melatonin-stimulated [35S]-GTPgS binding,
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line with the slope being -Ka/Kb and the y-intercept eES, an
e�cacy related parameter that measures the ratio between
stimulus and e�ect (see Methods). Our data ®tted well in the

linear regression analysis (r2=0.97) (Figure 4c) and we could
calculate an eES=1.006+0.02, that shows the absence of
`spare' receptors, and a Ka/Kb ratio of 0.006+0.001, very

similar to 0.0088, the ratio between the melatonin EC50 and the
compound 6 Kb.

Comparisons of binding a�nities with potencies for
stimulating [35S]-GTPgS binding

Competition and G protein activation studies gave similar
pharmacological pro®les, the order of potencies being: 2-
phenylmelatonin52-bromomelatonin4melatonin46-chloro-
melatonin4compound 65NAS. For the full agonists, the

EC50 values were higher than the Ki values (Table 2). This is
not surprising given that competition experiments for the Ki

calculation were carried out without NaCl and so the

calculated apparent Ki was essentially the Ki at the high-
a�nity state of the receptor. On the contrary [35S]-GTPgS
binding studies were conducted in the presence of GDP and

NaCl and therefore with a mixed receptor population. Indeed,
the EC50/Ki ratio for the partial agonist NAS was close to
unity. Furthermore, for the antagonist compound 6 the Kb

value was lower than the Ki (Kb/Ki ratio of 0.33), consistent

with the data of IC50 shift by NaCl and GTPgS (0.08) that
suggest a higher a�nity of compound 6 for the low-a�nity
state of the receptor.

Pertussis toxin sensitivity

A 24 h pretreatment of NIH3T3Mel1a cells with 1 mg ml71

pertussis toxin (PTX) completely abolished the melatonin-
induced increase in [35S]-GTPgS binding. Basal [35S]-GTPgS
binding was signi®cantly lower in membranes prepared from
PTX-pretreated cells (40+3%) than in membranes prepared
from control cells (100%). Melatonin-stimulated binding was
398+17% in control cells, while it was not signi®cantly

di�erent from basal values in PTX-pretreated cells.

Discussion

Ligand binding and activation of G protein were accomplished

in membranes from NIH3T3 mouse ®broblast cells stably
transfected with the human Mel1a melatonin receptor
(NIH3T3Mel1a). The melatonin receptor incorporated in the
membranes of NIH3T3Mel1a bound melatonin and its

analogues with high a�nity and activated in a dose-dependent
manner PTX-sensitive G-proteins (Gi or Go), thus providing a
suitable model for the study of Mel1a signal transduction

mechanisms and for evaluation of new melatonin analogues.
In absence of Na+ ions and GTPgS, 2-[125I]-iodomelatonin

bound to a single class of high a�nity binding sites, as it does

in brain and PT membranes from a number of species (Morgan
et al., 1994), including the human cerebellum (Fauteck et al.,
1994), the source of Mel1a full length cDNA coding region

(Mazzucchelli et al., 1996) used for transfection in the present
study. Furthermore Mg2+ and Ca2+ ions known to confer
higher a�nity to the melatonin receptor (Fauteck et al., 1994;
Morgan et al., 1994), were not able to increase 2-[125I]-

iodomelatonin binding to NIH3T3Mel1a membranes. These
data indicate that, in the experimental conditions used, most of
the melatonin receptors expressed in NIH3T3Mel1a cells were in

its high a�nity, presumed G protein-coupled state. Similar
results were obtained with the human 5-HT1a receptor
transfected in NIH3T3, that showed the presence of the only

high a�nity state, even with very high receptor numbers (up to
700 fmol mg71 protein) (Varrault et al., 1992).

GTPgS is known to bind to the catalytic site of the Ga
subunit and promote its active, receptor-uncoupled state,

a

b

c

Figure 4 (a) Comparison of the stimulation of [35S]-GTPgS binding
to NIH3T3Mel1a membranes by melatonin, 6-chloromelatonin, 2-
bromomelatonin, 2-phenylmelatonin, NAS and compound 6. (b)
Representative experiment on the stimulation of [35S]-GTPgS binding
to NIH3T3Mel1a membranes by melatonin in the absence or presence
of di�erent compound 6 concentrations. (c) Analysis of the data
presented in (b) by means of linear regression analysis, performed
with the equation H=7Ka/KbFH+eES, as described in Methods.
H=height of the point relative to maximal melatonin stimulation;
F=ratio of compound 6 vs melatonin concentrations. The experi-
ments were carried out as described in Methods, for 30 min at 308C.
The points are the means of triplicates; the vertical lines indicate the
s.e. Values represent percentage of the basal binding, taken as 100%.
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decreasing the a�nity of agonists to the receptor (Birnbaumer
et al., 1990). Sodium ions are also known to destabilize the
receptor-G protein interaction, but the site of sodium binding

and the exact mechanism of action are still unclear. A number
of studies suggest that the site of sodium ions action could be
on the receptor protein itself (Jagadeesh et al., 1990; Horstman

et al., 1990; Tian et al., 1994). Our data show that GTPgS
decreased the a�nity of 2-[125I]-iodomelatonin but failed to
show an e�ective uncoupling of the melatonin receptor-G
protein complex. On the contrary, the presence of NaCl,

although in high concentrations (500 ± 700 mM), alone or
coincubated with GTPgS caused the appearance of binding
sites in the low a�nity state. With maximal concentrations of

both GTPgS (100 mM) and sodium ions (700 mM), we obtained
the maximum number of receptors in the low a�nity state, but
we could not induce a complete shift of all receptors to a

homogeneous population of receptors in their low-a�nity state
(the two-site model still ®tted signi®cantly better than the one-
site model). This unusually tight, GTPgS-insensitive coupling,
is not characteristic either for the native Mel1a receptor in

human cerebellum (Fauteck et al., 1994), or in the tissues of
other species, as the quail brain, ovine and bovine pars
tuberalis (Morgan et al., 1994; Nonno et al., 1995a; Spadoni et

al., 1997; Tarzia et al., 1997), though GTPgS-insensitivity has
been obtained for the melatonin receptor in bovine (Nonno et
al., 1995b) and ovine hippocampus (Barrett et al., 1994).

However similar data have been reported for other PTX-
sensitive G protein-coupled receptors such as A1 adenosine
(Nano� et al., 1995). Wreggett and De Lean (1984) reported

that with the D2 receptor (another inhibitory G protein-
coupled receptor), in contrast to the ®ndings with the b-
adrenoceptor (Gs coupled), Gpp(NH)pp was not able to shift
all the receptors toward low a�nity state and they suggested

that this could be a common feature for receptors interacting
with inhibitory G proteins. Furthermore, the essential role of
sodium to bring about complete dissociation of the R/G

complex was reported for the a2-adrenoceptor (Jagadeesh et
al., 1990) and for the D2 dopamine receptor (Grigoriadis &
Seeman, 1983), both Gi/o coupled receptors. In that sense our

data con®rm the existence of a general tendency of the Gi/o

coupled-receptors to form very stable R/G complexes
(Wregget & De Lean, 1984). There is also evidence that
di�erent Gi/o coupled-receptors exist in a pre-coupled state

even in the absence of an agonist (Wreggett & De Lean, 1984;
Costa et al., 1990; 1992; Varrault et al., 1992).

In preliminary experiments for choosing [35S]-GTPgS
binding conditions we noted that in the absence of sodium
ions or GDP there was no melatonin-induced increase of basal
[35S]-GTPgS binding. The necessity for the presence of NaCl

and/or GDP for the expression of agonist-dependent G protein
stimulation is not a common feature but has been already
reported in studies on Gi/o activation by other receptors, such

as the A1 adenosine receptor (Lorenzen et al., 1993) and the m-
opioid receptor (Traynor & Nahorski, 1995).

Melatonin and its analogues increased basal [35S]-GTPgS
binding in a concentration-dependent manner, with the
exception of compound 6 that was without any e�ect,
behaving as antagonist. The antagonistic properties of

compound 6 have already been reported (Garrat et al., 1995;
Spadoni et al., 1997; Tarzia et al., 1997), and here we show for
the ®rst time the calculation of antagonist Kb. The analysis of
the concentration-e�ect curves carried out in presence of

melatonin and compound 6, furthermore, permitted us to
show that in our system there are no `spare' receptors. The
absence of `spare' receptors is an obvious advantage if one

wants to evaluate the e�cacy of analogues, in that sense a
direct confrontation of maximal e�ect (intrinsic activity)
obtained with an agonist compared with that of the

reference-agonist gives a measure of the relative e�cacy.
2-Bromomelatonin, 2-phenylmelatonin and 6-chloromela-

tonin increased basal binding to the same extent as
melatonin, showing full agonism at the Mel1a receptor,

while NAS behaved as a partial agonist and its e�ect was
calculated to be around 50% of that of melatonin. NAS has
already been described as a partial agonist at the Bufo

ictericus melatonin receptor in a skin-lightening test
(Filadel® & Castrucci, 1996). The ternary complex model
predicts that the e�cacy of a ligand is positively related to

the ratio between its a�nity to the low a�nity (Klow) state
and to the high a�nity state (Khigh) (Wreggett & De Lean
1984; Costa et al., 1992); in terms of ternary complex model

interpretation of receptor-G protein interactions GTPgS and
sodium ions reduce the a�nity between receptor and G
protein (Costa et al., 1992), thus inducing a shift of the
receptors toward the low a�nity state (as seen in saturation

studies with 2-[125I]-iodomelatonin). Therefore, our IC50 shift
value, calculated in competition experiments carried out in
the absence and presence of NaCl and GTPgS, must be

positively related to the Klow/Khigh ratio. Our data ®t very
well with the ternary complex model prediction in that
GTPgS and sodium ions induced an IC50 shift in a manner

related to the intrinsic activity of the analogues, as measured
in the G protein activation assay. Also, we have recently
demonstrated an excellent correlation between the GTPgS-
induced IC50 shift (GTPgS index) and the intrinsic activities

of various analogues determined by their e�ects on
forskolin-stimulated cyclic AMP accumulation in quail brain
explants (Spadoni et al., 1997; Tarzia et al., 1997).

In conclusion, Mel1a stably transfected NIH3T3 cells appear
to be a promising model for studying in detail the melatonin
receptor signal-transduction pathway. The G-protein activa-

tion assay introduced in the present work bears all the
prerequisites for a reliable method for determination of the
biological activity and e�cacy of melatonin analogues.
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