
Virtual Multiprocessor Platforms: Specification and Use

Enrico Bini, Marco Bertogna
Scuola Superiore Sant’Anna

Pisa, Italy
Email: {e.bini,m.bertogna}@sssup.it

Sanjoy Baruah
The University of North Carolina

Chapel Hill, NC, USA
Email: baruah@cs.unc.edu

Abstract—A new abstraction — the Parallel Supply Func-
tion (PSF) — is proposed for representing the computing
capabilities offered by virtual platforms implemented atop
identical multiprocessors. It is shown that this abstraction is
strictly more powerful than previously-proposed ones, from
the perspective of more accurately representing the inherent
parallelism of the provided computing capabilities. Sufficient
tests are derived for determining whether a given real-time
task system, represented as a collection of sporadic tasks, is
guaranteed to always meet all deadlines when scheduled upon
a specified virtual platform using the global EDF scheduling
algorithm.

I. INTRODUCTION

There has been an increasing trend in embedded real-time
systems design and implementation towards open environ-
ments [1], in which multiple independently-developed appli-
cations can be implemented upon a single shared platform.
The typical approach towards providing scheduling support
in such open environments is through the use of a two-level
scheduler: the top level scheduler allocates resources to the
various co-implemented applications, and each application’s
local scheduler then schedules the jobs comprising the appli-
cation during the time allocated by the top-level scheduler.
Over the past decade or so, sophisticated frameworks and
architectures have been proposed for implementing such
open environments upon preemptive uniprocessor platforms.

Along with this trend towards open environments, there is
an increasing move towards implementing embedded real-
time systems upon multiprocessor (and multicore) platforms.
The use of such parallel architectures yields many benefits
— great increases in computing capabilities at lower cost;
greater energy efficiency; etc. However, these multiprocessor
platforms present a programming model that is far more
complex than those used in the classical uniprocessor con-
text. In order to make it easier to build open environments
which can offer support for provably correct applications
upon multiprocessor platforms, it is desirable to design
abstractions that conceal much of this additional complexity
from the application designers and implementers, instead

Partially supported by the ACTORS European project under contract
216586, by NSF Grant Nos. CNS-0834270, CNS-0834132, CCF-0541056,
and CCR-0615197, ARO Grant No. W911NF-06-1-0425, and funding from
IBM and the Intel Corporation.

providing them with interfaces that are easy to use and
to formally reason about. That is, the resources allocated
by the top-level scheduler should be succinctly abstracted
out into, and described by means of, an interface; each
local scheduler would, in effect, be designed to execute
upon a “virtual platform” that behaves as described in this
interface. (Such an approach has the added benefit of de-
linking application implementation from the platform upon
which it will reside, and of allowing for an easier migration
of applications among platforms: as hardware is upgraded
to a more powerful platform, it is sufficient to ensure that
the virtual processor provided by the global scheduler on
the new hardware is compliant with the interface previously
established.) This paper reports on our recent research to-
wards designing such an abstraction and interface, under the
assumptions that (i) the underlying multiprocessor platform
is fully preemptive and supports global scheduling; (ii) the
top-level scheduler provides each application with zero or
more identical (and hence indistinguishable) processors at
each instant in time; and (iii) each individual application can
be modeled as a collection of sporadic tasks (see Section II).

In proposing an abstraction, there is typically a tension
between the degree of detail that is abstracted away, and the
loss of accuracy that results from such information-hiding.
The challenge is to come up with the appropriate abstraction
that hides enough information so that it is relatively easy to
build provably correct applications upon the resources pro-
vided by the interface, while minimizing the resulting loss
of accuracy. For open systems implemented on uniprocessor
platforms, the parameters in the proposed interfaces that
appear to have been most effective have been indicators of
(i) the long-term average computing capacity that is offered;
and (ii) the time granularity at which this computing capac-
ity is made available. Specific examples of such interface
implementations include the various budget-period servers
(e.g, [2]), and the virtual processor abstractions (e.g., [3],
[4]) — additional examples are listed in Section V.

Upon multiprocessors, Shin et al. [5] proposed an exten-
sion of the budget-period abstraction to multiprocessor plat-
forms, by adding a third parameter — the maximum degree
of parallelism — to the interface specification. This is a
wonderful idea since it explicitly recognizes the critical role
of the degree of parallelism in multiprocessor schedulability:

2009 30th IEEE Real-Time Systems Symposium

1052-8725/09 $26.00 © 2009 IEEE

DOI 10.1109/RTSS.2009.35

437

2009 30th IEEE Real-Time Systems Symposium

1052-8725/09 $26.00 © 2009 IEEE

DOI 10.1109/RTSS.2009.35

437

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:33 from IEEE Xplore. Restrictions apply.

informally and intuitively speaking, the lesser the degree of
parallelism in the provided budget, the better guaranteed use
the local scheduler can make of it. However, we feel that [5]
did not go far enough in exposing underlying parallelism
— by representing all parallelism-related information by a
single parameter, they, in our opinion, erred too much in
favor of simplicity by abstracting away too much informa-
tion at a cost of a considerable loss of accuracy. Bini et
al. [6] proposed to remedy this shortcoming by representing
the interface built upon an underlying m-processor platform
with (the supply functions of) m distinct virtual processors;
by using the knowledge of these virtual processors’ supply
functions, it is possible to deduce additional information
bounding the degree of parallelism in the budget supplied
via the interface.

Our contributions: In this paper, we propose the Par-
allel Supply Function (PSF) abstraction and associated
interface for use upon multiprocessor platforms. We show (in
Section V) that this is a superior abstraction to the one in [6],
in the sense that even more information can be deduced
regarding the degree of parallelism in the budget represented
by a PSF while not being any more complex to represent or
reason with than the abstraction proposed in [6]. We present,
and prove the correctness of, sufficient schedulability tests
for determining whether a given application, represented as
a collection of sporadic tasks, can be scheduled upon a
specified interface when the local scheduling algorithm used
is Earliest Deadline First (EDF).

II. TERMINOLOGY AND NOTATION

In this section we describe the formal models we use to
represent both the virtual multiprocessor platforms and the
applications.

A. Modelling virtual platforms

Each individual application is scheduled onto a dedicated
virtual platform Π, which may provide computing capacity
upon multiple processors in parallel. Our formalisms do not
set any constraints on the techniques used by the virtual
platform Π to provide execution cycles to the application Γ
— the platform Π could, for instance, be implemented by
many sequential servers, static partitions of the processors
over time, Pfair or other global schedulers, etc. We will
take a closer look at virtual multiprocessor platforms in
Section III.

Figure 1 illustrates a virtual platform that supplies time
according to two static partitions: one that provides 2 time
units every 4, and another one that provides 4 every 8.
In Section III we will use this example partition to illustrate
some of the definitions.

B. Modeling applications

We model an application as a set of n sporadic tasks
τ = {τi}ni=1. Each task τi = (Ci, Ti, Di) is characterized by

0 2 4 6 8

...

...π1

π2

Figure 1. Example of a periodic static partition.

�
t

�

Ci

2Ci

3Ci

Ti 2Ti 3TiDi Ti+Di 2Ti+Di

���
���

���

Ci
σ

Ci
σ

Ci
σ

�

�

�

�

�

�

Figure 2. Illustrating FF-DBF(τi, t, σ).

a worst-case computation time Ci, a minimum inter-arrival
time Ti (also referred to as period), and a relative deadline
Di. Each task τi releases a sequence of jobs τi,k , where
each job is characterized by an arrival time ri,k, an absolute
deadline di,k , a computation time ci,k. We have that ci,k ≤
Ci, ri,k ≥ ri,k−1 + Ti, and di,k = ri,k + Di. In this paper,
we assume a constrained deadline model, where Di ≤ Ti

for all i. We also set Dmin = mini Di. Time is continuous
and time variables are represented by real numbers.

The forced-forward demand bound function: Let τi

denote a sporadic task, t any positive real number, and σ
any positive real number ≤ 1. The forced forward demand
bound function FF-DBF(τi, t, σ) is defined as follows:

FF-DBF(τi, t, σ) def=

qiCi +

⎧⎨
⎩

Ci if ri ≥ Di

Ci − (Di − ri)σ if Di > ri ≥ Di − Ci

σ
0 otherwise

(1)

where

qi
def=

⌊
t

Ti

⌋
and ri

def= t mod Ti ,

Informally speaking, FF-DBF(τi, t, σ) can be thought of
as a bound on the demand of τi for interval-length t, when
execution outside the interval occurs on a speed-σ processor.
This function is illustrated for an example task in Figure 2.

The FF-DBF concept is easily extended from individual
tasks to applications that are modeled as collections of
sporadic tasks: for any such application τ

FF-DBF(τ, t, σ) def=
∑
τ�∈τ

FF-DBF(τ�, t, σ)

It is evident from the definition of FF-DBF (Equation (1))
that FF-DBF(τ, s, t) can be computed very efficiently, in
polynomial time — see, e.g., [7] for further details.

Some additional notation that we will use. Let τ denote
an application that is modeled as a collection of sporadic

438438

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:33 from IEEE Xplore. Restrictions apply.

tasks, and τk any task in τ :

density δk
def= Ck/Dk

utilization Uk
def= Ck/Tk

maximum density δ
def= max

τi∈τ
δi

total utilization U
def=

∑
τi∈τ

Ui

Finally, we will use (x)0 as a short for max(x, 0).

III. THE PARALLEL SUPPLY FUNCTION ABSTRACTION

The need of developing the applications independently of
the underlying hardware strongly motivates the investigation
of interfaces for multiprocessor platforms. As stated above,
however, it is important that the interfaces used retain,
as much as possible, information regarding the degree of
parallelism in which execution capacity (the “budget”) is
supplied by the interface. In [5], such information was
communicated via the maximum parallelism parameter. (The
example virtual platform of Figure 1 is thus represented in
the Shin et at. model [5] by a budget of 8, a period of
8, and a maximum parallelism of 2. Hence, this formalism
abstracts away the potentially useful information that only
4 of the 8 units of the budget occurs upon parallel pro-
cessors, and that some processor is available for 6 units of
time out of every 8.) In [6], more parallelism information
could be communicated via an interface called the Multi
Supply Function (MSF). The MSF is described in detail in
Section V, where it is shown that even the MSF interface
has some shortcomings with regard to retaining parallelism
information.

To overcome the limitations of the MSF, we start by gen-
eralizing the concept of time partition to the multiprocessor
case. Recall from [3] that this concept was introduced to
formally represent the availability of a processor that is not
necessarily continually available; a time partition represents
the availability of such a processor by a collection of time-
intervals, denoting the times when the processor is available.
Since there are multiple processors in a multiprocessor
platform, the extension of time partitions to multiprocessors
must be able to represent the aggregation of the time
partitions of all the processors.

Definition 1: A time multi-partition P is a countable
multiset1 of intervals, formally

P def= {[ai, bi)}i∈N.

Intuitively, P is the aggregation (the “multi-union”) over
all the processors in the platform, of the time partitions of
each processor. Without loss of generality we set the instant

1In set theory, a multiset is a generalization of a set, in which individual
elements may occur multiple times. Each such occurrence counts as a
separate element of the multiset.

when the virtual platform is created equal to 0. Hence we
have ai ≥ 0, ∀i ∈ N.

A time multi-partition represents the instants over time
when the virtual platform allocates time to the application.
For example, the multi-partition of Figure 1 is

P = {[4k, 2 + 4k), [8k, 4 + 8k)}k∈N. (2)

For a given multi-partition, our objective is to define a
suitable abstraction that represents the execution capacity
supplied by this multi-partition, while retaining information
about the degree of parallelism present in this supply. We
start by defining the characteristic function γA of any subset
A ⊆ R

γA(t) def=

{
1 t ∈ A

0 t /∈ A
, (3)

and the characteristic function of a multi-partition

γP (t) def=
∑

[ai,bi)∈P
γ[ai,bi)(t). (4)

The characteristic function of the multi-partition P of Fig-
ure 1 is depicted in Figure 3.

0 2 4 6 8

2

1

γP(t)

t

Figure 3. Example of characteristic function γP .

For a given multi-partition P , it is useful to define the
maximum degree of parallelism as follows.

Definition 2: Given a multi-partition P , we define the
maximum degree of parallelism as

M(P) def= max
t≥0

γP(t) (5)

For the multi-partition depicted in Figure 1, the maximum
degree of parallelism is equal to two.

Definition 1 provides a formal notation for the exact repre-
sentation of virtual multiprocessors that are not continually
available. However, it is often not desirable in practice to
represent such virtual multiprocessor in an exact manner, for
several reasons. First, too much information is not always
useful and can render programming and analysis cumber-
some — indeed, concealing some detail is the very idea
behind abstraction and information-hiding. More critically,
it is possible that all the knowledge is simply not available
at design and specification time; more typically, the exact
availability of the virtual processors depends on run-time
events such as contention with other virtual multiprocessors
that are sharing the same physical platform, and hence
only becomes known during run-time. The best we can do
during specification and design time is specify bounds on the

439439

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:33 from IEEE Xplore. Restrictions apply.

supplied computing capacity. Such bounds are conveniently
modeled by characteristic supply functions, as follows.

Definition 3: Given a multi-partition P , we define the
level-j supply function Yj,P(t) as the minimum amount of
time provided by the multi-partition in every interval of time
of length t ≥ 0 by at most j intervals in parallel. That is

Yj,P(t) def= min
t0≥0

∫ t0+t

t0

min{j, γP(x)} dx. (6)

We believe that this definition captures properly the
amount of resource provided by a multi-partition, by inves-
tigating the number of processors that supply the resource
simultaneously.

Below we provide some simple properties of the level-j
supply functions Yj,P . Notice that when comparing any two
functions f, g : R → R, when we write f ≤ g we mean
∀t f(t) ≤ g(t).

Lemma 1: For any multi-partition P , we have

Y0,P = 0, (7)

∀j ≥ 0, Yj+1,P ≥ Yj,P , (8)

∀j ≥ M(P), Yj,P = Yj+1,P , (9)

∀j ≥ 1, Yj,P − Yj−1,P ≥ Yj+1,P − Yj,P . (10)

∀j ≥ 0, ∀s, t ≥ 0, Yj,P(s + t) ≥ Yj,P(s) + Yj,P(t) (11)

Proof: All the properties follow from Definition 3.
When j = 0, the minimum of Eq. (6) is constantly zero,

because γP ≥ 0. Hence Y0,P = 0 for any P , proving Eq. (7).
For any integer k, we have min{j + 1, k} ≥ min{j, k}

that proves Eq. (8).
Proof of Eq. (9).

∀t ≥ 0, j ≥ M(P) ≥ γP (t) ⇒ min{j, γP(t)} = γP(t),

Hence, when j ≥ M(P), we have

∀t ≥ 0, Yj,P(t) = Yj+1,P (t) = min
t0≥0

∫
[t0,t0+t]

γP(x) dx.

Proof of Eq. (10). Equation (10) is equivalent to

∀j ≥ 1, 2Yj,P ≥ Yj+1,P + Yj−1,P .

We prove it by showing that

∀k ∈ N, 2 min{j, k} ≥ min{j + 1, k}+ min{j − 1, k}.
In fact, when k ≥ j + 1, then

2 min{j, k} = 2j

min{j + 1, k}+ min{j − 1, k} = j + 1 + j − 1 = 2j;

when k ≤ j − 1,

2 min{j, k} = 2k

min{j + 1, k}+ min{j − 1, k} = 2k;

finally, when k = j,

2 min{j, k} = 2j

min{j + 1, k}+ min{j − 1, k} = j + j − 1 = 2j − 1,

which proves the desired property.
We conclude by proving that Yj,P is superadditive (Equa-

tion (11)). For any function f : R→ R, we have

min
t0

∫ t0+s+t

t0

f(x)dx = min
t0

(∫ t0+s

t0

f(x)dx +
∫ t0+s+t

t0+s

f(x)dx

)

≥ min
t0

∫ t0+s

t0

f(x)dx + min
t0

∫ t0+t

t0

f(x)dx

from which it follows Eq. (11), when f(x) =
min{j, γP(x)}.

Definition 3 requires the knowledge of the exact time
multi-partition P corresponding to the virtual multiprocessor
platform under discussion. As discussed above (prior to
Definition 3), such information is often known only at run-
time (and not at design time) since the actual allocation
typically depends on events (such as contention with other
VPs) that cannot always be predicted during design time. In
the following, we extend Definition 3 by removing the need
for such a knowledge.

Definition 4: Given a virtual multiprocessor platform Π,
we define legal(Π) as the set of multi-partitions P that can
be allocated by Π.
The maximum degree of parallelism, and the level-j supply
functions, of a virtual multiprocessor platform are defined
generalizing the analogous concepts for individual multi-
partitions.

Definition 5: Given a virtual platform Π, we define its
maximum degree of parallelism as

m
def= max

P∈legal(Π)
M(P) (12)

Definition 6: Given a virtual platform Π, its level-j sup-
ply function Yj(t) is the minimum amount of time provided,
with parallelism at most j, by the server Π in every time
interval of length t ≥ 0,

Yj(t)
def= min

P∈legal(Π)
Yj,P (t). (13)

Notice that the properties of Lemma 1 hold also for the
Yj level-j supply functions, because they hold for the Yj,P
functions, for any multi-partition P .

We are now ready to define the Parallel Supply Function
(PSF) of any virtual platform Π.

Definition 7: We define the Parallel Supply Function
(PSF) interface of the virtual platform Π as the set
{Yj(t)}mj=1 of the level-j supply functions.

The introduction of the PSF allows a more precise
characterization of the time supplied by a virtual platform.
We illustrate this on the simple example of Figure 1. In
the virtual platform Π corresponding to this figure, the time

440440

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:33 from IEEE Xplore. Restrictions apply.

is allocated statically to the two servers, hence legal(Π) is
composed of one single multi-partition P (the one given
by Eq. (2)). For this multi-partition P , the corresponding
characteristic function γP is depicted in Figure 3. If we
compute the level-1 and level-2 supply functions from
Definition 3, we can find the two functions Y1(t) and Y2(t)
reported in Figure 4.

2 4 6 8

2

4

6

Y1(t)

Y2(t)

Figure 4. The level-j supply functions Y1(t) and Y2(t) for the example
of Figure 1.

Similarly to what is done for single processor hierarchical
scheduling [3], [4], [8], we find it useful to lower bound
the parallel supply functions Yj(t) with a linear function
αj(t − Δj)0. Since Yj is superadditive (Equation (11)), a
result attributed to Fekete [9] ensures that the following limit
exists:

αj
def= lim

t→+∞
Yj(t)

t
= sup

t

Yj(t)
t

(14)

Notice also that αj ≤ j, from Eq. (6). Hence, by defining

Δj
def= sup

t

{
t− Yj(t)

αj

}
(15)

the level-j parallel supply function can be conveniently
lower bounded by

Yj(t) ≥ αj(t−Δj)0. (16)

The PSF is an abstraction of the computing capabilities
of the virtual platform, rather than its exact representation.
One of the consequences of this fact is that none of the multi-
partitions that could be generated by a particular virtual
platform Π may correspond exactly to the characterization
of Π by its Yj(t) functions. We can nevertheless assert lower
bounds on the durations for which individual processors
must be made available over any time interval in any multi-
partition that could be generated by Π, as follows.

Let us arbitrarily assign a total ordering to the processors
in the physical platform upon which Π is implemented, so
that it makes sense to talk of the j’th processor Pj , 1 ≤ j ≤

m. Consider an arbitrary multi-partition P of Π, and some
interval of length L; at any instant in this interval at which P
makes fewer than m processors available, we will rename2

the processors in order to choose which of the m processors
P1, . . . , Pm are available, in the following manner:

• by definition, Π makes ≥ Y1(L) units of non-parallel
execution available over the interval. Let us “assign”
exactly Y1(L) of this execution to the first processor
P1, in the sense that we will name the processor(s) on
which this execution has occurred for Y1(L) time units
as P1;

• similarly, Π makes at least Y2(L) units of execution
with parallelism at most two available over the interval.
Let us again assign (Y2(L)− Y1(L)) of this execution
to the second processor P2;

• in a similar vein, we can assign exactly (Yj(L) −
Yj−1(L)) units of execution to the j’th processor Pj ,
for each j, 1 ≤ j ≤ m;

• observe that since the Yj(L)’s denote lower bounds
on the amount of computing capacity that must be
available in the partition, the actual availability of exe-
cution capacity in P may exceed the amount assigned
in the steps above. Once all these assignments have
been done, therefore, the remaining execution can be
arbitrarily assigned among the processors (over time
durations when they have not already been assigned
execution during the above steps).

As a consequence of the above argument, it follows that
Lemma 2: Let Π be a virtual platform characterized by

the supply functions {Yj(t)}mj=1. For any multi-partition P
in legal(Π) and any interval of length L, there exists a dy-
namic renaming of the processors over the interval such that
the j’th processor is available for at least

(
Yj(L)−Yj−1(L)

)
time units over this interval in P .

IV. SCHEDULABILITY ANALYSIS

In this section, we derive two sufficient tests for deter-
mining whether a given application, modeled as a collection
of sporadic tasks, can be scheduled to meet all deadlines
when scheduled upon a virtual platform Π using global
EDF as the local scheduling algorithm. The first method
borrows the idea of forced forward demand bound func-
tion [7] and allows deriving a schedulability condition with
pseudopolynomial complexity. The second test, inspired by
Bertogna et al. [10] has polynomial complexity. It derives
an upper bound on the interfering workload generated over
the scheduling window of each task, and checks whether it
is sufficient to cause a deadline miss. Since none of them is

2We point out that we are not actually requiring that the virtual platform
be implemented to make allocations in a manner that corresponds to our
renaming — this is a mere notational convenience. Since we are restricting
our attention here to virtual platforms implemented upon identical multi-
processors, we can always rename processors for the purposes of reasoning
about the schedule, without loss of generality.

441441

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:33 from IEEE Xplore. Restrictions apply.

for i← 2, 3, . . . do
let Ji denote a job that

– arrives at some time-instant ti < ti−1;
– has a deadline after ti−1;
– has not completed execution by ti−1; and
– has executed for strictly less than (ti−1 − ti) δ

units over the interval [ti, ti−1).
if there is no such job then

k ← (i− 1)
break (out of the for loop)

end if
end for

Figure 5. Proof of Theorem 1: defining the Ji’s, the ti’s and k.

proved to dominate the other, both can be used for admission
control.

The tests consider an application τ composed of n spo-
radic tasks τ1, . . . , τn. The virtual multiprocessor platform,
denoted Π, has its maximum parallelism m, and is char-
acterized by its parallel supply function (PSF) abstraction,
denoted {Yj(t)}mj=1.

A. FF-DBF based schedulability test

In this section, we present a sufficient schedulability
condition based on the concept of FF-DBF, as defined in
Section II-B.

Theorem 1: Any constrained-deadline sporadic task sys-
tem τ satisfying

∀L ≥ Dmin, FF-DBF(τ, L, δ) ≤
max

k
{Yk(L)− (k − 1)δL} (17)

is guaranteed to be EDF-schedulable upon Π.
Proof: Let us suppose that sporadic task system τ is

not EDF-schedulable on Π, and let us consider a minimal
sequence of jobs of τ upon which EDF misses deadlines
when implemented on Π. Let to denote the (first) instant
at which a deadline miss occurs in such an EDF schedule.
Let J1 denote a job that misses its deadline at to, and let t1
denote J1’s arrival-time. (Observe that (to − t1) ≥ Dmin.)

We define a sequence of jobs Ji, time-instants ti, and an
index k, according to the pseudo-code in Figure 5.

Let L denote the length of the interval [tk, to): L
def= (t0−

tk). For each i, 1 ≤ i ≤ k, let Wi denote the total amount
of execution that occurs over the interval [ti, ti−1).

Lemma 1.1: FF-DBF(τ, L, δ) ≥∑k
i=1 Wi.

Proof: All jobs that execute in [tk, to) (and hence
contribute to

∑k
i=1 Wi) have their deadlines within the

interval [tk, to). Some of them will also have arrived within
this interval, while others may not.

Now it may be verified that the amount of execution that
jobs of any task τ� contribute to

∑k
i=1 Wi is bounded from

above by the scenario in which a job of τ� has its deadline
coincident with the end of the interval, and prior jobs have

arrived exactly T� time-units apart. Under this scenario, the
jobs of τ� that may contribute to

∑k
i=1 Wi include

• at least q�
def= 	L/T�
 jobs of τ� that lie entirely within

the interval [tk, to); and
• (perhaps) an additional job that has its deadline at time-

instant tk + r�, where r�
def= L mod T�.

We now consider two separate cases:

1) r� ≥ D�; i.e., the additional job with deadline at tk+r�

arrives at or after tk. In this case, its contribution is
C�.

2) r� < D�; i.e., the additional job with deadline at tk+r�

arrives prior to tk. From the exit condition of the for-
loop, it must be the case that this job has completed
at least δ(D� − r�) units of execution prior to time-
instant tk; hence, its remaining execution is at most
max(0, C� − δ(D� − r�)).

In either case, it may be seen that the upper bound
on the total contribution of τ� to

∑k
i=1 Wi is equal to

FF-DBF(τ�, L, δ) (see Equation 1). The lemma follows, by
summing over all tasks τ� ∈ τ .

Lemma 1.2: Some execution occurs at all the time-
instants in [tk, to) during which the virtual platform Π makes
one or more processors available.

Proof: Consider each interval [ti, ti−1). By definition
of ji, it arrives at ti and has not completed execution by
ti−1; hence, EDF will execute it whenever processors are
available. This rules out the existence of a time-instant over
[ti, ti−1) during which some processor is available, but no
job — not even ji — is executing. The lemma follows by
summing over all i, 1 ≤ i ≤ k,

Lemma 1.3: The total duration of all time-intervals over
[tk, to) during which processors are made available by the
virtual platform Π, but are not being used in the EDF
schedule, is strictly less than δ L.

Proof: For each i, 1 ≤ i ≤ k, let xi denote the total
length of the time-intervals over [ti, ti−1) during which job
Ji executes. Since job Ji, by its definition, arrives at ti and
has not completed execution by ti−1, all the processors that
Π makes available over this interval must be executing some
job whenever Ji is not. Furthermore, Ji is chosen such that
xi < δ(ti−1 − ti); hence, the total duration of all the time-
intervals over [ti, ti−1) during which processors are made
available by the virtual platform Π, but are not being used
in the EDF schedule, is strictly less than δ(ti−1 − ti). The
lemma follows by summing over all i, 1 ≤ i ≤ k, and using
the fact that L

def=
∑k

i=1(ti − ti−1).
Recall from Lemma 2 that the j’th processor is allocated

in any multi-partition of Π for at least (Yj(L) − Yj−1(L))
time units over the interval [tk, to). As a consequence of this
fact and Lemma 1.3, the j’th processor therefore completes
at least

max
(
0,

(
(Yj(L)− Yj−1(L))− δL

))

442442

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:33 from IEEE Xplore. Restrictions apply.

units of execution over [tk, to), for each j > 1; while, by
Lemma 1.2, the first processor completes at least Y1(L) units
of execution. By Lemma 1.1, we therefore have

FF-DBF(τ, L, δ)

> Y1(L) +
m∑

j=2

max
(
0,

(
(Yj(L)− Yj−1(L))− δL

))

= Y1(L) +
m∑

j=2

(
(Yj(L)− Yj−1(L))−

min
(
(Yj(L)− Yj−1(L)), δL

))
= Ym(L)−

m∑
j=2

min
(
(Yj(L)− Yj−1(L), δL

)
.

We have thus shown that in order for τ to not be EDF-
schedule on Π, it is necessary that

FF-DBF(τ, L, δ) >

Ym(L)−
m∑

j=2

min
(
Yj(L)− Yj−1(L)), δL

)
(18)

for some L ≥ Dmin.
The RHS can be further simplified. From Eq. (10) it

follows that the values Yj(L)−Yj−1(L) are decreasing with
j. Let k∗ be the greatest index in the summation where the
min of the RHS is given by δL (when the minimum is
always given by Yj(L) − Yj−1(L), we set k∗ = 1). Then,
the RHS becomes

Ym(L)−
m∑

j=k∗+1

(
Yj(L)− Yj−1(L)

)− k∗∑
j=2

δL =

Yk∗(L)− (k∗ − 1)δL.

Since for any other index k �= k∗,

Yk(L)− (k − 1)δL ≤ Y ∗
k (L)− (k∗ − 1)δL,

it follows

max
k

(
Yk(L)− (k − 1)δL

)
= Y ∗

k (L)− (k∗ − 1)δL.

Eq. (18) can then be rewritten as

FF-DBF(τ, L, δ) > max
k

(
Yk(L)− (k − 1)δL

)
(19)

for some L ≥ Dmin. Theorem 1 immediately follows, as the
contrapositive of the above statement.

A schedulability test: Theorem 1 suggests the following
strategy for checking whether a given sporadic task system
is not EDF-schedulable on a specified virtual platform
Π: determine whether there is any L ≥ Dmin satisfying
Inequality (19). If not, then τ is guaranteed to be EDF-
schedulable on Π.

While Dmin represents a lower bound on the range of
values of L for which Inequality (17) must be tested, we

do not yet have an upper bound. Hence, while we could
start Inequality (17) with L← Dmin and repeatedly increase
the value of L being tested, it is not immediately evident
when it would be safe to stop and conclude that τ is in fact
schedulable. To determine an upper bound for L that allows
stopping the check of Inequality (17), we extend a technique
previously used in uniprocessor [11] or multiprocessor [7]
EDF schedulability tests.

A linear lower bound of each level-j parallel supply
function is given by Eq. (16). It is evident from the
definition of FF-DBF (Definition 1; also see Figure 2) that
(Ci + t Ui) is an upper bound on FF-DBF(τi, t, δ) for any t.
Then, an upper bound for the LHS of Inequality (19) is

FF-DBF(τ, L, δ) ≤ L U +
∑
τi∈τ

Ci. (20)

For the RHS of Inequality (19), an obvious lower bound is
obtained applying Equation (16) for all values of k, that is

max
k
{αk(L−Δk)0 − (k − 1)δL}. (21)

Substituting all these bounds into Inequality (19), we
conclude that in order for τ to not be EDF-schedulable, it
is necessary that some L ≥ Dmin satisfies

∀k, L U +
∑
τi∈τ

Ci > αk(L−Δk)− (k − 1)δL

∀k, L <
αkΔk +

∑
τi∈τ Ci

αk − U − (k − 1)δ

L < min
k

αkΔk +
∑

τi∈τ Ci

αk − U − (k − 1)δ
. (22)

Hence if Inequality (19) is to be satisfied for any value of
L, it will be satisfied for some L no larger than the bound
in Equation (22) above. Equivalently, if we have verified
that Inequality (19) evaluates to true for all values of L up
to the bound in Equation (22), we can safely conclude that
task system τ is indeed schedulable on the virtual platform
Π when global EDF is being used as the local scheduling
algorithm.

B. Demand based schedulability test

The second schedulability condition we present is based
on the concept of interfering workload Wk, defined as the
sum of the execution times of higher priority jobs interfering
on τk. Bertogna et al. proposed the following bound [10]:

Wk≤W k =
n∑

i=1
i�=k

⌊
Dk

Ti

⌋
Ci+min

{
Ci, Dk−

⌊
Dk

Ti

⌋
Ti

}
(23)

The interference Ik denotes instead the total duration in
[0, Dk) in which τk is ready to execute but it cannot be
scheduled due to higher priority jobs or unavailable supply.

In [6], a method is presented to bound the interference Ik

as a function of the interfering workload Wk when the virtual

443443

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:33 from IEEE Xplore. Restrictions apply.

multiprocessor is abstracted through the MSF interface. The
next theorem adapts this method to the PSF model adopted
in this paper.

Theorem 2: Consider a task set τ that is scheduled on a
virtual platform Π with maximum degree of parallelism m,
that is characterized by the PSF {Yj(t)}mj=1. Then, for each
task τk, the interference Ik is upper bounded by

Ik≤ Ik = L0 +
m∑

�=1

min

⎛
⎝L�,

(
Wk −

∑�−1
p=0 pLp

)
0

�

⎞
⎠ (24)

with {L�}m�=0 equal to

L0 = Dk − Y1(Dk)
L� = 2Y�(Dk)− Y�−1(Dk)− Y�+1(Dk)
Lm = Ym(Dk)− Ym−1(Dk).

(25)

Proof: In [6], a similar theorem is proved for the case
in which the platform is specified by means of a set of m
individual supply functions {Zj(Dk)}mj=1, where Zj(Dk)
represents the minimum supply granted by the j-th virtual
processor in any interval of length Dk. The only difference
lies in the values {L�}m�=0, which were defined as

L0 = Dk − Z1(Dk)
L� = Z�(Dk)− Z�+1(Dk)

Lm = Zm(Dk).
(26)

We need to adapt this result to the case in which the platform
is specified with the parallel supply functions {Yj(t)}mj=1.

By Lemma 2, we know that for each platform represented
by {Yj(t)}mj=1, we can dynamically rename the processors
over any interval of length Dk, such that the j-th processor
is available for at least

(
Yj(Dk) − Yj−1(Dk)

)
time units

over this interval. This means that the platform can be
represented as well by a set of m individual supply functions
{Zj(Dk)}mj=1, such that

Zj(Dk) =
(
Yj(Dk)− Yj−1(Dk)

)
.

The theorem follows replacing Zj(Dk) in Equation (26)
with the above expression. Note that, by Lemma 1, each
L� is non-negative, for all �.

The next theorem easily follows, considering that a nec-
essary condition for a deadline miss is that a task τk should
be interfered for more than its slack Dk − Ck.

Theorem 3: A task set τ = {τi}ni=1 is schedulable with
EDF on a PSF platform modeled by {Yj}mj=1, if

∀k = 1, . . . , n Ck + Ik ≤ Dk, (27)

where Ik is computed from Eq. (24).
It is possible to prove that Theorem 3 is superior, in

terms of number of schedulable task sets detected, to the
corresponding theorem in [6] based on MSF, because of
the superiority of the PSF abstraction over the MSF.

We highlight that the bound on Wk expressed by Equa-
tion (23) can be refined using an iterative method described
in [10]. However we do not report the details here, due to
space limitations.

V. RELATED WORKS

The virtualization of a resource is the process of providing
a view that is independent of the physical implementation of
the resource itself. One notable example of virtualization of
computing devices is certainly the Java Virtual Machine [12]
that provides an abstraction of the machine through a ma-
chine independent instruction set. This allows the portability
of code from processor to processor without the need of re-
compiling on the new architecture.

In real-time systems, the interface of a virtual platform
describes the amount of computing resource that is provided.
The virtualization of computing resource was extensively
applied to uniprocessors in the past. Mercer et al. [2]
proposed a resource reservation mechanism based on a
required budget and period to provide an abstraction of a
uniprocessor with reduced speed. Abeni and Buttazzo [13]
proposed the Constant Bandwidth Server (CBS) to isolate
an application requiring a varying amount of computation
on a virtual processor with reduced speed.

Mok, Feng, and Chen [3] introduced the concept of “sup-
ply function” of a static time partition to measure the mini-
mum amount of computing resource provided. This paper set
the root of later research. Almeida and Pedreiras [14] applied
similar techniques to schedule messages over the FTT-CAN
network. Lipari and Bini [4] derived the set of supply
functions that can feasibly schedule a given application. Shin
and Lee [8] introduced the periodic resource model (that is a
special class of supply functions) also deriving a utilization
bound, later extended by Easwaran et al. [15] to account for
a server deadline possibly different than the period.

Very recently, there has been an increasing interest in
proposing interfaces for the computing power available on
a multiprocessor. Leontyev and Anderson [16] proposed
to abstract the amount of resource provided by a virtual
multiprocessor using one single parameter: the bandwidth w.
The authors propose to allocate a bandwidth requirement of
w onto 	w
 dedicated processors, plus an amount of w−	w

provided by a periodic server globally scheduled onto the
remaining processors. An upper bound of the tardiness of
tasks scheduled on such interface was provided.

Shin et al. [5] proposed a multiprocessor periodic resource
model to describe the computational power supplied by a
parallel machine. They modeled a virtual multiprocessor
by the triplet 〈Π, Θ, m′〉, meaning that an overall budget
Θ is provided by m′ processors every period Π. The big
advantage of this interface is that it is simple and captures
the most significant features of the platform. Nonetheless,
the aggregation of all the computing resource by a unique
number Θ leads to a more pessimistic analysis.

444444

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:33 from IEEE Xplore. Restrictions apply.

Chang et al. [17] proposed to partition the resource
available from a multiprocessor by a static periodic scheme.
The amount of resource is then provided to the application
through a contract specification.

Bini et al. [6] proposed to abstract any parallel ma-
chine by associating a supply function [3], [4], [8], [15]
to each sequential server, suggesting the Multi-Supply-
Function (MSF) interface.

Definition 8 (Def. 1 in [6]): A Multi Supply Function
(MSF) of a set Π = {πj}mj=1 of VPs is a set of m supply
functions {Zj}mj=1, one for each VP πj , respectively.
However, when tasks are allowed migrating from one virtual
processor to another, this model can be too pessimistic
because all the supply functions are derived assuming the
worst-case condition for each virtual processor in isolation.
We show this pessimism by the example of Figure 1, where
the virtual platform provides time according to two static
partitions: one that provides 2 time units every 4, and
another one that provides 4 every 8. Following the approach
suggested by Bini et al. [6] this platform should be modeled
by two supply functions Z1 and Z2 each one associated to
each of the two servers. Figure 6 reports the two supply
functions.

2 4 6 8

2

4 ...

Z1(t)

Z2(t)

Figure 6. Example of two static partitions.

Suppose we have to schedule an aperiodic job that has
a deadline D = 6 from its arrival and a computation time
of C = 4. If we abstract the platform by the two supply
functions {Z1, Z2}, the job is not schedulable because none
of the two supply functions can provide 4 time units in a
6 units interval. In fact Z1(6) = Z2(6) = 2 < 4. However,
from Figure 1, it is clear that in any interval of length 6 there
are always 4 time units provided by one processor. Note
that the PSF abstraction can capture this notion. In fact, the
definition of Y1 can take advantage of the time available on
both processors (see Figure 4), so that in any interval of
length D, there are at least Y1(D) = Y1(6) = 4 time units
provided by at most one processor. The schedulability of the
aperiodic job is therefore assured.

VI. CONCLUSIONS

In order to be able to build open environments — envi-
ronments that provide support for multiple independently-
developed applications — upon multiprocessor platforms, it

is necessary that appropriate abstractions be devised for rep-
resenting the computing capabilities of parts of the underly-
ing multiprocessor platform. If these open environments are
to be capable of hosting safety-critical applications, such ab-
stractions must be strictly enforceable (in the sense that they
correspond to strict guarantees of computing capability), and
they must be formal enough and expressive enough that it is
possible to formally establish the correctness (in particular,
the timeliness) of real-time applications implemented upon
these abstractions.

Over the past few years, a series of such abstractions,
of increasing generality and expressiveness, have been pro-
posed. The major insight that the community seems to have
gathered in performing this work is that the critical informa-
tion which needs to be represented in the abstraction is the
degree of parallelism in the provided computing capability.
Accordingly, these abstractions have aimed to maximize
the amount of such information that is communicated. The
Parallel Supply Function (PSF) abstraction proposed in this
paper continues this trend. We have shown that the PSF
abstraction is strictly more powerful than the prior ones —
from [5], [6] — that support similar interfaces, in the sense
that it preserves more of the parallelism information. To
demonstrate the usability of this abstraction for building
provably-correct real-time systems, we have derived suffi-
cient schedulability tests that are able to determine whether a
given sporadic task systems is schedulable by EDF upon the
computing capabilities guaranteed by such an abstraction.

REFERENCES

[1] Z. Deng and J. w.-s. Liu, “Scheduling real-time applications
in Open environment,” in Proceedings of the 18th IEEE Real-
Time Systems Symposium, San Francisco, CA, U.S.A., Dec.
1997, pp. 308–319.

[2] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity
reserves: Operating system support for multimedia applica-
tions,” in Proceedings of IEEE International Conference on
Multimedia Computing and Systems, Boston, MA, U.S.A.,
May 1994, pp. 90–99.

[3] A. K. Mok, X. Feng, and D. Chen, “Resource partition for
real-time systems,” in Proceedings of the 7th IEEE Real-Time
Technology and Applications Symposium, Taipei, Taiwan,
May 2001, pp. 75–84.

[4] G. Lipari and E. Bini, “Resource partitioning among real-
time applications,” in Proceedings of the 15th Euromicro
Conference on Real-Time Systems, Porto, Portugal, Jul. 2003,
pp. 151–158.

[5] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling
framework for virtual clustering multiprocessors,” in Proceed-
ings of the 20th Euromicro Conference on Real-Time Systems,
Prague, Czech Republic, Jul. 2008, pp. 181–190.

[6] E. Bini, G. C. Buttazzo, and M. Bertogna, “The multy supply
function abstraction for multiprocessors,” in 15th IEEE Inter-
national Conference on Embedded and Real-Time Computing
Systems and Applications, Beijing, China, Aug. 2009.

445445

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:33 from IEEE Xplore. Restrictions apply.

[7] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and
S. Stiller, “Implementation of a speedup-optimal global EDF
schedulability test,” in Proceedings of the EuroMicro Confer-
ence on Real-Time Systems. Dublin: IEEE Computer Society
Press, July 2008.

[8] I. Shin and I. Lee, “Periodic resource model for compositional
real-time guarantees,” in Proceedings of the 24th Real-Time
Systems Symposium, Cancun, Mexico, Dec. 2003, pp. 2–13.

[9] M. Fekete, “Über die verteilung der wurzeln bei gewissen
algebraischen gleichungen mit ganzzahligen koeffizienten,”
Mathematische Zeitschrift, vol. 17, pp. 228–249, 1923.

[10] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability
analysis of global scheduling algorithms on multiprocessor
platforms,” IEEE Transactions on Parallel and Distributed
Systems, 2008.

[11] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively
scheduling hard-real-time sporadic tasks on one processor,” in
Proceedings of the 11th IEEE Real-Time Systems Symposium,
Lake Buena Vista (FL), U.S.A., Dec. 1990, pp. 182–190.

[12] J. Gosling and H. McGilton, “The java language environ-
ment: A white paper,” Sun Microsystems, Tech. Rep., 1996,
available at http://java.sun.com/docs/white/langenv/.

[13] L. Abeni and G. Buttazzo, “Integrating multimedia applica-
tions in hard real-time systems,” in Proceedings of the 19th

IEEE Real-Time Systems Symposium, Madrid, Spain, Dec.
1998, pp. 4–13.

[14] L. Almeida, P. Pedreiras, and J. A. G. Fonseca, “The FTT-
CAN protocol: Why and how,” IEEE Transaction on Indus-
trial Electronics, vol. 49, no. 6, pp. 1189–1201, Dec. 2002.

[15] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis
framework using EDP resource models,” in Proceedings of
the 28th IEEE International Real-Time Systems Symposium,
Tucson, AZ, USA, 2007, pp. 129–138.

[16] H. Leontyev and J. H. Anderson, “A hierarchical multiproces-
sor bandwidth reservation scheme with timing guarantees,” in
Proceedings of the 20th Euromicro Conference on Real-Time
Systems, Prague, Czech Republic, Jul. 2008, pp. 191–200.

[17] Y. Chang, R. Davis, and A. Wellings, “Schedulability anal-
ysis for a real-time multiprocessor system based on service
contracts and resource partitioning,” University of York, Tech.
Rep. YCS 432, 2008, available at http://www.cs.york.ac.uk/
ftpdir/reports/2008/YCS/432/YCS-2008-432.pdf.

446446

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:33 from IEEE Xplore. Restrictions apply.

