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Abstract

The paper studies the evolution of coordination in a local interaction model where agents can
simultaneously choose the strategy to play in the game and the size of their neighborhood. We
focus on pure-coordination games played by agents located on one-dimensional lattices and we
assume that network externalities become eventually negative as neighborhood sizes increase.
We show that the society almost always converges to a steady-state characterized by high levels
of coordination and small neighborhood sizes. We /nd that neighborhood adjustment allows for
higher coordination than if interaction structures were static and that large populations attain
higher coordination provided that average initial neighborhood sizes are not too small.
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1. Introduction

The outcome of a coordination game repeatedly played in large societies might
be crucially a8ected by the coevolution between interaction structures and individual
choices.
Traditionally, this issue has been investigated by assuming exogenously /xed net-

works. In these models, agents are supposed to repeatedly play a 2 × 2 coordination
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game either against any other player in the population (cf. Kandori et al., 1993;
Young, 1996) or against a /xed, typically small, set of ‘relevant others’ (see Blume,
1993; Ellison, 1993; Young, 1998). The basic rationale is that, in many situations, the
time-scale at which agents choose their opponents in the game is very long as com-
pared to that at which they update their stage-game strategies. Consequently, it may
be plausible to study the long-run properties of population learning as if interaction
structures were static (cf. Skyrms and Pemantle, 2000).
However, the evolution of individual choices through time might also a8ect agents’

expectations about future payo8s from interactions. A player might then change her
idea on who is in fact ‘relevant’ and avoid further interactions (or, respectively, start
interacting) with groups of other agents if she expects that this would lead to a decrease
(or, respectively, an increase) in net payo8s. In such circumstances, the speed at which
agents revise the set of their partners is (at least) comparable to the frequency at which
they update their strategy. The details of the process governing the coevolution between
strategies and interaction structures may therefore have non-trivial consequences on
long-run coordination patterns (see Kirman, 1997).

Coordination games in presence of endogenous partner selection has been studied
in the last few years in the context of dynamic network formation (see e.g. Goyal
and Vega-Redondo, 2001; Jackson and Watts, 2000; Droste et al., 2000). The basic
assumption shared by existing formalizations is that strategy and network updating are
driven by ‘positive network externalities’. In these models, as long as the unit cost of
keeping open a connection with another player is not too large, agents always prefer
more coordinated partners.
In this paper, we depart from this assumption by studying a setting characterized

by network externalities which may be positive when agents hold small neighborhoods
sizes, but become eventually negative when neighborhood sizes are very large. We
argue that in some cases (e.g. network congestion e8ects), the positive contribution to
individual payo8s from adding a new, coordinated, partner may be o8set by negative
e8ects induced by network sizes. To address this issue, we present a dynamic model
of coordination in which agents can simultaneously choose the strategy to play in the
game and select the agents with whom to play the game. We consider a population of
myopic individuals located on a circle who repeatedly play a pure coordination game
with their ‘nearest neighbors’. We assume that holding neighbors is costly and that,
from time to time, agents are allowed to slightly shrink or enlarge the ‘radius’ of their
current neighborhood by maximizing expected net payo8s.
We show that the society almost always converge to a (non-unique) steady state

in the long-run. We /nd that both full coordination and coexistence of conventions
may be possible in a steady state. In turn, strategy con/gurations characterized by
partial coordination may be sustained by both homogeneous and heterogeneous inter-
action structures. We then explore how system parameters (i.e. population size, unit
link cost and probability of neighborhood revision) a8ect the likelihood of converg-
ing to steady states characterized, on average, by high (low) coordination and small
(large) neighborhood sizes. We /nd that the system is able to robustly reach very high
coordination levels, despite the presence of negative local network externalities. More-
over, we show that average coordination in presence of a non-zero (although small)
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frequency of neighborhood adjustment is higher than if interaction structures were
static. Finally, we /nd that large societies coordinate better than small ones, provided
that initial average neighborhood sizes are suKciently high.
The rest of the paper is organized as follows. In Section 2, we review related works

and we discuss the extent to which our model departs from existing literature. In
Section 3, we formally describe the model. Section 4 deals with the characterization of
absorbing states, while computer simulation results on the average long-run behavior
of the system are reported in Section 5. Finally, Section 6 discusses extensions and
future research.

2. Coordination and endogenous neighborhood formation

The question whether endogenous network formation may a8ect long-run coordina-
tion in populations of adaptive agents has been recently addressed in setups where
network externalities are positive. In these formalizations (see e.g. Goyal and Vega-
Redondo, 2001), one considers agents who repeatedly play 2 × 2 coordination games
with their current partners. Agents care about the di8erence between the sum of
stage-game payo8s and network costs, which are assumed to be linearly increasing
in the network size.
If the cost of forming a link is suKciently small, net (i.e. after costs) payo8s always

increase in the size of the network and agents choose to interact with as many partners
as possible. Therefore, full coordination and complete networks arise. Conversely, the
case of very large unit link costs is typically not explored because network externalities
will be always negative and agents will prefer to hold empty networks (if they are given
the option not to play the game). In both cases, no network size e8ects on payo8s are
present and the regime of network externalities depends on the level of unit link costs.
In this paper, on the contrary, we present a dynamic, non-cooperative, model of co-

ordination and endogenous partner selection where network externalities become even-
tually negative as network sizes increase. In particular, we assume that there exist
(negative) network size e8ects on payo8s from interaction: an agent currently play-
ing strategy s who faces two networks characterized by the same number of partners
choosing s will earn a higher gross payo8 if she chooses the smallest one. Therefore,
agents could be willing to enlarge their network size if the latter is relatively small,
while they will eventually prefer to shrink it (no matter strategies played) if the number
of partners goes beyond some endogenously determined threshold.
This property, together with the assumption that agents cannot refuse to play the

game, allows us to address the issue of coordination in presence ‘locally’ positive but
‘globally’ negative network externalities. Indeed, in many circumstances, individual
net payo8s might eventually fall as the network size increases irrespective of pure
strategies played by the agents either: (i) because of congestion problems entailed by
the physics of the network; or (ii) because the net added value of any new player is
negligible to each individual belonging to the network (see e.g. Gupta et al., 1995;
for a more general perspective, cf. Economides, 1996; Arnott and Small, 1994). In
particular, players may prefer to avoid unwanted interactions as unknown agents may
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entail risks (e.g. a higher likelihood of computer viruses). Moreover, whenever agents
are status seeking and aspire to be similar to their peers, individuals might dislike
coordination if the group to which they belong becomes too crowded (see e.g. Cowan
et al., 1998).
Our approach departs from existing models of coordination with endogenous net-

works in a few other respects. First, in existing models no underlying socio-economic
geography prevents (or restricts) interactions between ‘distant’ agents (cf. Jackson and
Watts, 2000). On the contrary, we study a framework where agents are spatially
located on the nodes of a circle and can only play 2 × 2 pure coordination games
with their nearest neighbors.

Second, we study societies where neighborhood adjustment is endogenous but rel-
atively not frequent. More precisely, we suppose that in each time period players are
allowed either to update their current pure strategy (given the current interaction struc-
ture) or, with some exogenously /xed probability, to simultaneously adjust strategies
and neighbors. Conversely, existing formalizations typically assume that the speed at
which agents can change their partners is the same as the pace at which they update
their strategy.

Third, we suppose that players act myopically and update pure strategies and/or
neighbors by best-responding to their current environment in a completely deterministic
way (i.e. without mistakes). 1 As holding neighbors is assumed to be costly (total cost
is proportional to neighborhood size), a player will simply adjust her current strategies
and/or her current set of partners by comparing net payo8s from coordination.

Finally, we introduce a ‘local’ neighborhood formation process. Indeed, unlike Droste
et al. (2000), we assume that agents update their neighbors’ set by adding to (or
discard from) it only those players who are located close to the boundaries of the
neighborhood. More precisely, if an agent interacts at time t − 1 with all individuals
placed no farther than r ¿ 1 nodes from her, she will only consider either to shrink it
to r − 1; or enlarge it to r + 1; or keep it unchanged (while simultaneously choosing
her current strategy). Local neighborhood adjustment reMects here the well-documented
inertia of many social relationships (see e.g. Miller, 1963; Akerlof, 1997). Notice also
that, while in existing models players can directly choose their partners in a sequence of
additions and deletions of single links, here local neighborhood adjustment implies that
players can only indirectly choose whom to interact with by adjusting their ‘interaction
window’.
We start by studying a basic setup where agents play a purely symmetric coordina-

tion game, i.e. a coordination game where both strategies are equivalent with respect to
Pareto eKciency and risk-dominance. The goal is to study whether endogenous neigh-
borhood formation alone has a signi/cant impact on long-run coordination levels (e.g.
the relative frequency of agents playing the same strategy) and interaction patterns
(e.g. low vs. large neighborhood sizes).

1 This contrasts with adaptive play with mistakes studied in Goyal and Vega-Redondo (2001) and Jackson
and Watts (2000), while is in line with fair parts of Droste et al. (2000) and previous work by Blume
(1993) in the context of static interaction structures.
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3. The model

Consider a /nite set of agents I={1; 2; : : : ; N}, N ¿ 5. Agents are spatially distributed
on the nodes of a one-dimensional lattice with periodic boundaries (i.e. a circle). We
assume a one-to-one relation between the nodes of the lattice and the set of agents.
Hence, individual labels i = 1; 2; : : : ; N coincide with locations on the circle. Time is
discrete. At each t=1; 2; : : : any agent plays a pure 2×2 coordination game against her
current partners. More precisely, if agent i plays si ∈ {−1; 1} when agent j’s strategy
is sj ∈ {−1; 1}, her stage-game payo8 is given by

G(si; sj) =
{
1 if si = sj;
0 if si �= sj:

(1)

Any agent i is completely characterized by her set of partners Vit ⊂ I and her current
strategy sit ∈ S={−1;+1}. We assume that agent i’s partners set consists of all players
located within a symmetric neighborhood with radius rit . More formally:

Vit = V (rit)= : {j∈ I : 0¡min{|j − i|; N − |j − i|}6 rit}; (2)

where rit ∈R(N ) = {1; 2; : : : ; r̃} and r̃ = 	N=2
. Notice that, as in principle rit �= rjt for
any two i �= j, one might have that i∈ Vjt but j �∈ Vit . Since Vit only depends on rit ,
we de/ne the state of any agent i at time t as

(sit ; rit)∈ S × R(N ):

The economy will be in turn characterized at any t by its con(guration

�t = (sit ; rit)i∈I ;

where �t ∈P(N ) = (S × R(N ))N . As a /nal piece of notation, let |�(N )| be the car-
dinality of �(N ).
In each time period, an agent whose state is (sit ; rit) earns a (net) payo8

�it(sit ; rit |�t) =


 1

|V (rit)|�
∑

j∈V (rit)
G(sit ; sjt)


 − �|V (rit)|; (3)

where G(sit ; sjt) is de/ned in (1), |V (rit)| is the cardinality of V (rit) and �¿ 0 is the
unit cost per neighbor (i.e. the cost of keeping active at t the link to any agent j �= i).

The parameter �∈ [0; 1] governs the nature of network externalities in the model.
To see why, let us consider two extreme cases. On the one hand, if � = 0, there are
no neighborhood size e8ects on gross payo8s (i.e. the term in square brackets): if
the number of agents playing sit in V (r′) and V (r′′) is the same, then gross payo8s
do not change. Therefore, if �¿ 1 the system is characterized by negative network
externalities (NNE henceforth) because net payo8s are strictly decreasing with rit (and
thus with the number of agents playing sit in V ) irrespective of strategy con/guration.
Conversely, if �¡ 1 (and suKciently small) network externalities are ‘always positive’:
net payo8s are strictly increasing in the number of neighbors choosing sit .

On the other hand, if �=1, gross payo8s from playing (sit ; rit) are negatively a8ected
by the size of the neighborhood. For a given strategy con/guration, �it might indeed
increase if neighborhood sizes are not too large, because gross gains from local coor-
dination can o8set costs. However, they will eventually fall, irrespective of currently
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played strategies, as neighborhood size grows. In this case the system is potentially
characterized by ‘locally’ positive and ‘globally’ negative network externalities.
In this paper, we will primarily focus on the case � = 1 (i.e. very strong neighbor-

hood size e8ects). The case �∈ [0; 1) will be brieMy discussed in the conclusions (see
however Fagiolo, 2001 for a more detailed analysis).
When � = 1, as |V (rit)| = 2rit and G(sit ; sjt) = 1 if and only if sit = sjt , payo8s in

(3) read

�it(sit ; rit |�t) =

{
xi(rit) − �r if sit =+1;

1 − xi(rit) − �r if sit = −1;
(4)

where �=2� (‘unit cost’, in the following) and xi(rit)∈ [0; 1] is the share of agents in
V (rit) currently playing +1 (‘relative frequency’ in the following). Notice that NNE
e8ects become stronger if: (i) � increases given N and r; (ii) r increases given �.
Since everything else being constant the attainable range of r will increase with N , a
larger population size may imply larger NNE e8ects as well.
Let us turn now to describe the dynamics of the model. At time t = 0, suppose

to draw an initial con/guration �0 from �(N ) with (uniform) probability |�(N )|−1.
Assume also that, at the beginning of any period t+1 an agent (say i) is drawn from
I with (uniform) probability N−1. We suppose that, with probability 1 − �∈ (0; 1], i
is allowed to update her current strategy sit only (given rit), while with probability
�∈ (0; 1] she can simultaneously update both sit and rit . 2

Consider /rst strategy updating only. We assume that agent i best-responds (without
mistakes) to the current local con/guration:

si; t+1 ∈ argmax
s∈{−1;+1}

�it(s; rit |�t): (5)

We also suppose that agents are change-averse, i.e. they stick to their current choice
when ties occur.
Second, an agent drawn to update both sit and rit locally adjusts her neighborhood

radius, together with her current strategy. More formally, we suppose that given (rit ; sit),
agent i will only have (for both s = sit and −sit) the following three options: (i)
shrinking to rit − 1; (ii) keeping rit ; or (iii) enlarging to rit + 1. Agent i’s next period
state will therefore be

(si; t+1; ri; t+1)∈ argmax �it(s; r|�t);

s∈ {−1; 1}
s:t: r ∈R(N ) : |r − rit |6 1:

(6)

As happens in action updating, we suppose that players are change-averse. 3

2 All results presented in the next sections are not qualitatively altered if one instead assumes that, in each
period t, an agent currently playing (si; t ; ri; t) is allowed with probability �∈ (0; 1) to revise only her current
neighborhood size given the current strategy con(guration (i.e. she is not allowed to change strategy and
radius at the same time).

3 Furthermore, we assume for the sake of simplicity that, whenever (s; ri; t + 1) and (s; ri; t − 1) are the
unique solutions of (6) for s∈ {−1; 1}, agents always choose (s; ri; t −1). This assumption does not crucially
a8ect the dynamic properties of the system (see Appendix A).
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Given any initial conditions �0 ∈�(N ), Eqs. (2), (4)–(6) de/ne a Markov chain
{�t; t¿ 1} with /nite state-space �(N ). In the following section we will start explor-
ing its long-run behavior. We /rst characterize the set of steady states of the dynamic
process (i.e. absorbing states of the associated Markov chain). Second, we show that
this set is non-empty (but, possibly, very large) and that the system almost always
converges to a steady state in /nite time. Finally, we ask whether the society can be
absorbed in the long-run by a SS displaying full vs. partial coordination and homoge-
neous vs. heterogeneous neighborhood structures.

4. Steady states, convergence and coordination

The best-response dynamics governing the evolution of the system exhibits a non-
empty set of steady states (i.e. absorbing states for the associated Markov chain
{�t; t¿ 1}). To see why, de/ne a steady state (SS) of the system as a global con/g-
uration �∗ = {(s∗i ; r∗i ); i∈ I} such that any player i∈ I has no incentive to unilaterally
move away from (s∗i ; r

∗
i ). More formally:

Lemma 1. (Characterization of steady states). Denote by x∗
i; r∗i

= xi(r∗i ) local relative
frequencies associated to the con(guration �∗. Then �∗ is a SS for {�t; t¿ 1} if
and only if:

1. For any i∈ I s.t. s∗i =+1:

r∗i = 1 : x∗
i; r∗i
¿max{−�+ x∗

i;2;
1
2 ;−�+ 1 − x∗

i;2};
1¡r∗i ¡ r̃ : x∗

i; r∗i
¿max{�+ x∗

i; r∗i −1; �+ 1 − x∗
i; r∗i −1;

1
2 ;−�+ x∗

i; r∗i +1;−�+ 1 − x∗
i; r∗i +1};

r∗i = r̃ : x∗
i; r∗i
¿max{�+ x∗

i; r̃−1;
1
2 ; �+ 1 − x∗

i; r̃−1}:
2. For any i∈ I s.t. s∗i = −1, the lhs in the above inequalities are satis(ed if x∗

i; r∗i
is

replaced by (1 − x∗
i; r∗i

).

Proof. Since �¿ 0, if (s∗i ; r
∗
i ) is stable with respect to neighborhood updating, it

will be also stable for strategy updating. Hence, it suKces to impose the condition
(si; t+1; ri; t+1) = (s∗i ; r

∗
i ) in Eq. (6) and solve for xi(r∗i ).

Consider now the set �∗(�; N ) of all �∗ ∈�(N ) satisfying SS conditions (notice
that �∗ only depends on (�; N ) because SS conditions are not a8ected by �). For
any (�; N ), �∗(�; N ) is non-empty as it always contains (at least) both con/gurations
�1 = (1; 1)i∈I and �−1 = (−1; 1)i∈I . Indeed, if all agents choose the same strategy,
then xi(1)∈ {0; 1} ∀i and gross payo8s reach their maximum. Hence, no agent has an
incentive to enlarge her current radius.
More importantly, as shown in Proposition 2, the dynamic process {�t; t¿ 1}

cannot cycle and the society will almost always converge in /nite time to a SS for
any (�; �; N ). The reason why this happens stems from two observations. First, in each
time period one and only one agent can update her current state by best-replying to local
strategies pro/les. Second, tie-breaking rules de/ned in Section 3 imply that individual
best replies are unique given the current con/guration. Hence, the resulting best-reply
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strategy revision process governing the evolution of con/gurations � is characterized by
the ‘unique best-reply property’ (see Blume, 1995). For such class of Markov processes,
there exists a one-to-one correspondence between absorbing states and ergodic sets (i.e.
all con/gurations which are not SS are transient) so that /nite-time convergence to a
SS is a probability-one event.

Proposition 2 (Convergence to SS). For any given N ¿ 5, �∈ (0; 1], �¿ 0 and �0 ∈�
(N ), the process {�t; t¿ 1} de(ned by Eqs. (2), (4)–(6) will almost always converge
in (nite time to an absorbing state �∗ ∈�∗(�; N ).

Proof. See Appendix A.

Are there any other SS apart from the two full-coordination ones? As the following
example shows, for any given (�; N ), the two con/gurations �+1 and �−1 are not
the unique absorbing states of the process. Indeed, even for small populations, there
might exist many SS characterized by partial coordination, no matter the level of unit
costs �. In turn, low coordination SS may sustain, depending on (�; N ), many di8erent
neighborhood structures.

Example 3. Suppose that N = 11 (i.e. r̃ = 5). Consider the three con(gurations de-
picted below (the state of each agent (s∗i ; r

∗
i ) is reported beside each little circle). By

replacing local relative frequencies xi(r∗i ) in SS conditions (1), it is easy to see that
(A) and (B) are both SS for all �¿ 0 (cf. Lemma B.5 in the Appendix). A and B
are both characterized by low coordination and homogeneous, minimal, interaction
structures (all agents hold r∗i = 1). Population A entails the lowest possible coordi-
nation level (6 agents playing +1, 5 playing −1), while B reaches higher (although
partial) coordination.
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Population C exhibits the same strategy con(guration as B. Neighborhood struc-
ture in C di=ers from B because in C agents 6 and 7 interact with everyone else
(r∗i = r̃, i=6; 7). This choice is a best-response for i=6; 7 if and only if unit costs are
su>ciently low (more precisely i= �6 3=40). In this range of unit costs, both B and
C are SS: the same low-coordination strategy con(guration can sustain more than
one interaction structure.

These /ndings contrasts with existing literature (see e.g. Goyal and Vega-Redondo,
2001; Jackson and Watts, 2000), where only full coordination (with complete net-
works) can arise. In our model, on the contrary, the presence of spatial constraints
to neighborhood adaptation (e.g. local radius adjustments and lattice structure), cou-
pled with negative network externality e8ects and agents’ change-aversion, allows
for the emergence of low-coordination SS (possibly with heterogeneous neighbor-
hoods). 4

As the foregoing example suggests, the set �∗(�; N ) might generally be very large.
For instance, it is easy to see that homogeneous, minimal, interaction structures (r∗i =
1 ∀i) can support many non-minimal strategy con/gurations. More precisely (see
Fagiolo, 2001 for a formal proof), for all �¿ 0, any strategy con/guration involv-
ing N − k consecutive agents on the circle playing s (and a cluster of k agents playing
−s) can be sustained as a SS by r∗i = 1 ∀i for all k ¿ 2. Similarly, societies char-
acterized by partial coordination are able to sustain a huge number of non-minimal
(heterogeneous) interaction structures (i.e. s.t. ∃i : r∗i ¿ 1) for suKciently low link
costs.
Since our main goal is to study aggregate levels of coordination and neighbor-

hood sizes, we will not try here to fully characterize the set �∗(�; N ) in terms of
spatial patterns of coordination and interaction structures (e.g. existence, size and sta-
bility of strategy enclaves or niches, degree of overlaps between neighborhoods, etc.).
Conversely, we will attempt to classify SS as to whether: (i) the associated strategy
con/gurations display full vs. partial coordination; (ii) SS neighborhood con/gurations
are homogeneous and minimal or not. The idea is that, thanks to symmetry of G and
roto-translation invariance of our lattice, one can focus on statistics of SS strategy
and radius con/gurations (e.g. average coordination, average neighborhood size, etc.)
instead of their internal /ne structure, because the former are typically invariant across
many SS.
In the next proposition we will therefore answer the following questions: Can full

coordination arise in a SS together with interaction structures di8erent from the homo-
geneous, minimal, one? Is it possible to observe in a SS partial coordination together
with non-minimal neighborhood structures? And, /nally: For which parameter values
partial coordination con/gurations can support non-minimal neighborhoods?

4 Notice that if players 6 and 7 of population C in Example 3 could always choose any r ∈ {1; : : : ; 5},
they would both immediately switch to ri = 5. Hence, dropping the assumption of local radius adjustments
may change the set of SS. A study of alternative neighborhood adaptation rules is contained in Fagiolo
(2001).
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Proposition 4. Consider a SS �∗ ∈�∗(�; N ). Then:
1. For any (�; N ), full coordination necessarily implies in a SS r∗i = 1; ∀i.
2. For any (�; N ), partial coordination and homogeneity of neighborhood sizes can

only arise in a SS if r∗i = 1 ∀i.
3. Partial coordination can arise in a SS with non-minimal (heterogeneous)

neighborhood sizes only if (�; N ) : �(N − 5)(N − 3)6 1.

Proof. See Appendix B.

Some remarks are in order. Notice /rst that NNE e8ects prevent any network dif-
ferent from the minimally connected one (and thus also the complete one) to sustain
full coordination in a SS, no matter how small unit costs are. Moreover, heterogeneous
strategy con/gurations cannot sustain a homogeneous neighborhood structure with
r∗i ¿ 1, ∀i. This is because the larger neighborhood sizes held by two adjacent agents
who play opposite strategies, the larger the number of common neighbors playing +1
who are needed in order for that con/guration to be locally stable with respect to
strategy updating (see Fagiolo, 2001). This prevents sustainability of interaction struc-
tures with ri ¿ 1 ∀i. Finally, heterogeneous strategy con/gurations can sustain het-
erogeneous neighborhoods only if NNE are not too strong. Since network externalities
become eventually negative when neighborhood sizes increase for a given N , any agent
holding a r-neighborhood will increasingly prefer not too enlarge as � increases given
r (or, equivalently, as r increases given �). In the extreme case (i.e. 2�(r − 1)¿ 1,
r¿ 2), the agent will always shrink to r − 1 irrespective of the local strategy pro/le.
Therefore, heterogeneous strategy con/gurations can sustain radii larger than one only
if � is suKciently small. In such situations, network externalities may be perceived to
be positive even at large distances. Some agents will then have an incentive to enlarge
their information ‘window’ up to values close to r̃. On the other hand, as � increases
for given N , NNE tend to dominate even for small neighborhood sizes and agents
always shrink their radius down to r = 1.
Proposition 4 allows us to conclude that SS can belong to three classes. First, the

system may converge to full coordination, and homogeneous, minimal, neighborhoods
(i.e. �1 and �−1). Second, the population may end up in (one of the many) partial co-
ordination con/gurations with homogeneous, minimal neighborhoods (ri=1 ∀i). Finally,
if NNE are not too strong, partial coordination may occur together with non-minimal
interaction structures. Notice that in the /rst two cases aggregate neighborhood cost is
minimized (N�), while in the last case the SS is socially ineKcient because aggregate
neighborhood cost is strictly larger than N�.

5. The long-run behavior of the system: simulation results

In the last section we have shown that, especially for small �, the system can in
principle exhibit very di8erent aggregate coordination levels and interaction patterns. In
what follows we study how system parameters (unit costs, frequency of neighborhood
updating and population size) a8ect the way in which the dynamic process is able
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to select among SS. In particular, we are interested in assessing how likely a society
might be trapped in SS characterized by full vs. partial coordination and how frequently
low coordination can arise together with non-minimal, heterogeneous, neighborhood
structures.

5.1. Setup of Monte-carlo exercises

To begin with, notice that, for any given choice of (N; �; �), the particular SS which
the best-response strategy and neighborhood revision process will select depends on
both initial conditions and the sequence of individual updatings. Since we assumed that
�0 are random (uniform) draws from �(N ) and updating players are also randomly
drawn from I with uniform probabilities in each t, we can indirectly address equilibrium
selection by estimating how the size of the basin of attraction of di8erent classes of
SS (e.g. full vs. low coordination ones) changes with (N; �; �), after having factored
out random e8ects induced by initial conditions and updating sequence. 5

In order to do that, we have performed an extensive set of Monte-carlo exercises
to estimate (empirical) frequency distributions of a few interesting statistics computed
on SS con/gurations. This exercise has been performed for a suKciently large number
of points (N; �; �) chosen on evenly spaced grids de/ned over �∈ (0; 2], �∈ (0; 1] and
N ∈ {10; : : : ; 150} (for a total of 800 parametrizations). For any (�; �; N ), we have
run M = 1000 independent realizations of the process {�t; t¿ 1}. In each realization
m=1; : : : ; M , we have employed as initial conditions a con/guration �0;m drawn from
�(N ) with uniform probabilities (and independently across m). 6 After the system has
converged to some SS �∗

m=(s∗i;m; r
∗
i;m)

N
i=1 (which happens with probability-one in each

realization, see Proposition 2), we have computed SS statistics as follows.
Dropping for simplicity dependence of SS con/gurations on �0;m and (�; �; N ), de/ne

/rst average SS coordination as

Tcm = | Tsm| =
∣∣∣∣∣N−1

N∑
i=1

s∗i;m

∣∣∣∣∣ : (7)

Notice that Tcm ∈ [0; 1], Tcm = 1 (full coordination) if and only if �∗
m ∈ {U1; �−1},

while Tcm6N−1 if the society is split in two (almost equal) uncoordinated populations.
Relatedly, we are also interested in the relative frequency of being absorbed in a
full-coordination con/guration (i.e. in either �1 or �−1):

h=
1
M

M∑
m=1

1{ Tcm=1}; (8)

where h∈ [0; 1] and 1{ Tcm=1} = 1 if Tcm = 1, 0 otherwise.

5 Since individual strategy revision is completely deterministic, we cannot study directly equilibrium selec-
tion as did e.g. in Ellison (1993). Even if we introduced low-probability idiosyncratic “Mips” in best-response
rules, one should make additional, strongly restrictive, assumptions on neighborhood structures (e.g. homo-
geneity) in order for applying standard long run equilibrium selection tools.

6 This MC sample size is suKcient both to attain a good precision of the estimates and to keep the
probability of duplications in drawing initial con/gurations below 0.5%, even for small values of N .
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Second, denote SS average neighborhood size (i.e. average radius) by

Trm = N−1
N∑
i=1

r∗i;m: (9)

Of course, Trm ∈ [1; r̃] and Trm = 1 if and only if r∗i;m = 1 ∀i. 7
For any (�; �; N ), our M Monte-carlo realizations allow us to estimate the SS dis-

tributions of the bivariate ( Tcm; Trm). In what follows, we will restrict our attention on
how MC means

(ĉ; r̂) =

(
M−1

M∑
i=1

Tcm; M−1
M∑
i=1

Trm

)
(10)

as well as h, change with (N; �; �). 8

In Section 4, we have shown that a homogeneous, minimal, interaction structure is
able to sustain in a SS either one of the two full-coordination strategy con/gurations or
one among many partial coordination ones. Since negative network externality e8ects
are present across the whole parameter space, the system should be driven on average
toward SS characterized by low (possibly minimal) neighborhood sizes. Therefore, if
all SS above were equally probable ex ante (i.e. across di8erent initial conditions and
updating sequences), low levels of average coordination should on average emerge.
Moreover, system parameters should exert a signi/cant e8ect on both aggregate

coordination and neighborhood structures. For instance, stronger network externalities
(higher �) could favor smaller radii and thus a8ect coordination. A larger frequency of
neighborhood updating (�) may introduce more turbulence and inMuence SS selection.
Finally, a larger N might generate non-trivial size-e8ects: larger societies might indeed
imply higher attainable neighborhood sizes and thus, everything else being constant,
more widespread tendency toward neighborhood shrinking.
Given all that, in the next sub-sections we will ask the following questions: (i)

How large is (on average) the likelihood of full-coordination (h) in our society (and
does it change across the parameter space)? (ii) How are SS average coordination and
average neighborhood sizes a8ected by system parameters? And relatedly: (iii) Does
the presence of endogenous neighborhood formation allow the society to reach larger
coordination levels than if the interaction structure were exogenous and static (i.e.
�= 0)?

5.2. How likely is full coordination?

As noted above, one could expect the model to deliver quite a pessimistic prediction
about the likelihood of observing a fully coordinated society in the long-run. The very

7 Notice that focusing on averages ( Tcm; Trm) only is not too restrictive. Indeed, it is easy to see that in a
SS: var(s∗i;m) = 1 − Tc2m and var(r∗i;m) = −r̃ + (1 + r̃) Trm − Tr2m. Hence, ( Tcm; Trm) convey information also on
second moments of coordination and neighborhood con/gurations.

8 Space constraints prevent us from providing a detailed study of MC empirical distributions ( Tcm; Trm),
which is however available upon request from the author. Nevertheless, we argue, the following exercises
are able to satisfactorily answer our main questions about long-run coordination and neighborhood sizes.
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Table 1
Montecarlo relative frequency h of runs where full coordination arises. MC sample size M = 1000

Population size (N )

10 20 50 100

� = 0:1 0.884 0.913 0.990 0.998
� = 0:1 � = 0:5 0.878 0.834 0.908 0.990

� = 1:0 0.853 0.760 0.849 0.987

� = 0:1 0.829 0.871 0.925 0.976
� = 0:5 � = 0:5 0.687 0.650 0.749 0.876

� = 1:0 0.569 0.534 0.632 0.812

� = 0:1 0.846 0.865 0.929 0.966
� = 1:0 � = 0:5 0.694 0.648 0.757 0.894

� = 1:0 0.571 0.532 0.599 0.807

possibility of having many low-coordination SS associated to the minimal interaction
structure would lead us to expect, in presence of negative network externalities pushing
toward small neighborhood sizes, full coordination to arise across the whole parameter
space only if initial con/gurations were suKciently close to �1 or to �−1.

For instance, consider the likelihood that a system initialized with a minimal interac-
tion structure (ri;0 = 1 ∀i) and random strategy con/guration reaches full coordination.
Simulations show that this /gure turns out to be (on average across all initial strategy
con/gurations and parameters) around 14% but always smaller than 40%. Since NNE
drive the system toward interaction structures with small neighborhoods, one might
expect to observe comparably low values for h when one averages out the e8ect of
randomly drawn initial interaction structures.
On the contrary, MC simulations point out that, if initial conditions �0;m are drawn

at random from �(N ), the likelihood of being absorbed by a full coordination, mini-
mal interaction structures, SS is much higher than expected across the whole sampled
parameter space. In Table 1, we report – as an illustrative example – values of h
as (�; �; N ) vary in the relevant space and initial conditions are independently and
uniformly drawn from �(N ) in any MC run m=1; : : : ; 1000. The likelihood of full co-
ordination (and consequently of minimal interaction structures) is always greater than
50% for all parametrizations. More precisely, in 89.6% of all runs (i.e. across the whole
sampled parameter space) full coordination arises and typically h reaches values very
close to one, especially when � and � are small and N is large.
These results imply that, starting from any given initial neighborhood structure and

strategy con/gurations, agents are in general able to use neighborhood updating to
coordinate their actions in a quite eKcient way. In fact, if initial neighborhood sizes
were minimal (or very small), agents would tend to stick to their initial radii due
to NNE e8ects and only employ strategy updating. This, however, would generate,
on average, low coordination. Conversely, the pressure of NNE allows neighborhood
adjustment to drive the system toward high coordination outcomes.
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Fig. 1. Means of MC average coordination distributions { Tcm; m = 1; : : : ; M} (a) and MCaverage radius
distributions { Trm; m=1; : : : ; M} (b) as a function of unit neighborhood cost � and frequency of neighborhood
updating �. Population size N = 21. MC sample size M = 1000.

5.3. Coordination, negative network externalities and neighborhood updating

The foregoing evidence about the behavior of h does not convey any information
about actual coordination levels and neighborhood sizes (which are displayed by the
system if �1 or to �−1 are not reached). We then turn now to a more detailed study of
how average coordination and neighborhood (ĉ; r̂) behave across the parameter space
for totally random initial conditions. This exercise will also shed more light on the
ways system parameters a8ect the patterns of coordination and interaction structures.
Let us start by exploring (ĉ; r̂) as a function of unit link costs (�) and frequency of

neighborhood updating (�), for any given population size (N ). First, consistently with
the above results on h, overall coordination levels are much higher than if we started
from a minimal initial neighborhood structure. 9

Second, system parameters engender a non-trivial e8ect on coordination and neighbor-
hood sizes. On the one hand, larger neighborhood costs imply lower coordination
and smaller neighborhood sizes. On the other hand, a smaller frequency of neighbor-
hood updating entails higher coordination and smaller neighborhood sizes. This pattern
(which arises consistently across all sampled values of N ) is illustrated in Figs. 1(a)
and (b), where we plot ĉ and r̂ against (�; �) for N = 21.
To see why, recall that the higher �, the strongerNNE e8ects faced by agents given

N . This will induce lower neighborhood radii. Moreover, the share of agents who
always tend to shrink (possibly irrespective of their local strategy con/gurations) in-
creases. If agents are increasingly unable to employ neighborhood adjustment to locally
coordinate, the system will tend to converge toward SS with lower values of ĉ.
The e8ect exerted by the frequency of neighborhood updating is even more inter-

esting. The larger �, the higher the number of agents who always update strategy and
radius together in subsequent periods, and the heavier the turbulence introduced in the

9 For instance, in 84.6% of all runs (i.e. across the whole sampled parameter space) the society is
absorbed in SS characterized by Tcm¿ 0:9, while in 99.1% of runs the scaled average radius TRm = r̃−1 Trm is
smaller than 0.50. On the contrary, if we start from a minimal initial neighborhood structure, the average
coordination level is only 32.4%.
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Fig. 2. Means of MC average coordination distributions { Tcm; m = 1; : : : ; M} (a) and MC average
radius distributions { Trm; m = 1; : : : ; M} (b) as a function of the population size (N ). Parameter setups:
�∈ {10E − 07; 1:5}, �∈ {0:1; 0:9}, M = 1000.

evolution of con/gurations. If NNE e8ects are suKciently strong, agents will tend to
shrink their neighborhoods very fast. This prevents them to satisfactorily exploit the
initially more connected interaction structure to better coordinate. Therefore, if � is
large, the system quickly converges toward a SS, but it may be more likely trapped
in a low-coordination con/guration. On the contrary, if � is very low, agents almost
always update their strategy for their given r. Thus, they can exploit their larger initial
radii for a longer period of time and possibly achieve a high-coordination SS. From
then on, rare neighborhood updating events act as a ‘tremble’ that de-locks the system
from partial coordination states and pushes it toward full coordination.

5.4. Coordination, interaction structures, and population size

Let us now turn to explore the e8ects on (ĉ; r̂) of a growing population size N
for given (�; �). As noted above, a larger population size implies, everything else
being constant, stronger NNE e8ects. Simple computations show that any agent holding
neighborhoods r ¿ 1+ (2�)−1, r¿ 2, will always shrink to r− 1, irrespective of local
relative frequencies and independent of N . Thus, as N grows, the range of attainable
radii increases (as r̃= 	N=2
) and the inequality above is increasingly satis/ed for any
given �.
Consequently, a trade-o8 arises. Larger N should imply (due to a size e8ect) larger

neighborhood sizes. However, NNE e8ects become more pervasive as N increases, thus
leading to an increasing likelihood of SS characterized by smaller neighborhood sizes.
As Fig. 2(b) illustrates, MC exercises con/rm that this conjecture consistently holds in
all parametrizations. Notice that, given any (�; �), r̂ /rst increases and then converges
toward 1 in all setups. However, this pattern emerges more clearly the smaller is �:
the weaker NNE e8ects, the more the size-e8ect will dominate.
Similarly, a larger N should induce weaker average coordination levels through

increasing NNE e8ects. On the contrary, MC exercises show that average coordination
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is non-decreasing in N and tends to values close to 1, for all sampled values of (�; �):
see for an example Fig. 2(a).
Once again, a trade-o8 seems to arise in our model. On the one hand, larger soci-

eties are characterized by a higher share of agents who do not employ neighborhood
updating and thus /nd increasingly harder to coordinate among them. On the other
hand, the higher current average neighborhood sizes, the lower the likelihood to sus-
tain in a SS a partial coordination con/guration. 10 Thus, as N grows in our model,
partial coordination con/gurations tend to be less sustainable in a SS because the net-
work of links channelling information among players is initially more connected. As
illustrated by Fig. 2(a), the second e8ect dominates the /rst one, across all sampled
(�; �) setups. The possibility of exploiting initial neighborhood structures characterized
by average neighborhood size increasing in N speeds up individual learning and favors
more coordinated con/gurations in the long-run.

5.5. Static vs. evolving interaction structures

In our model, the society is able to e8ectively coordinate despite the presence of
negative network externalities. But how important is the contribution of endogenous
neighborhood formation? To answer this question, we compare here average coordi-
nation levels attained by populations where neighborhood updating is allowed (de-
noted by ĉ�¿0), with those reached by systems where interaction structures are static
(i.e. ĉ�=0). Recall that computer simulations show that coordination is typically de-
creasing in �. Thus, one might expect endogenous neighborhood formation to have a
negative impact on overall coordination.
To begin with, we follow Ellison (1993) and consider the benchmark case of a

homogeneous initial interaction structures (i.e. ri0 = r; r¿ 1). If � = 0, agents will
only adjust their strategy using our deterministic best-response rule. On the contrary,
when �¿ 0, agents will adjust both strategy and radius, given a randomly drawn initial
strategy con/guration but the same initial interaction structure (ri0 = r; r¿ 1).

Consider /rst what happens if the population size is kept constant. If the interaction
structure is static and r tends to r̃, the communication network tends to the complete
one and thus ĉ�=0 increases toward one. However, as illustrated in Fig. 3(a) for the case
N = 11, average coordination in a system with neighborhood adjustment also increases
with r. More importantly, ĉ�¿0¿ĉ�=0 for all r ¡ r̃. This result consistently arises in
all sampled population sizes. Notice also that Fig. 3(a) plots ĉ�¿0 in its worst-case
scenario (� = 1): since ĉ is decreasing in � and ĉ�=0 does not depend on �, all ĉ�¿0

curves (for any given N ) will lie above ĉ�=0.
Second, suppose to increase the population size for any given (�; �). Given any ini-

tial r, the scaled radius r̃−1r will tend to zero as N increases. Thus, a society facing a
/xed interaction structure will experience decreasing coordination levels if it becomes

10 More formally, for any pair of adjacent agents playing opposite strategies, the number k of common
neighbors playing +1 necessary for local stability increases with their average neighborhood size. Therefore,
as N grows, k must grow for any pair of adjacent agents playing opposite strategies. This will systematically
destroy heterogeneous strategy con/gurations. This result is quite general and holds even if neighborhood
updating is shut down (see Fagiolo, 2001).
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Fig. 3. Static vs. endogenous neighborhood structures with homogeneous initial neighborhood radius r. Panel
(a): means of MC distributions of average coordination Tcm in the case � = 0 vs. �¿ 0. Solid and dashed
lines represent average coordination ĉ as the homogeneous neighborhood radius r increases (parameter setup:
N = 11; M = 10 000). Panel (b): means of MC distributions of average coordination Tcm when � = 0 vs.
�¿ 0 as N changes (given r). Parameter setup: ri;0 = r=3 ∀i, M =10 000. Data for �¿ 0 refer to �=0:1
and � = 0:001.

larger and larger because its relative connectivity falls. Since now the average initial
radius does not increase with N , a society with endogenous neighborhood formation
cannot enjoy increasing average coordination as N grows. Therefore, we expect ĉ�¿0

to be decreasing with N for any given (�; �). This is con/rmed by MC simulations
(cf. Fig. 3(b)). However, average coordination in presence of endogenous neighbor-
hood updating always ends up to be larger than ĉ�=0 for all sampled parameter setups
(and for all initial r such that r̃−1r → 0 as N increases). Once again, the combined
e8ects of endogenous neighborhood formation and negative local network externalities
sustain better long-run coordination patterns through the exploitation of favorable local
improvements.
Finally, notice that similar results can be obtained if we assumed heterogeneous

initial interaction structures {ri0; i ∈ I} (i.e. where ∃i∈ I and j∈ I; j �= i such that
ri0 �= rj0) for �¿ 0. Therefore, if players can adapt to their local environment by
both choosing strategies and partners, the society attains more coordination than if
interaction structures were static.

6. Conclusions

The details of the process governing the coevolution of expectations formation, in-
dividual choices and interaction structure might strongly a8ect the long-run outcome
of a coordination game repeatedly played in large populations.
To investigate this issue, we have presented a model in which myopic, spatially

located individuals play a pure coordination game with their nearest neighbors. We
analyze a system characterized by local network externalities which might be positive
when the neighborhood size is relatively small, but they eventually become negative
when the latter becomes too large. We suppose that agents are spatially located and
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that, from time to time, they can adjust both current stage-game strategies and their
neighborhood size.
We have shown that the system almost always converges to a set of absorbing

states in which both full and partial coordination are possible. Nevertheless, as com-
puter simulations indicate, the system is able to reach very large average coordina-
tion levels despite the presence of negative network externality e8ects. Furthermore,
endogenous neighborhood formation allows the system to reach higher coordination
than if interaction structures were exogenous. In addition, larger societies can attain
higher coordination provided that they are suKciently connected at the beginning.
The robustness of the foregoing results may depend on a number of simplifying

assumptions (cf. Fagiolo, 2001 for a more detailed discussion). For instance, is the
behavior of the system a8ected by the particular topology of interactions? In the
model we assumed for the sake of simplicity that agents are located on the nodes
of a one-dimensional lattice. Placing agents on lattices with dimension v¿ 2 (and
assuming Von-Neumann neighborhoods) has two consequences. First, NNE become
comparatively stronger than in the case v = 1 because gross payo8s are still bounded
from above by 1 while neighborhood sizes grow as rv. Second, the number of strategy
con/gurations which are locally sustainable when all agents hold a radius r=1 increases
(cf. Blume, 1993). Hence, minimal interaction structures with lower coordination levels
are more likely and average coordination tends to decrease with v. However, average
coordination is still increasing with � and � (for any given N ), while average radius
is still decreasing in �. On the contrary, a larger population size implies lower coor-
dination if v¿ 2 because the constraints imposed by the geography of interactions on
stable strategy con/gurations are weaker: low coordination con/gurations are therefore
still reachable even when N grows.
Similarly, one might experiment with di8erent neighborhood de/nitions. For instance,

in one dimensional lattices one may allow agents to choose asymmetric neighbor-
hoods (i.e. with di8erent left and right radii). In this situation, agents belonging to
coordinated clusters will prefer to avoid interactions with agents outside the cluster.
Therefore, disconnected networks and segregation into distinct enclaves (and conse-
quently lower coordination) might arise. More generally, when v¿ 2, one could em-
ploy di8erent metrics in order to de/ne neighborhoods. Simulation exercises show that
this may have non-trivial consequences on aggregate coordination. For example, us-
ing hypercubic-shaped (Moore) neighborhoods instead of hyperspheric-shaped (Von
Neumann) ones, generally entails much higher coordination levels.
A second important simpli/cation concerns network externality regimes. In the

paper, we have only analyzed the extreme case where � = 1. But what happens when
NNE are weaker, i.e. �∈ [0; 1)? Interestingly enough, average coordination does not
dramatically decrease with � (for any given parameter point). Thus, positive network
externalities do not allow the society to coordinate better. Moreover, for suKciently
small values of �, the complete network becomes the unique stable interaction struc-
ture as soon as �¡ 1. Thus, populations characterized by �∈ [0; 1) will achieve high
coordination but lower net payo8s. Conversely, strong NNE e8ects (� = 1) allow for
comparatively high levels of coordination together with very small neighborhood sizes,
and thus higher average net payo8s.
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As a third robustness check, one might introduce individual decision rules di8erent
from deterministic best reply (e.g. best-reply with mistakes, log-linear decision rules,
etc.). Along the same lines, the consequences of assuming alternative tie-breaking rules
and updating schemes might be thoroughly analyzed. For example, one could introduce
agents who always randomize when ties occur.
Finally, one might depart from pure-coordination settings and study how endoge-

nous neighborhood formation inMuences the trade-o8 between Pareto-eKciency and
risk-dominance in symmetric coordination games. Existing literature indicates that the
restrictions exogenously imposed on the interaction structure (and on its evolution)
might crucially a8ect long-run outcomes. On the one hand, if one assumes direct part-
ner selection without exogenous restrictions, risk-dominant equilibria are more likely
(cf. Jackson and Watts, 2000). On the other hand, if interaction structure are static but
players could move among /xed locations (and thus indirectly choose their partners),
Pareto eKciency is restored (see e.g. Goyal and Vega-Redondo, 2001, p. 8). Notice
that the nature of endogenous neighborhood formation assumed here lies somewhere in
between the latter two extreme cases. Nevertheless, as our computer simulations show,
the system displays a clear tendency toward the risk-dominant equilibrium across all
parametrizations. In contrast with existing results, negative network externalities are
able to restore convergence to the RD outcome even when unit costs are large enough.
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Appendix A. Proof of Proposition 2

Consider (wlog) individual updating rules when � = 1. Given the current strategy
pro/le, the agent drawn to update her current state (s; r) faces the following relevant
payo8 matrix:

r − 1 r r + 1

s=+1 xi; r−1 − �(r − 1) xi; r − �r xi; r+1 − �(r + 1)
s= −1 1 − xi; r−1 − �(r − 1) 1 − xi; r − �r 1 − xi; r+1 − �(r + 1)

If given local frequency pro/le (xi; r−1; xi; r ; xi; r+1) no ties occur, then best-replies are
unique. If, on the contrary, some ties occur, rede/ne the payo8 matrix by adding some
!¿ 0 to the entry associated to the choice preferred under the relevant tie-breaking rule
(see Section 3). Once again, the resulting embedded game is such that, for any given
strategy con/guration, there is a unique best-response (s∗; r∗) for any individual facing
updating. Therefore, for any given N ¿ 5, �∈ (0; 1], �¿ 0 and �0 ∈�(N ), the Markov
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chain governing the evolution of the process {�t; t¿ 1} satis/es the so-called ‘unique
best-reply property’ (see Blume, 1995). For such Markov processes, we know that
there is a one-to-one correspondence between absorbing states and ergodic sets. Hence,
/nite-time convergence to an absorbing state is a probability one event. Finally, notice
that the tie-breaking assumption concerning the case when (s; ri; t + 1) and (s; ri; t − 1)
are the unique solutions of (6) for s∈ {−1; 1} (i.e. always choose (s; ri; t − 1)), is not
very restrictive. Indeed, let h = 0; 1; : : : ; 2(r − 1) the number of agents playing +1 in
Vr−1 and kr =0; 1; 2 the number of agents playing +1 in the set Vi;r \Vi;r−1. It is easy
to show that a tie occurs (when s=+1), i.e.

xr−1 − �(r − 1) = xr+1 − �(r + 1)¿xr − �r

i8 h¿ r − kr and

�=
(r − 1)(kr + kr+1) − 2h

4(r + 1)(r − 1)
¿

(r − 1)kr − h
2r(r − 1)

: (A.1)

Numerical experiments show that the cardinality of the set of all � satisfying (A.1)
grows as N 2. Hence, as long as � lies in a dense subset of R+, the considered
tie-breaking rules are not relevant and the embedded game has the unique best-reply
property anyway.

Appendix B. Proof of Proposition 4

Point 1. We need to show that: (i) the con/guration {(si; ri) = (+1; 1); all i∈ I} is a
SS; and that (ii) given that all agents play si = +1 only ri = 1 all i can be a SS.
Given payo8 symmetry we can avoid treating the case si = −1, all i. Moreover, as
SS conditions for strategy updating are implied by SS conditions for neighborhood
updating, it suKces to check the latter. When all si =+1, then xi(r) = 1 ∀r = 1; : : : ; r̃.
Hence, for r = 2; : : : ; r̃ − 1, generic payo8 matrices read

r − 1 r r + 1

s=+1 1 − �(r − 1) 1 − �r 1 − �(r + 1)
s= −1 −�(r − 1) −�r −�(r + 1)

As 1− �r¿− �r for any r the strategy con/guration si =+1, all i, is stable for any r.
Moreover, as payo8s are decreasing in r, any agent will shrink until ri = 1, all i.

Point 2. We need to show that for any {si; i∈ I} s.t. |ŝ| �= 1, homogeneous radius
con/gurations are only possible if all agents choose ri = r=1. First, notice that ri = r̃,
all i cannot be a SS. If it were, then it must be that for all i; xi(r̃)¿ 1

2 if s∗i = +1,
while xi(r̃)6 1

2 if s∗i =−1. Letting x∗ be the relative frequency of agents playing +1
in I , then xi(r̃) = (Nx∗ − 1)=(N − 1) if s∗i =+1 and xi(r̃) = Nx∗=(N − 1) if s∗i = −1.
Hence, in a SS: x∗¿ (N + 1)=2N if s∗i =+1 while x∗6 (N − 1)=2N if s∗i = −1. By
heterogeneity, the two inequalities should be satis/ed simultaneously, which gives a
contradiction.
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Second, any con/guration in which ri=2; : : : ; r̃−1, all i, cannot be a SS either. If it
were, SS conditions would jointly imply (cf. Lemma 1) that x∗

i (r)¿
1
2 if s∗i =+1 and

x∗
i (r)¡

1
2 if s∗i = −1. However, if a heterogeneous con/guration is to be stable, any

two adjacent agents, say i and i+ 1, such that s∗i =+1 and s∗i+1 =−1 must be locally
stable. As both holds a r-radius neighborhood, thenVi;r = {i− r; i− r+1; : : : ; i− 1; i+1;
i + 2; : : : ; i + r} and Vi+1; r = {i − r + 1; : : : ; i − 1; i; i + 2; : : : ; i + r; i + r + 1}. Hence
Vi;r ∩Vi+1; r = {i− r+1; : : : ; i− 1; i+2; : : : ; i+ r}. Let us call xc the relative frequency
of agents playing +1 in Vi;r ∩ Vi+1; r whose size is 2(r − 1). Then, since s∗i =+1 and
s∗i+1 = −1:

xi =
2(r − 1)xc + 1(si−r=+1)

2r
and xi+1 =

2(r − 1)xc + 1 + 1(si+r+1=+1)

2r
;

where 1(sj=+1) = 1 if sj =+1 and 0 otherwise. By the inequality above, we must have
that:

2(r − 1)xc + 1(si−r=+1)¿r

2(r − 1)xc + 1 + 1(si+r+1=+1)¡r

or r−1(si−r=+1)¡ 2(r−1)xc ¡ r−1−1(si+r+1=+1), which is impossible as max{1(si−r=+1) −
1(si+r+1=+1)} = 1.

Point 3. To show point 3, we will /rst provide in the following lemma suKcient
conditions for local SS stability. The lemma is based on the observation that in order
for each individual state (si; ri) to be stable, only the number of agents playing +1 in
Vi(r−1), as well as the 4 agents playing +1 in Vi(r)∩Vi(r−1) and in Vi(r+1)∩Vi(r),
matter.

Lemma B.5. (Characterization of local SS conditions). Assume (wlog) that si = +1
(symmetric results hold for s=−1). Let Vr=Vr−1 = {j∈ I : j∈Vr; j �∈ Vr−1}. Then:

1. Suppose that ri = 1. Let h = 0; 1; 2 the number of agents i playing +1 in V2 and
k=0; 1; 2 the number of agents i playing +1 in V2=V1. Then r=1 is locally stable
for agent i if and only if h �= 0 and �¿ 1

4 if either: (i) h = 1 and k = 0; or (ii)
h= 1 and k = 2.

2. Suppose that ri = r̃. Let h = 0; 1; : : : ; 2(r̃ − 1) the number of agents i playing
+1 in Vr̃−1 and k = 0; 1; 2 the number of agents i playing +1 in Vr̃=Vr̃−1. Then
r = r̃ is locally stable for agent i if and only if (supposing wlog N odd): k = 2,
(N − 3)=2 = r − 16 h6 2r̃ − 3 = N − 4 and

�6
2(N − 3 − h)

(N − 1)(N − 3)
: (B.1)
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3. Suppose that ri =2; : : : ; r̃− 1. Let h the number of agents playing +1 in Vr−1 and
kr =0; 1; 2 be the number of agents playing +1 in the set Vi;r \ Vi;r−1. Then r = ri
is locally stable for agent i if and only if kr �= {0; 1} and

kr+1 = 0; 1 kr+1 = 2

kr = 2 h= r − 1; r − 2; : : : ; 2r − 3 h= r − 1; r − 2; : : : ; 2r − 3

�6 2(r−1)−h
2r(r−1)

2(r−1)−h
2r(r+1) 6 �6 2(r−1)−h

2r(r−1)

(B.2)

Proof. We prove here only the case ri = 1 (proofs of cases 2 and 3 are similar
but require heavier computations). Consider /rst SS inequalities that (h; k) must sat-
isfy in order for (+1,1) to be stable for given the strategy choice si = +1. Since
x1¿max{ 1

2 ; x2 − �}, then h=2¿max{ 1
2 ; (h + k)=4 − �}. This implies h¿ 1 and k −

h6 4�, which is always satis/ed for any �¿ 0 unless when h=1 and k=2, where we
need �¿ 1

2 . If we now add constraints implied by the inequalities concerning a strategy
switch, then the only additional restrictions come from the fact that x2¿ 1 − x1 − �,
which implies 4−3h−k6 4�. As h=1; 2 and k=0; 1; 2, the (lhs) of the last inequality
is always 6 0 unless (h; k) = (1; 0), where we need �¿ 1

4 .

Combining inequalities (B.1) and (B.2) in Lemma B.5 it is easy to see that a
non-minimal (heterogeneous) neighborhood con/guration can be stable only if �(N −
3)(N −5)6 2. By applying local SS conditions to every agent, one can show that, e.g.
the following partial coordination, non-minimal neighborhoods, con/guration is globally
stable (N = 21) if �6 8=(7 ∗ 21): {−1;−1;−1; +1;+1;+1; +1;+4;+4; −10;+2;+1;
+1;−4;−1; −1;−1;−1; −1;−1;−1}, where (sign)x means s= (sign)1 and r = x.
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