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Abstract

The paper presents a model of endogenous growth in which firms are modeled as

boundedly-rational, locally interacting, agents. Firms produce a homogeneous good employ-

ing technologies located in an open-ended technological space and are allowed to either

imitate existing similar practices or to locally explore the technological space to find new, more

productive, techniques. We first identify sufficient conditions for the emergence of empirically

plausible GDP time-series characterized by self-sustained growth. Then, we study the trade-off

between individual rationality and collective outcomes by providing an example in which more

rational agents systematically perform worse than less rational ones.
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1. Introduction

The analysis of the determinants of self-sustained processes of economic growth

fueled by technological advances has received an increasing attention in the past few

years.

On the theoretical side, ‘Endogenous Growth’ and ‘Evolutionary’ models have

been trying to explain how positive feedbacks in knowledge accumulation affect per-
capita income growth (Romer, 1990; Grossman and Helpman, 1991; Nelson and

Winter, 1982; Verspagen, 1993; Silverberg and Verspagen, 1994). On the empirical

side, a rapidly expanding literature on the economics of technological change has

been instead exploring the drivers of innovation and diffusion at the levels of firms,

sectors and whole Countries (see, among others, Freeman, 1994; Rosenberg, 1994;

Nelson, 1995; Stoneman, 1995).

Notwithstanding this great effort, many scholars have recently spelled out a

negative assessment on the extent to which ‘neoclassical’, ‘endogenous’ and
‘evolutionary’ growth theories have been able to match ‘old’ and ‘new’ growth

‘stylized facts’ and to provide ‘fresh’ testable implications (cf. Durlauf and Quah,

1998; McGrattan and Schmitz, 1998; Silverberg and Verspagen, 1996). As argued by

a large body of literature (cf. e.g. Nelson, 1998; Dosi et al., 1994), these difficulties

are mainly due to the large gap still existing between what we historically know

about the microeconomics of technical change, innovation and technological

diffusion, and the ways we represent that knowledge in formal models.

For example, economic growth models do not usually account for both systematic
heterogeneity observed in technological competencies and the fine details of the

mechanisms governing the dynamics of interactions among economic agents.

However, microeconomic diversity and institutional settings have been shown to

affect in non trivial ways the properties of aggregate dynamics. Hence, any

‘representative agent’ reduction employed by a good deal of contemporary literature

might turn out to be misleading whenever heterogeneity and interactions are

important factors in explaining economic growth (see Kirman, 1992, 1998).

Furthermore, technological advances typically involve business firms whose R&D
activity is characterized by routinized decisions, trial-and-error, mistakes and

unexpected discoveries (cf. Dosi and Lovallo, 1998). Consequently, forward-looking

rationality typically imputed to agents in standard models of growth might not be a

good proxy, especially when firms face complicated environments where novelty

endogenously emerges as the outcome of others’ behaviors (cf. Conlisk, 1996; Dosi et

al., 2003).

In economies populated by heterogeneous agents (e.g. firms) who repeatedly

interact, innovate and adaptively learn about the world where they live in, observed
aggregate regularities can hardly be understood as equilibrium paths (Silverberg and

Verspagen, 1997).

Empirically observed properties of macroeconomic time-series might be instead

more fruitfully interpreted as ‘metastable’ regularities emerging in a complex

evolving system. For example, the observed regularities displayed by the patterns

of self-sustained GDP aggregate growth may be described as emergent properties of
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an economy composed of many heterogeneous simple firms interacting in some

properly defined technological space (cf. Lane, 1993a,b).

Following this intuition, we present a computer-simulated model of endogenous

growth in which simple, boundedly-rational firms produce a homogeneous good

employing technologies located in an open-ended (i.e. without boundaries)

productivity space. Technologies located close to each other have similar productiv-

ities, while more distant technologies perform better on average. Entrepreneurs can
either imitate existing practices (similar to the one they currently master) or locally

explore the technological space to find new and more productive techniques (i.e.

innovate). We ask whether (and, if so, in which technological regimes) such an

economy is able to generate self-sustaining patterns of aggregate growth with

statistical properties similar to those displayed by empirically observed time-series.

The paper is organized as follows. In Section 2, we outline in more detail the

building blocks and theoretical conjectures supporting the model described in

Section 3. Next, in Sections 4�/6, we present an extensive analysis of computer
simulations. Section 7 discusses some econometric properties of the simulated time-

series. The tension arising in the model between individual rationality and collective

performance is illustrated with a simple example in Section 8. Finally, Section 9

draws some conclusions and flags research developments ahead.

2. Decentralized knowledge accumulation, interactions and collective outcomes

A large body of empirically-grounded contributions has recently investigated the
main properties of the processes underlying the emergence of self-sustaining growth

patterns. In a nutshell, two key sets of insights emerge from this literature (cf.

Rosenberg, 1982; Freeman, 1982; Dosi, 1982).

First, technological search and knowledge diffusion in presence of dynamic

increasing returns seem to play a primary role among the engines of growth.

Technological advances are endogenously generated through resource-expensive

search undertaken by a multiplicity of agents. Search is generally characterized by

radical uncertainty and innovative entrepreneurs are driven by the belief that ‘‘there
might be something profitable out there’’. As agents are generally unable to form

probability distributions on the outcomes of their search efforts, systematic mistakes

in innovative search and adoption are very likely.

Second, the process of technical change appears to be driven not only by

innovation but also by time-consuming diffusion (see also Jovanovic and Rob, 1989;

Jovanovic, 1997). Innovations are indeed not entirely appropriable and knowledge

progressively spreads (with some time lags involved) to other agents who might

catch-up by investing in imitation. Knowledge accumulation generally entails
dynamic increasing returns at the level of individual agents. However, radically

new technologies typically involve discontinuities and only part of the old knowledge

might be useful in the exploitation of subsequent technologies.

In order to embody the foregoing properties in the present analysis, we will start

by describing search and innovation activities, technological diffusion and knowl-
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edge accumulation as direct interaction processes taking place in some (high-

dimensional) technological space (see Kirman, 1998; Chiaromonte and Dosi, 1993).

Suppose indeed that the technologies currently adopted by all firms in the economy,

as well as those still to be discovered, are associated to points of a metric space (e.g. a

2-dimensional regular lattice). Any metrics the space is endowed with will then

metaphorically represent technological dissimilarity: similar technologies will lie

close to each other, while more productive technologies will be situated far from
existing ones. Both imitative and innovative activity might be, therefore, represented

as an interaction process in which the sets of interacting units are firms and

technologies. Any firm will directly affect the behaviors of other firms employing

similar technologies. Since adopted technologies will typically change in time,

interaction structures (e.g. who interacts with whom) are likely to endogenously

change over time as well.

More precisely, we will employ the following metaphor. Think of the technological

space as an empty, unbounded sea. The notional production possibility set is
composed of a discrete, countable set of production activities (technologies,

paradigms, etc.), each of which can be thought as an island randomly placed in a

point of the sea and endowed with a mine. The economy is populated by a discrete,

finite population of firms (or ‘Schumpeterian’ entrepreneurs) initially distributed

across a small subset of islands (i.e. the set of fundamentals). We assume that an

island can be at any point in time exploited by more than one agent, while each agent

cannot exploit more than an island at the same time.

Every agent currently living on an island represents one of the adopters of
technology embodied in it (or, in our metaphor, a ‘miner’) and extracts a

homogeneous good (i.e. GDP). Mining is possibly characterized by increasing

returns to scale in the number of current adopters due to knowledge-accumulation.

Since distances between islands in the sea are a proxy of technological (productivity)

differences and the sea is unbounded, notionally unlimited opportunities do exist in

the economy, albeit at each point in time only a small subset of mines are known and

exploitable, i.e. those which have been operated by any one firm so far.

We suppose that miners might become explorers by leaving the island they are
working on and traveling around to find still unknown, possibly better, islands. The

set of fundamentals can be, therefore, enlarged through endogenous innovations.

Alternatively, miners might try to capture informative signals about the location of

already known, better, islands and decide whether to imitate firms currently working

on them. Of course, this representation of the space of technological opportunities

and of the related innovation processes is much more abstract than any particular

empirical example. However, we believe that it captures some of their general

features, including the intrinsic uncertainty of search, the idiosyncratic and
cumulative nature of technological learning, and the painstaking patterns of

melioration and diffusion of specific bodies of knowledge (i.e. of technological

paradigms ).

Within this framework, we will address the following issues. First, we will attempt

to identify conditions under which the economy is able to tackle the trade-off

between ‘exploitation’ of existing technologies and ‘exploration’ of potentially
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superior ones and to generate patterns of self-sustaining growth2. Second, extensive

Montecarlo (MC) simulations will be performed so as to map technological regimes

(i.e. strength of path-dependency in learning achievements, levels of individual

willingness to explore, etc.) into aggregate growth patterns. Third, as a plausibility

check, we shall investigate whether the model is able to generate GDP time-series

displaying statistical properties similar to the empirically observed ones. Finally, we

will discuss the conflict arising in the model between individual rationality and
collective economic performance. In particular, we shall investigate a simple

situation wherein boundedly rational firms are replaced by a representative agent

with unbounded computational skills and complete information about the structure

of the economy.

3. The model

Consider a technological space represented as a 2-dimensional, infinite, regular

lattice endowed with the ‘Manhattan’ metrics d1
3. Time is discrete and the generic

time-period is denoted by t�/0, 1, 2, . . .. The economy is populated by a finite set of
agents I�/{1, 2, . . ., N}, N �/�, and a countable infinite number of islands, indexed

by j � /{1, 2, . . .}. There is only one good (GDP), which can be ‘extracted’ from any

island.

Each node (x , y ) in the lattice can be either an island or not and each island has a

size of one node. Let p (x , y ) be the probability that the node (x , y ) is an island. We

will assume that p (x , y )�/p , all (x , y), where p � /(0, 1). Each island j is completely

characterized by its coordinates (xj , yj) in the lattice and by a ‘productivity’

coefficient sj �/s (xj , yj ) � /R� (i.e. the amount of good which can be extracted if there
is only one agent on j ).

Each agent i � /I is in turn characterized, at each t , by her state ai,t and her position

in the lattice (xi,t , yi,t ). The state of an agent ai,t can be: ‘miner’, ‘explorer’ or

‘imitator’, i.e. ai,t � /{‘mi ’, ‘ex ’, ‘im ’}.

Denote by mt (xj , yj ) the number of agents currently working on island j and

define an island j to be currently ‘known’ if mt (xj , yj)�/0 for at least a t :05/t5/t ,

i.e. if it currently hosts some agents or if it did host some miners in the past.

Accordingly, let the set of currently ‘known’ islands be defined as:

Lt�fj�1; 2; . . . :�05t5t:mt(xj; yj)�0g (1)

Let us call ‘colonized’ a known island which is currently exploited at t , i.e. an island
j � /Lt :mt(xj , yj)�/0. Conversely, all islands which are not in Lt will be ‘unknown’,

2 The exploitation�/exploration trade-off in individual decisions (as well as its consequences for

aggregate efficiency) is studied in March (1991).
3 The distance between any two nodes (x , y ) and (x? , y ?) in the lattice is thus: d1�/jx�/x?j�/jy�/y ?j. The

choices of the lattice (and its dimension), as well as that of the metrics, do not crucially affect our results.
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since no agent has previously exploited them. Finally, denote the cardinality of Lt by

lt . Let us turn now to describe how the economy evolves.

3.1. Production

Suppose that at time t agent i � /I is a ‘miner’ currently located on island j � /Lt with

coordinates (xj , yj ). We assume that i will extract, at no cost, an output Qi ,t given

by:

Qi;t�s(xj; yj)[mt(xj; yj)]
a�1 (2)

where a]/1. Hence, the current total output of island j � /Lt will be:

Qt(xj; yj)�s(xj; yj)[mt(xj; yj)]
a: (3)

Total output (GDP) will obviously read: Qt�aj �Lt
Qt(xj; yj):/

3.2. Exploration and innovation

At time t , each miner currently working on island j � /Lt decides to become

explorer (i.e. ai ,t�1�/‘ex ’) with probability e]/0, where e is taken to measure the

willingness to explore of agent i (which in this first approximation is the same for all

agents).
If i decides to become explorer, she leaves island j and ‘sails’ around until

another*/possibly still unknown*/island is discovered. During the search, explorer

i is not able to extract any output and moves through the lattice following the ‘naı̈ve’

stochastic rule:

Probf(xi;t�1; yi;t�1)�(x; y)½(xi;t; yi;t)g�
1

4
U½x�xi;t½� ½y�yi;t½�1; all (x; y) (4)

While exploring, each agent carries the ‘memory’ of the last quantity of output
produced in the state of ‘miner’, i.e. Qi ,t , where t is the last period of mining before

leaving.

The new location of the explorer (xi ,t� 1, yi ,t� 1) might obviously be: (i) ‘sea’; (ii) a

‘known’ island j � /Lt ; (iii) a ‘new’ island j � /{1, 2, . . .}\Lt . Let us focus on the third

case4. If the node inspected by explorer i at time t�/1 is a ‘new’ island (which

happens with probability p ), we assume that the new island j* with coordinates (xj* ,

yj*)�/(xi ,t� 1, yi ,t� 1) is added to the set of ‘known’ islands, i.e. Lt� 1�/Lt�{j*} and

lt�1�/lt�/1.
In order to capture the crucial distinction between innovations within existing

knowledge bases and introduction of radically new ‘technological paradigms’ (cf.

Dosi, 1982), we let the ‘intrinsic’ productivity coefficient of a ‘new’ island j*

4 In the first case (xi ,t�1, yi ,t�1)"/(xj , yj ) for all j , and ai ,t�1�/‘ex ’ (i.e. the exploration goes on), while

in the second case, there will be a j �/Lt such that (xi ,t�1, yi ,t�1)�/(xj , yj ) and hence the explorer i

becomes miner on j �/Lt , i.e. ai ,t�1�/‘mi ’.
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discovered by an explorer carrying the output memory Qi ,t to be:

sj��s(xj�; yj�)� (1�W ) �f[½xj�½� ½yj�½]�8 � Qi;t�6g (5)

where W is a Poisson-distributed r.v. with mean l�/0, 6 is a uniformly-distributed

r.v., independent of W , with mean zero and variance 1; and, finally, 8 � /[0, 1]. The

interpretation of Eq. (5) is straightforward. The initial productivity of a ‘new’ island

depends on four factors, namely: (i) its distance from the origin; (ii) past ‘skills’ of the

discoverer, i.e. 8 �/ Qi ,t (i.e. a cumulative learning effect); (iii) a random variable W

which allows for low probability high ‘jumps’ (i.e. changes in technological

paradigms); (iv) a stochastic i.i.d. zero-mean noise 6 controlling for high-probability
low-jumps (i.e. incremental innovations).

3.3. Interactions, diffusion of knowledge and imitation

Exploitation of existing technologies is not associated to production only. Indeed,

miners might also decide to imitate currently known technologies by taking

advantage of informational spill-overs emanated by more productive islands located

in their technological neighborhood.

More formally, the process of knowledge diffusion and imitation works as follows.

Let mt be the number of ‘miners’ currently present in the economy. At time t , agents

mining on any ‘colonized’ island j deliver a signal, which is instantaneously spread in
the system. A signal delivered from (xj , yj) is received by a miner currently located at

(x , y)"/(xj , yj), independently of all other delivered signals, with probability:

wt(xj; yj; x; y)�
mt(xj; yj)

mt

expf�r[½x�xj ½� ½y�yj ½]g; r]0: (6)

We call wt (xj , yj ; x , y ) the intensity of the signal. Notice that wt (xj , yj ; x , y ) is

increasing in the share of miners working on j and decays exponentially with the

distance between source and receiver.

Furthermore, each signal has a content ct (xj , yj) equal to actual productivity of the

island from which it is emitted, given by:

ct(xj; yj)�
Qt(xj; yj)

mt(xj; yj)
: (7)

Agent i will simply choose the signal associated to the largest content among all

signals she has received (and randomizing if ties occur).

Let us suppose that the receiver i is a miner on j. If the selected technology h is not

the one she is currently mastering (i.e. h "/j), she will become an ‘imitator’ (ai ,t�1�/

‘im ’). She will then move toward the imitated island (one step per period) and

following the shortest path leading to h. Therefore, she will adopt h after k�/jxh�/

xj j�/ jyh�/yj j time periods. This allows us to embody in the model the time-

consuming nature exhibited by many processes of technological adoption and

diffusion. Finally, once the imitated island is reached, she will turn again her state
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into ‘miner’, i.e. ai ,t�k�1�/‘mi ’. If on the contrary she chooses to stay on her current

island, nothing happens and she will keep working on j at time t�/ 1.

3.4. Discussion

Before describing the implementation of the model and discussing the results,

some considerations are in order. First, in tune with the philosophy of agent-based

and evolutionary modeling, we start by analyzing a very simple economy populated

by naı̈ve agents behaving according to routinary, myopic rules. For instance, the

exploration rule (4) implies that agents are not aware of (and cannot learn) the fact

that islands are on average more and more productive the further away one goes

from the origin of the lattice, as the expected location after k periods is simply the

starting node:

E[(xi;t�k; yi;t�k)½(xi;t; yi;t)]�(xi;t; yi;t):

Moreover, we make the extreme assumption that the activities of exploration,
imitation and production are costless and mutually exclusive. In fact, miners cease to

produce while imitating and exploring. This can be interpreted as a sort of

opportunity cost agents must bear in order to divert resources from production to

R&D or imitation. In a more realistic picture, firms should have been endowed with

additional decision rules governing allocation of resources among exploitation and

exploration activities (see e.g. Nelson and Winter, 1982). The strategy of keeping as

small as possible the microeconomics of firm behaviors allows us to focus on the

effects of the purported engines of growth only (i.e. innovation, diffusion, etc.).
Second, the parameters governing production, exploration, innovation and

imitation define easily identifiable technological regimes. In particular, whether

e � /(0, 1] or e�/0 allows us to discriminate between economies in which endogenous

innovation is permitted or not. Furthermore, a tunes the regime of returns to scale in

production, with a�/1 meaning increasing returns to scale, e.g. due to learning by

doing or economies of agglomeration. In addition, l and p tune the degree of

notional ‘opportunities’ in the economy. Indeed, a large l lets average productivity

of a newly discovered technology to be sensibly larger than that associated to
currently ‘known’ islands. Conversely, a smaller l implies search processes

characterized by small improvements upon currently mastered practices (i.e.

incremental innovations). Likewise, a larger p induces a larger average number of

per-period discoveries and thus is associated to economies where technological

opportunities are very likely.

Third, the strength of path-dependency in innovation depends positively on 8 .

Large 8 ’s mean that more skilled ‘explorers’ (i.e. ‘miners’ who have been more

efficient in the past) are likely to discover more productive islands today and,
therefore, to produce more in the future, thanks to a sort of ‘learning-to-learn’

mechanism à la Stiglitz (1987).

Fourth, the process of knowledge diffusion governs the interaction regime in the

model (see Fagiolo, 1998; Kirman, 1998). Indeed, the behaviors of any firm is

directly affected by the information signals emanated by agents employing similar
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technologies. The parameter r]/0 tunes the ‘degree of locality’ of the interactions:

the larger r , the more the process of diffusion of knowledge is local, since signals will

tend to reach, in probability, only ‘nearest neighbors’. Two extreme cases are: (i) r�/

0, i.e. interactions are global, as information diffusion does not depend on the

distance between source and receiver; and (ii) r�/�, i.e. no signals are spread and

interactions are shut down.

3.5. Initial conditions, timing and implementation

Suppose that at time t�/0 a set of initial islands L0 (together with their coordinates

in the lattice) is given and that all agents are randomly distributed across the l0

‘mines’. Assume also that the intrinsic productivity coefficients of any initial island
j � /L0 is simply s (xj , yj )�/jxj j�/jyj j.

In each t�/1, 2, . . ., given current agents’ coordinates and states, the timing of

decisions and events occurring in a generic iteration (i.e. in the time interval (t�/1, t ])

runs as follows. First, agents take their decisions: miners update output and choose

whether to start searching; explorers select the next portion of the lattice to explore

(and, possibly, they find a new island); imitators keep approaching the technologies

they have chosen to adopt. Second, interactions take place through information

diffusion. Finally, all time-t system variables are accordingly updated and the next

iteration starts.
The model is an example of a so-called ‘artificial economy’ (cf. Lane, 1993a;

Epstein and Axtell, 1996). Unless the focus is not on particular stationary cases (e.g.

e�/0), one is bound to analyze its main properties by resorting to computer

simulations. Analytical solutions are not indeed achievable for the full-fledged form,

because of the underlying complication of the stochastic processes updating micro-

and accordingly macro-system variables.

In the next sections we will present an overview of simulation results5, with

particular emphasis on the aggregate properties of the simulated time-series of the
log of GDP, i.e. q (v )�/{log Qt , t�/1, . . ., T ; v}, where v is a point in the

parameter space V, that is:

v �V	f(r; l; a; 8 ; p; e; N; T) �R2
��[1; �)�[0; 1]3�f1; 2; . . .g2g (8)

To begin with, we will analyze how the model behaves in some ‘benchmark’

parametrizations, in order to assess the role played by knowledge-specific increasing
returns, imitation and exploration in the dynamics of the economy. In particular, we

will start by addressing the question whether the model is able to display patterns of

persistent growth and, if so, under which behavioral and system parametrizations

(especially concerning the degree of ‘open-endedness’ of the economy, as well as

innovation and diffusion rates).

5 For a thorough discussion of the results presented in the following Sections and for extensions of the

model, cf. Fagiolo (2000).
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4. The emergence of self-sustained growth: bounded versus open-ended economies

A key feature of the model resides in its ability to allow for an endogenous

evolution of the set of fundamentals of the economy. But, in the first place, what

happens if one bounds, to some extent, the dynamics governing the progressive

enlargement of the technological frontier? Put it differently, is the economy able to

generate patterns of self-sustaining aggregate growth if one considers stationary
environments where agents behave on the grounds of a fixed set of fundamentals?

The answer to this question is no. To see this, let us first analyze the benchmark

case of a ‘bounded’ economy (i.e. one in which Lt 	/L , �/t) and considering two

distinct setups.

4.1. Bounded economies without exploration

Assume first no possibility of exploration whatsoever, i.e. e�/0. In this setup,

agents can exchange information about a fixed set of technologies, but they cannot
endogenously introduce innovations in the system. To study the behavior of the

system, we can focus, without loss of generality, on economies composed of only two

islands, i.e. jL0j�/l0�/2.
In this case, we may neglect any spatial consideration and suppose that the

productivity coefficients (s1, s2) � /R�
2 also represent the technological distance

between islands. More precisely, let (s1, s2)�/(1, s ), s�/1, 2, . . ., and suppose that if a

miner working on island j � /{1, 2} at the beginning of time t�/s decides to imitate

island j ?"/j , then she will reach j ? at the end of time t�/1 and start producing at time
t . Island 2 plays here the role of the ‘best practice’ for s ]/2, while the case s�/1

depicts the benchmark case of homogeneous technologies.

In either case, the dynamics of the economy is entirely driven by the process of

information diffusion (cf. Section 3.3), until one out of the two technologies, say j ,

manages to capture all N agents. In that case, no signal can be emitted by the other

island and, therefore, the economy locks-in at the steady state where total output is

Q*�/sjN
a . An example of the behavior of the time-series qt is shown in Fig. 1(a).

As intuition suggests, however, path-dependency entailed by increasing returns
will tend to drive all agents, through waves of imitation, toward the island

characterized by the actual (not initial ) highest productivity. This in turn implies

non-ergodicity in the stochastic process governing output evolution and, conse-

quently, potential inefficiency.

More formally, define Mjt as the random variable: ‘‘number of agents ‘mining’ on

island j at time t ’’, j � /{1, 2}. It can be easily shown (see Fagiolo, 2000 for details),

that, if s ]/2, M
¯

t �/{(M1t , M2t ), t ]/1} is a non-stationary, aperiodic Markov

process with two absorbing states m
¯
��/(0, N ) and m

¯
��/(N , 0).

Moreover, let p�
s (m0; a , r ) be the absorption probability in island 1, i.e. the

probability of being absorbed in the inefficient limit state if s ]/2 given m0�/m10 � /

{1, . . ., N�/1} and system parameters. Simulations indicate that p�
s (m0; a , r) is non-

increasing in s and r and non-decreasing in m0 and a . Fig. 1(b and c) show examples

of the estimation of p�
s (m0; a , r ) for s�/1, 2, as (m0; a , r ) vary in the relevant
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parameter space. Notice that when the initial number of ‘inefficient’ adopters is

below a certain threshold (which itself increases with the strength of returns to scale

a and the technological gap s ), the system will inevitably converge to the efficient

outcome no matter how large are the incentives to stick to the initial choice.

However, when m0 goes through that threshold, the probability of ending up in the

inefficient state becomes strictly positive and grows as the incentives to knowledge

accumulation increase. In the limit, when only a few miners are initially aware of the
superior technology and returns to scale are increasing (a�/1), the probability that

the system is absorbed by island 2 converges to zero. Finally, when s ]/2, the more

information diffusion is local (i.e. the greater r ), the smaller the average number of

miners which leave their islands and, consequently, the less likely the event that

waves of imitation triggers a migration from the efficient technique toward the

inefficient one, see Fig. 1(d). Therefore, for a given (m0, a ), the probability of being

absorbed in island 1 will decrease with r (increasingly fast as s grows).

4.2. Bounded economies with exploration

In a setup without exploration, non-ergodicity of the stochastic process M
¯

t

implies that the long-run steady-state GDP level is determined by unpredictable,

early waves of imitation (cf. David, 1992). As it happens in Polya urn schemes (cf.

Arthur, 1994), the system locks-in in the long run. However, in Arthur’s model lock-

in occurs because population size increases without bound. This implies that the

perturbations introduced by individual choices become irrelevant in the long-run.

Conversely, in the reduced form of the model presented here the population size is
constant and perturbations die away as soon as an island manages to capture all

miners.

In order to explore what happens when the perturbation rate does not vanish, we

study a second benchmark setup where: (i) the probability of finding new islands

(that is the innovation probability) is p�/0 as before; (ii) exploration (as well as

information diffusion) is permitted (e�/0), but only inside the initial set of

‘knowledge bases’.

In this economy miners can become explorers with some probability e�/0, but
they will only be able to ‘sail’ within the box containing all initial islands (or,

equivalently, on a finite regular lattice with periodic boundaries). This implies that,

for a given population size, the lock-in of the system will not generally occur, since

there is always a positive probability that ‘non conformist’ decisions will induce

phase-transitions in the system. Notice that here we allow for a high potential source

of ‘irrationality’ and ‘idiosyncrasy’ in individual behaviors, because agents could

always decide to leave the island they are working on, even though all agents are

mining on it.
In a two-islands setup, the economy is characterized as before by the Markov

process M
¯

t , together with the stochastic process describing the current number of

explorers. However, unlike the previous case, transition probabilities are not only

influenced by the propensities to imitate technologies with higher revealed

productivity, but also involve a certain probability of ‘exploring’. Islands represent
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Fig. 1. (a) A bounded economy without exploration. A typical log(GDP) time series. Par. Setup: N�/100,

p�/0.1, r�/0.1, a�/1.5. (b) A bounded economy without exploration. Estimated probability of

absorption in island 1 as a function of a and m0 in the case s�/1. (c) A bounded economy without

exploration. Estimated probability of absorption in island 1 as a function of a and m0 in the case s�/2

(r�/0.01). (d) A bounded economy without exploration. Estimated probability of absorption in island 1

as a function of r and s . Par. Setup: m0�/65, a�/1.4.
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here ‘basins of attraction’ among which the system continually oscillates6. The

stochastic process of exploration/imitation yields persistent output fluctuations but

only transitory growth. Over finite time periods, increasing returns and knowledge

diffusion induce agents (on average) to move toward currently more efficient islands,

cf. Fig. 2(a and b) for the two cases s1�/s2 and s1B/s2. However, exploration allows

with positive probability ‘de-locking’ bursts, also toward notionally less efficient

islands. In a sense, persistent fluctuations are in this case generated by a problem of
imperfect Schumpeterian coordination in presence of dynamic increasing returns to

learning.

4.3. Exploring in an open-ended economy: some qualitative results

In both stationary environments analyzed so far, self-sustaining growth emerges
only if one superimposes an exogenous Solow-like drift on the best-practice

production function. Otherwise, as long as agents behave on the grounds of fixed

fundamentals, economic growth is a transient phenomenon.

Consider now the more general case where e�/ 0 and the economy is open-ended

(i.e. agents explore in a technological space without boundaries). Since firms are able

to endogenously induce a drift in the technological frontier, the economy exhibits,

for a wide range of parameters, patterns of self-sustaining (exponential) growth, cf.

Fig. 37.
In all these cases, many other interesting regularities do actually arise. Suppose to

start from a fairly uniform distribution of N agents working on the initial set of

‘known’ islands L0. First, the number of currently ‘known’ islands linearly increases

in time. However, both the percentage of ‘known’ islands and the number of

‘colonized’ technologies fall quickly and then follow a stationary process. This

suggests that a typical evolution of the system runs as follows. In the first time

periods, diffusion of knowledge drives agents to concentrate on a relatively small

cluster of ‘known’ islands which, thanks to dynamic increasing returns, tend to be
the most efficient ones. Relatively ordered spatial patterns of colonized islands are

then likely to emerge, due to the local nature of both the exploration and imitation

processes. In Fig. 4(a), the path of expansion of a ‘best practice’ proxy bt� is plotted8,

together with four ‘snapshots’ showing the locations of currently ‘colonized’ islands

in the positive orthant of the technological space for different time periods t�/0, 500,

1000, 1500. While in the early time periods of the simulation small (stochastic) events

6 The properties of the stochastic process governing the evolution of the system are qualitatively similar

to those discussed in Kirman (1993). For instance, when the ratio between willingness to explore and the

size of the population (e /N ) decreases, the system tends to spend an increasing number of time periods

close to the absorbing states of an e�/0 economy.
7 All results reported in this Section refer to the parametrization: p�/0.1, r�/0.1, e�/0.1, l�/1, 8�/

0.5, N�/100, a�/1.5, T�/1000. Cf. Section 5 for an extensive MC investigation of the parameter space.
8 We define bt��/(xt * , yt * ), where xt *�/max{jxjt j, j �/Lt } and yt��/ max{jyjt j, j �/Lt }, i.e. the vertex of

the smallest rectangle containing all currently known islands whose distance from the origin is the

maximum one. Notice that bt� does not necessarily coincide with a known island.
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select the region of the lattice where exploration will be initially carried through, the

path-dependent nature of the overall process tends to keep the economy inside that

region. Therefore, ‘rare’ events (i.e. exceptional discoveries), feeding path-depen-

dently upon diffusion and incremental innovations thereafter, might be able to

trigger a self-reinforcing process whose ultimate outcome is a pattern of exponential

growth. Indeed, some ‘lucky’ explorers are likely to find intrinsically superior islands

outside the ‘realized economy’. Although they might not be able to adequately

exploit the opportunities of the ‘new’ island by themselves, the ‘extraordinary’ nature

of their discovery might nevertheless induce other agents to move there in the future

and, consequently, increase its actual productivity. This allows the system to avoid

lock-in, provided that e�/0 and the technological regime is characterized by

sufficiently strong opportunities (see Section 5).

Second, in accordance with empirically observed patterns of innovation, diffusion

and adoption (see e.g. Dosi, 1982), the model generates s-shaped diffusion curves in

the number of agents currently mastering a given technology. Moreover, because

Fig. 2. (a) A bounded economy with exploration: number of miners in island j�/1, 2 when s1�/s2. Thick

line: island 2. Par. Setup: N�/100, r�/0.1, e�/0.1, a�/1.4, m0�/50. (b) A bounded economy with

exploration: number of miners in island j�/1, 2 when s1B/s2. Thick line: island 2. Par. Setup: N�/100, r�/

0.1, e�/0.1, a�/1.4, m0�/50.
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many techniques are allowed to coexist over the same time intervals (if they exhibit

sufficiently similar realized productivities), one usually detects overlapping diffusion

patterns as those depicted in Fig. 4(b). As the set of current available technologies

keeps enlarging due to the unceasing process of exploration and innovation, firms

migrate toward more productive islands, entailing processes of diffusion, which
occur at different rates. These rates typically depend on the characteristics of the

technologies involved in the process, the incentives provided by the economic

environment and the features of the adopters themselves. In very general terms, the

speed at which innovations are adopted (and replaced) is increasing in both their

absolute initial productivity distance and the extent to which interactions are global.

Also, if information is diffused not too locally, radical innovations tend to retain

their leadership much longer than incremental ones. Yet, the rate at which

innovations are substituted is decreasing with the average willingness to explore of
the agents in the system.

5. The sources of self-sustaining growth

The basic conclusion stemming from the analyses presented so far is that patterns

of exponential growth might be endogenously generated in the system only if firms

are able to explore in an open-ended technological space. In this Section, we study by
means of extensive MC exercises how system parameters affect the distribution of

long-run average grow rates (AGR):

gm(v)�
qm;T � qm;0

T
; (9)

Fig. 3. Patterns of exponential growth in an open-ended economy with exploration. Par. Setup: N�/100,

p�/0.1, r�/0.1, a�/1.5, e�/0.1, l�/1, 8�/0.5, T�/1000.
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where m�/1, . . ., M is the MC run, T is the econometric sample-size, veV is defined

in Eq. (8) and qm ,t is the log of aggregate GDP at time t . In particular, we will ask

how the overall performance of the economy, as measured by the mean of AGR:

Fig. 4. (a) Spatial diffusion of colonized islands and ‘Best Practice’ proxy (xt�, yt�). Par. Setup: N�/100,

p�/0.1, r�/0.1, a�/1.5, e�/0.1, l�/1, 8�/0.5. (b) Diffusion of technological innovations. An example of

overlapping S-shaped patterns of adoption. Par. Setup: N�/100, p�/0.1, r�/0.1, a�/1.5, e�/0.1, l�/1,

8�/0.5, T�/1000.
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ḡM(v)�M�1
XM

m�1

gm(v); (10)

changes in different technological and learning regimes (i.e. in different regions of the

parameter space)9.

A first clear-cut result that MC simulations point out is that*/everything else

being constant*//ḡM(v) appears to be positively influenced by: (a) the extent to

which the system is fueled with innovation ‘opportunities’ (i.e. larger l and p ); (b)

the magnitude of path-dependency affecting the innovation process (i.e. larger 8 ); (c)

the degree of globality of the information diffusion in the interaction process (i.e.
smaller r).

This claim is supported by the surfaces in Fig. 5(a and b) where, for a given choice

of a and e , we plot MC mean of AGRs against (log10 r , 8 ) in two distinct

opportunity setups (i.e. for different values of p and l ). Notice that, as typically

happens in evolving complex systems (see Batten, 2000), the causal relationships

between system parameters and aggregate variables are characterized by threshold

effects and non-linearities (see Fig. 5c and d). On the one hand, path dependence

linearly affects the mean of AGRs. On the other hand, as one gradually increases the
rate of information diffusion, an abrupt change in AGRs usually arises around

r*(v)$/1.0. If rB/r*(v), the performance of the system is barely influenced by r .

When r�/r*(v ), small changes in the degree of locality of interactions bring about

dramatic consequences in the mean of AGRs.

Let us turn now to study how the willingness to explore of the system (e ) affects

AGRs. As intuition suggests, larger AGRs could be attained if the economy

somehow manages to optimally solve the trade-off between exploitation and

exploration (cf. March, 1991; Allen and McGlade, 1986). However, it turns out
that the levels of willingness to explore required to optimally balance between

exploitation and exploration strongly depend on the technological and learning

regime which characterize the economy. As illustrated in Fig. 6(a�/d), four distinct

regimes emerge in setups where returns to scale are increasing (a�/1). When no

interaction takes place (r�/�) and opportunities are low, higher exploration rates

are totally harmful because agents hardly find radically new practices and, if they do,

9 All results presented below are not affected by the particular choice of the AGRs. Indeed, employing

alternative specifications as g ?m �/[(qm ,T /qm ,0)1/(T�1)�/1] or g ƒm �/[(Qm ,T /Qm ,0)1/(T�1)�/1], will only change

the scale of attainable growth rates. Moreover, we have chosen values of T in such a way that recursive

MC mean and variance of AGR converge. Therefore, properties about ḡM (v) are not influenced by the

econometric sample size. Finally, in the chosen range for T and M , the MC variance of AGR is typically

negligible. This allows us to avoid reporting confidence intervals for ḡM (v):/

Fig. 5. a Mean of MC AGR distributions as a function of , . Low opportunity regime: 1, 0.1. Par. Setup:

N100, 1.5, 0.1, T1000, M10000. b Mean of MC AGR distributions as a function of , . High opportunity

regime: 5, 0.4. Par. Setup: N100, 1.5, 0.1, T1000, M10000. c Non linear behaior of mean of MC AGR

distributions as a function of . Par. Setup: N100, 0.4, 1.5, 0.1, 5, 0.5, T1000, M10000. d Linear behaior of

mean of MC AGR distributions as a function of . Par. Setup: N100, 0.4, 1.5, 0.1, 5, 0.1, T1000, M10000.
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they cannot benefit from increasing returns to scale. Hence ḡM(v) monotonically

decreases with e*/no matter the degrees of path-dependence (cf. Fig. 6(a)).

Conversely, economies in which information is globally diffused (r�/0) and

innovators strongly benefit from learning by doing (high 8 ) typically maximize

their AGR when all agents commit themselves to exploration and production on new

islands only lasts one period (see Fig. 6(b)). Moreover, if information is spread

locally*/i.e. 0�/r�/� as in Fig. 6(c)*/the overall performance of the economy

increases either if few explorers are around or if there are very many: in the first case,

a large population of miners can continually exploit both increasing returns to scale

and incremental, path-dependent, innovations through small-scale migrations driven

by local imitation. In the second case, thanks to local information diffusion, small

clusters of ‘colonized islands’ can immediately benefit from the large-scale

introduction of innovations.

The most interesting regime, however, arises in all other ‘intermediate’ settings

where MC mean of AGRs are maximized by an interior value of e , cf. Fig. 6(d). The

intuition here corresponds to that suggested in March (1991), p. 71. As he points out,

systems that engage in exploration to the exclusion of exploitation ‘‘exhibit too many

undeveloped new ideas and too little distinctive competencies’’, while, at the opposite

extreme, they ‘‘are likely to find themselves trapped in sub-optimal stable

equilibria’’. In our model, this condition applies in two setups, namely: (a) agents

face very large opportunities but they are unable to completely exploit dynamic

increasing returns because information is not spread around; (b) interactions are

global but knowledge does not accumulate as the economy evolves. In both

situations, higher economic performances cannot be attained by entirely committing

either to technological search or to production. As a result, losses stemming from the

exploitation�/exploration trade-off are reduced by an appropriate balance between

the two forces10.

10 Simpler patterns arise when one analyzes how different regimes of returns to scale in production

affect economic performance. When interactions are shut down (r�/�), MC means of AGRs tend to be

decreasing with a when opportunities are low (and only mildly increasing for large a ’s when they are

high). Conversely, if information is globally diffused, AGRs are monotonically increasing in a for any (l ,

p ) and 8 .

Fig. 5
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Fig. 6. (a) Mean of MC AGR distributions as a function of the willingness to explore e . Technological

regime: l�/1, p�/0.1, r�/�,8�/0.1. Other parameters: a�/1.4, N�/100, M�/10 000. (b) Mean of MC

AGR distributions as a function of the willingness to explore e . Technological regime: l�/5, p�/0.4, r�/

0, 8�/0.5. Other parameters: a�/1.4, N�/100, M�/10 000. (c) Mean of MC AGR distributions as a

function of the willingness to explore e . Technological regime: l�/1, p�/0.1, r�/0.1, 8�/0.5. Other

parameters: a�/1.4, N�/100, M�/10 000. (d) Mean of MC AGR distributions as a function of the

willingness to explore e . Technological regime: l�/5, p�/0.4, r�/�, 8�/0.5. Other parameters: a�/1.4,

N�/100, M�/10 000.
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This point arises even more strongly when one allows for heterogeneity in agents’

willingness to explore. Consider for instance an economy in which an initial

distribution E�/(e1, e2, . . ., eN ), ei � /[0, 1] and ei ?"/ei ƒ for some i ?"/iƒ is given. To

keep things simple, let us suppose that E is such that ei �/0, i�/1, 2, . . ., �/mN �/ and

ei �/e0, i�/�/mN �/�/1, . . ., N , where m � /[0, 1] and e0 � /(0, 1]. The aggregate

consequences of increasing m ’s (in terms of economy’s AGRs) are once again

strictly related to the handling of the exploitation�/exploration trade-off, which in
turn depends on the prevailing technological and institutional regimes, cf. Fig. 7(a�/

c). Again, in all ‘intermediate’ setups described above, AGRs are maximized by some

0B/m*(v )B/1, with poor performances when the economy commits either small or

too many resources in the exploration of unknown knowledge bases.

6. Growth rates volatility and system performance

Higher average economic performances are generated in the model if the economy
is gradually injected by increasingly powerful sources of growth (i.e. stronger

increasing returns to scale, more global knowledge diffusion, higher path-depen-

dency and technological opportunities). It is then of interest to assess how the

volatility of aggregate performances (both across MC samples and within time-series

realizations) is affected by system parameters governing these forces.

Despite what one could have expected, patterns of self-sustaining growth

characterized by higher AGRs are not generally associated with overly increasing

levels of growth rates volatility. On the one hand, a strong positive correlation
emerges between ḡM(v) and MC sample standard deviations:

Fig. 6 (Continued)

Fig. 7. a Mean of MC AGR distributions as a function of the share of sedentary agents in the population .

Technological regime: low opportunities 1, 0.1, no info diffusion , low path dependency 0.1. Par. Setup:

1.4, 0.1, N100, M10000, T500. b Mean of MC AGR distributions as a function of the share of sedentary

agents in the population . Technological regime: mild opportunities 2, 0.2, global info diffusion 0, no path

dependency 0. Par. Setup: 1.4, 0.1, N100, M10000, T500. c Mean of MC AGR distributions as a function

of the share of sedentary agents in the population . Technological regime: high opportunities 1, 0.1. Par.

Setup: 1.4, 0.1, N100, M10000, T500.
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(v)� [M�1
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m�1

g2
m(v)� ḡ2

M(v)]
1
2; (11)

so that the latter appear to be monotonically increasing with l , p , 8 and �/r ,

everything else being constant11. On the other hand, MC sample standard deviations

never ‘explode’ as one increases the strength of the sources of growth. Therefore,

despite the self-reinforcing nature of the mechanisms triggering economic growth in

the system (i.e. exploration, innovation and more efficient production), the model

yields sufficiently ordered growth paths, which turn out neither to overlap nor to

converge as long as one considers sets of GDP time-series generated by points in the
parameter space far enough from each other. To illustrate this property, Fig. 8 plots

time-series describing the 5 and the 95% percentiles of the MC distributions q
¯

t(v )�/

{qm ,t (v), m�/1, . . ., M}, as t�/1, . . ., T , in four different parameter setups (M�/

10 000). Notice that even in a global information/high opportunities setup, the band

including the 90% of MC observations does not widen as T grows. Moreover, 90%

confidence intervals do not overlap even for very small econometric sample sizes.

Let us turn now to the properties of the within-sample volatility of growth rates

time-series (GRTS) h
¯

m(v )�/{hm ,t (v ), t�/1, . . ., T}, where:

11 For a similar property displayed by actual time-series in a cross-section of countries (cf. Fatas, 2000).

Fig. 8. Time evolution of 5- and 95-percentile of the MC distribution of log(GDP) time-series

observations over M�/10 000 MC simulations in different technological regimes. Par. Setup: a�/1.5,

8�/0.4, e�/0.1, N�/100.
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hm;t(v)�
qm;t � qm;t�1

qm;t�1

: (12)

Here a first important result is that, unlike MC sample standard deviations, self-

sustaining growth does not always imply a larger volatility in GRTS (for a given

econometric sample size T ), as measured by the MC mean of its standard deviation:

s(
¯
hm(v))�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1

XT

t�1

h2
m;t(v)�

�
T�1

XT

t�1

hm;t(v)

�2

vuut : (13)

In particular, when radical innovations are very likely, setups typically yielding self-
sustaining growth (e.g. small r ’s, large 8 ’s) are characterized by a lower magnitude

of average volatility, whereas economies usually generating stationary GDP time-

series or very mild growth display a higher CRTS variation, cf. Fig. 9(a).

Even more unexpectedly, persistently higher AGRs seem to be attained by the

system through a process characterized by GRTS volatility decreasing in time (i.e.

across subsequent phases of development). To illustrate this property, consider, as

done in Fig. 9(b), four prototypal environments yielding: (a) stationary GDP time-

series; (b) levels of GDP evolving around a S-shaped trend; and self-sustaining
growth emerging from (c) a low opportunities setup; or (d) a high opportunities

setup. As one takes into account the time evolution of MC mean of the distributions

of recursive standard deviation of GRTS (i.e. computed over enlarging econometric

sub-samples {T0, T0�/1, . . ., T̄/}, for T̄/�/T0�/20, T0�/21, . . ., T and T0�/50) a

striking pattern arises. Indeed, recursive standard deviation of GRTS appears to

behave as T̄b�1; b�/0 in each of the above environments. However, while in the

stationary GDP case one has 15/bB/2, as soon as some evidence of persistent

growth emerges in the system, b becomes less than unity and recursive standard
deviations turn out to be monotonically decreasing toward some positive constant

level. In general, a negative correlation emerges between b and the overall

performance of the economy: the more one fuels the system with opportunities

and path-dependency, the higher the rate at which GRTS volatility, as measured by

average recursive standard deviation, decreases in time.

Therefore, the model seems to account for the appearance, over finite time

periods, of distinct ‘phases’ of development. Under structural conditions above

certain thresholds, the economy displays an aggregate dynamics wherein phases of
almost steady positive growth rates are punctuated by temporary slowdowns.

Exponential growth thus emerges as the outcome of a process leading to ‘ordered’

GDP time-series characterized by fairly moderate variability both across indepen-

dent histories and, more importantly, within the sample path.

12 For a critical discussion on trend versus difference stationarity and drawbacks of ADF tests cf.

Fagiolo, 2000.
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7. Statistical properties of simulated GDP time-series

The foregoing exercises have attempted to shed some light on the mechanisms

underlying the emergence of self-sustained growth in the model. In this Section, we

will ask whether (and if yes, under which technological regime) the model is able to

Fig. 9. (a) Mean of MC standard deviations of log (GDP) time-series growth rates as a function of (r , 8 ).

High opportunities: l�/5, p�/0.4. Par. Setup: N�/100, a�/1.5, e�/0.1, T�/1000, M�/10 000. (b) Time

evolution of GDP time-series growth rates (GRTS) volatility in four paradigmatic growth regimes. Y -axis:

MC mean of recursive standard deviations of GRTS (within simulations).
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generate simulated GDP time-series which display statistically properties similar to

those empirically detected in actual output time-series (e.g. non-stationarity, auto-

correlation in output growth, persistence of oscillations, etc.).

Let us start to address this ‘exercise in plausibility’ by noticing that (when they

arise) patterns of self-sustaining growth are always associated in the model to

‘difference stationary’ log(GDP) time-series (as opposed to trend-stationary ones). In

fact, according to standard ADF tests*/and irrespective of the employed Dickey�/

Fuller regression specification*/one cannot reject the null of a unit root (at 5%),

which, on the contrary, is systematically not accepted for both first differences Dqm ,t

and growth rates hm ,t �/DQm ,t /Qm ,t -1
12.

Even more interestingly, we find that the ways in which system parameters affect

the likelihood of generating I (1) time-series (i.e. patterns of self-sustaining growth)

are very similar to the ways in which system parameters affect system performances

(i.e. mean of AGRs). Indeed, the behavior of MC mean of ADF(1) test statistics

t1(qm ,t (v)) mimics the one found for MC mean of AGRs as one tunes the relevant

system parameters. As Fig. 10(a) shows, t1(qm ,t(v )) are indeed increasing exponen-

tially with r and linearly with 8*/for any given levels of the opportunity setup (l ,

p ), willingness to explore (e ) and returns to scale (a ). Consequently, the null

hypothesis (i.e. presence of a unit-root in the log(GDP) time-series) is accepted with

an increasing MC frequency as one tunes up the sources of growth. Accordingly, the

portion of the (8 , log10 r )-plane containing MC frequencies of the ADF(1) test

acceptance greater than 90% is larger, the greater the magnitude of opportunities. In

fact, a sort of threshold emerges in the (8 , log10 r )-plane: beyond some given

combinations of path-dependency and globality of interactions, the model delivers

almost always difference-stationary log(GDP) time-series, cf. Fig. 10(b). Results in

line with the analysis in Section 5 also arise when one investigates how the MC

acceptance frequency of the ADF tests varies with the magnitude of the willingness

to explore (e ). Again, in all those cases whereby the economy is characterized either

by global interactions and low path-dependency or by no information diffusion and

high opportunities, the system seems to be able to generate self-sustaining patterns of

growth only if a suitable balance between R&D and production is achieved, cf. Fig.

10(c).
As a result, the model is able to deliver quite precise predictions about how

technological regimes affect both system performances and the likelihood that a self-

sustaining process of growth is triggered in the economy.

In addition to all that, the model is able to robustly generate growth rate time-

series whose autocorrelation functions (ACF) are characterized by positive,

statistically significant, terms over short horizons and declining toward zero over

higher lags13. Fig. 11(a and b) shows examples of MC mean (over M�/1000

replications) of the ACF of GDP growth rates and the associated estimates for the

13 This is indeed one of the few unquestioned ‘stylized facts’ in the business cycle literature. This shape

for the ACF of quarterly GDP growth rates has been observed in almost all Countries, with some notable

exceptions: see Campbell and Mankiw (1989).
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Fig. 10. (a) A MC study of thresholds in the emergence of unit-roots in log(GDP) time-series. Mean of

MC ADF(1) test statistics distribution in a high opportunity regime (l�/5, p�/0.4). Critical values: �/

3.441 (5%); �/4.022 (1%). Par. Setup: e�/0.1, a�/1.5, N�/100, T�/1500, M�/10 000. (b) A MC study of

thresholds in the emergence of unit-roots in log(GDP) time-series. Frequency of acceptance of the 5%-

ADF(1) test in a high opportunity regime (l�/5, p�/0.4). Par. Setup: e�/0.1, a�/1.5, N�/100, T�/1500,

M�/10 000. (c) A MC study of thresholds in the emergence of unit-roots in log(GDP) time-series.

Frequency of acceptance of the 5%-ADF(1) test as a function of e in a high opportunity, no info diffusion

regime with low path dependency (l�/5, p�/0.4, r�/�, 8�/0.1). Par. Setup: a�/1.5, N�/100, T�/1500,

M�/10 000.
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spectral densities in some revealing parameter regions yielding I(1) patterns of

log(GDP) time-series. In particular, whenever interactions are global and opportu-

nities are large enough, positive shocks to output growth rates coming from

innovations are almost instantaneously spread in the economy, leading to high and

positive first- and second-order autocorrelation coefficients, followed by not

significant values over longer horizons. Conversely, when interactions are local

and opportunities are low, GDP growth does not display ACF coefficients

significantly different from zero (as they almost always fall inside 5% Bartlett

confidence bands). Accordingly, spectral densities, albeit much smoother than

empirical ones, usually display a peak around low frequencies and then tend to

decrease as the length of the period becomes small.

As a further test of the ability of the model to generate simulated output growth

time-series with statistical properties similar to the empirically ones, we have

investigated whether GDP fluctuations are characterized by a permanent component

and, if so, how big such a component might be. Following Campbell and Mankiw

(1987) and Cochrane (1988), we have computed non-parametric measures of

persistence of GDP fluctuations based on sample estimates of auto-correlations of

output growth (cf. the Appendix A for details).

As Table 1 shows, both measures decrease as the window size k grows, but they

generally stabilize around values exceeding unity in all experimented parametriza-

tions. Despite the well-known drawbacks of this estimation procedure, our results,

quite in tune with the findings of Campbell and Mankiw (1989), imply that simulated

GDP time-series do not appear to revert toward any smooth exogenous trend and

exhibit very persistent fluctuations: a 1% shock to output should indeed change the

long-run univariate forecast of GDP levels by far more than 1%. Also, persistence

turns out to be higher the more interactions are global, the larger the likelihood of

‘radical’ innovations and the smaller the density of islands in the economy.

Finally, the model, notwithstanding increasing returns to learning achievements,

does not display the well-known ‘size-effects’ characterizing many endogenous

Fig. 10 (Continued)
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growth models (see Jones, 1995, 1999). Fig. 12 depicts the behavior of MC mean of

AGRs as a function of the population size (N ) and econometric sample size (T), in a

parameter setup usually yielding self-sustaining growth. If any, a weak evidence on

falling AGRs the larger the size of the economy for a given time-length emerges.

Moreover, AGRs do not display any monotone pattern when N and T both

increase. The intuition behind this result is that, while ceteris paribus larger

economies face potentially higher returns to knowledge exploitation, it also holds

that they must cope with higher ‘adjustment lags’ to new knowledge bases (as

Fig. 11. (a) A MC study of growth rates time-series autocorrelation structure. Mean of MC

autocorrelation function. Technological regime: high opportunities (l�/5, p�/0.4), global info diffusion

(r�/0) and high path-dependency (8�/0.5). Dotted lines: 95% Bartlett bands. Parameter setup: a�/0.1,

e�/0.1, N�/100, M�/10 000, T�/1500. (b) A MC study of growth, rates time-series autocorrelation

structure. MC estimate of log(GDP) growth rates spectral density. Technological regime: high

opportunities (l�/5, p�/0.4), global info diffusion (r�/0) and high path-dependency (8�/0.5).

Frequencies are scaled so as to map the unit interval. Spectra computed by smoothing the periodogram

using a Bartlett window with width�/50. Parameter setup: a�/0.1, e�/0.1, N�/100, M�/10 000, T�/

1500.

G. Fagiolo, G. Dosi / Structural Change and Economic Dynamics 14 (2003) 237�/273266



proxied in our model by the time it takes to move a certain fraction of the N agents

toward superior islands).

8. Individual rationality and collective outcomes

Given the rather heroic assumptions made on the rational bounds of the agents

populating our economy, the model is particularly suited to explore potential

conflicts between degrees of individual rationality and collective performances. For

instance, what happens to average growth rates if the population of our naı̈ve
entrepreneurs is injected with more ‘rational’ players, which behave on the grounds

of some (appropriately defined) expectations about the net returns from exploration?

In order to illustrate this point, consider the following simple example. Assume an

economy characterized by: (i) constant returns to scale in production (i.e. a�/1); (ii)

no knowledge diffusion (i.e. r�/�); (iii) no path-dependency in innovation (i.e. 8�/

Table 1

MC estimates of persistence in GDP growth

K l�/1 l�/3 l�/5

/V̂k
/Âk(1) /V̂k

/Âk(1) /V̂k
/Âk(1)

r�/0, 8�/0.5

p�/0.1 10 1.716 (0.294) 1.319 2.157 (0.294) 1.508 2.479 (0.425) 1.645

20 1.637 (0.387) 1.288 1.949 (0.461) 1.433 2.300 (0.544) 1.584

30 1.449 (0.417) 1.212 1.745 (0.502) 1.356 2.141 (0.616) 1.528

40 1.324 (0.438) 1.159 1.625 (0.537) 1.309 2.044 (0.676) 1.493

50 1.262 (0.465) 1.131 1.539 (0.567) 1.274 1.959 (0.722) 1.462

p�/0.4 10 1.585 (0.271) 1.263 1.987 (0.340) 1.430 2.285 (0.391) 1.548

20 1.526 (0.361) 1.239 1.776 (0.420) 1.352 2.141 (0.507) 1.498

30 1.371 (0.394) 1.174 1.616 (0.465) 1.289 2.072 (0.596) 1.474

40 1.277 (0.422) 1.133 1.532 (0.507) 1.256 2.009 (0.664) 1.452

50 1.226 (0.452) 1.111 1.467 (0.541) 1.229 1.941 (0.716) 1.427

r�/0.1, 8�/0.1

p�/0.1 10 1.149 (0.197) 1.072 1.390 (0.238) 1.180 1.623 (0.278) 1.279

20 1.198 (0.284) 1.095 1.451 (0.343) 1.206 1.641 (0.388) 1.286

30 1.183 (0.340) 1.088 1.387 (0.399) 1.179 1.531 (0.440) 1.242

40 1.155 (0.382) 1.075 1.323 (0.437) 1.151 1.452 (0.480) 1.209

50 1.135 (0.419) 1.065 1.287 (0.475) 1.136 1.410 (0.520) 1.192

p�/0.4 10 1.096 (0.188) 1.047 1.334 (0.228) 1.155 1.513 (0.259) 1.232

20 1.171 (0.277) 1.082 1.422 (0.336) 1.193 1.560 (0.369) 1.251

30 1.195 (0.344) 1.093 1.383 (0.398) 1.176 1.478 (0.425) 1.217

40 1.200 (0.397) 1.095 1.337 (0.442) 1.157 1.427 (0.472) 1.196

50 1.203 (0.443) 1.097 1.385 (0.485) 1.147 1.409 (0.520) 1.189

Campbell and Mankiw (1989) statistics (MC standard deviations in parentheses). Par. Setup: N�/100,

a�/1.4, e�/0.1, M�/10 000, T�/500. (a) Top: global information (r�/0) and high path-dependency (8�/

0.5). (b) Bottom: local information (r�/0.1) and low path-dependency (8�/0.1).
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0); (iv) all N agents working at time t�/0 on a single island (l0�/1) with coordinates
(x*, y*) and initial productivity s*�/x*�/y*; (v) a constant positive per-period
‘transportation’ cost b�/0, which explorers must pay during their search. As far as

behavioral assumptions are concerned, let us concentrate on two different settings,

namely: (a) the population is composed of N agents behaving according to the rules

defined in Section 3; and: (b) the population is made of N copies of a ‘representative

individual’ (RI ), with unbounded computational skills and complete information. In

particular, assume that the RI knows: (i) the coordinates (x*, y*); (ii) the system

parameters; (iii) the model of the economy. Although the RI is aware that, on

average, the initial productivity of a new island is increasing in its distance from the
origin, she does not know where new islands are actually located (i.e. the RI does not

have rational technological expectations). Therefore, assume that if she is exploring

around the node (x , y), she will make use of a more ‘rational’ exploration rule

putting equal probability on the nodes (x�/1, y) and (x , y�/1). Finally, suppose for

simplicity that the intertemporal discount rate is zero.

At time t�/1, the problem for the RI is to decide whether to continue to produce

the good at time t�/2 or to start exploring. In the first case, she will get a per-period

net output from mining equal to QM �/s*. In the second case, the expected per-
period net output from exploration will be: QE �/[(1�/l)(s*�/t )�/bt ]/t where t�/1/

p is the expected length of exploration (or, equivalently, the expected distance

between (x*, y*) and a new island). Then, the RI will decide to remain on island (x*,

y*) if and only if QM �/QE , i.e. iff:

pB
1

1 � l
�

1

s�
�

b

(1 � l)s�
�p�(b; l; s�) (14)

As one can easily check, p*(b , l , s*) is increasing in b , decreasing in l , and

Fig. 12. Mean of MC AGR distributions as a function of econometric sample size (T ) and population size

(N ). Par. Setup: l�/1, p�/0.1, a�/1.5, e�/0.1, r�/0.01, 8�/0.5, M�/10 000.
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increasing in s* if l�/b�/1 (i.e. if opportunities are large enough compared with

‘transportation’ costs). Notice that if s*0/� the RI will always stay on (x*, y*),

while if l0/� she will always leave.

Consider now, for any value of s*, the set of (b , l) satisfying Eq. (14) for some

p � /(0, 1). In such a parameter region, the RI will decide to continue to work as a

‘miner’ and get a constant output QM �/s*. On the contrary, any economy

characterized by the same (b , l , p , s*) and composed of myopic agents behaving

as in setup (a) above (cf. Section 3), will face a rather ‘poor’ environment, in which

there is neither knowledge diffusion, nor path-dependency in innovation, nor

increasing returns to scale. Furthermore, let us assume that our ‘naı̈ve’ agents are

characterized by a very low ‘willingness to explore’ (i.e. e�/0.05). Notwithstanding

all that, as Fig. 13 shows, the economy is able to get a per-capita net output

persistently greater than QM .

Thus, even in this very simple setting, higher collective performance are generated

despite (or thanks to) ‘irrational’ individuals. Notice that this property adds to

another one shared with ‘new growth’ literature (cf. Aghion and Howitt, 1992),

according to which in presence of externalities or dynamic increasing returns a

systematic divergence between endogenously generated growth rates and socially

optimal ones is likely to emerge.

Fig. 13. Individual vs. collective rationality: a simple example. GDP time series generated by irrational

and ‘more rational’ firms. Par. Setup: s *�/100, N�/100, e�/0.05, 8�/0, l�/5, p�/0.15, r�/�, a�/1.
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9. Conclusions

The paper presents a simple model in which self-sustaining growth endogenously

emerges, under suitable technological and behavioral conditions, as the result of

imperfect coordination among stylized, boundedly-rational, heterogeneous, firms

locally interacting in an open-ended technological space.

The model shows that the very possibility of notionally unlimited (albeit

unpredictable) technological opportunities is a necessary condition for patterns of

persistently fluctuating exponential growth to be generated in the economy.
In that circumstance, exponential growth is attained whenever technological

opportunities (as captured by both the density of ‘islands’ p and the mean of Poisson

jumps to radically new paradigms l), path-dependency (i.e. the fraction of

idiosyncratic knowledge, 8 , that agents are able to carry over to newly discovered

technologies) and globality of interactions in the information diffusion process (�/

r ), are beyond identifiable thresholds. In that region of the parameter space, the

system goes through subsequent phases of development and exhibits ordered GDP

time-paths characterized by small growth-rates volatility. Furthermore, the overall

performance of the economy appears to be monotonically increasing in any of the

latter sources of growth, with the degree of globality of interactions engendering a

strong threshold effect in the average performance of the system.

A trade-off between exploitation of the fundamentals and exploration of still

unknown technologies clearly emerges, however, when one investigates how growth

is affected by the propensity to explore (e ). In well-defined technological regimes, the

system generates self-sustaining patterns of growth and higher overall performances

only if a suitable balance between R&D and production is achieved.
As mentioned, the model could be considered as a sort of ‘reduced form’

evolutionary model, with an almost exclusive emphasis upon the learning/diffusion

aspects of economic evolution, while repressing the competition/selection features of

market interactions. Although the limitations stemming from this assumption are

quite obvious (for example, the ‘microeconomics’ is bound to be rather limited), the

model is nonetheless able to generate GDP time-series with statistical properties

which robustly replicate a few of the stylized facts of macroeconomic dynamics

(including GDP growth autocorrelation structure and persistence of fluctuations).

Moreover, it does so in ways that are in tune with general microeconomic stylized

facts, such as time-consuming diffusion of innovations and persistent asymmetries in

efficiency among agents. All this represents indeed a significant interpretative

advantage vis-à-vis ‘new-growth’ theories. Furthermore, unlike most of the latter,

the foregoing model is also able to avoid size effects (i.e. the positive influence of the

sheer size of an economy upon its growth).

Many extensions of the model can be conceived. First, one should try to explore

how the results presented here change with the introduction of a demand side (and,

thus, of some ‘Keynesian’ features). Second, one might likewise study the relevance

of adding explicit selection processes affecting the frequency in the population (i.e.

the size) of different agents, which are ‘carriers’ of different technologies. Finally,
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given reasonable rules of interaction between economies, one may also investigate

convergence�/divergence issues across-countries.
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Appendix A

Assume that the change in log of GDP Dqt follows a stationary ARMA process, so

that Dqt �/A (L )vt , with vt a white-noise process. Following Cochrane (1988),

Campbell and Mankiw (1987, 1989), we computed estimates of the following

persistence measures:

Vk�
1

k � 1

Var(qt�k�1 � qt)

Var(qt�1 � qt)
�

�
1�2

Xk

j�1

�
1�

j

k � 1

	
rj

�
;

where rj is the jth autocorrelation coefficient of Dqt and A(1)�1�a
�

j�1 Aj:/
If {qt} were even more persistent than a random walk, both A (1) and Vk would

exceed unity. Moreover, as:

A(1)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

1 � R2

s

where V�/limk0� Vk 	/1�/2(r1�/r2�/. . .) and R�/1�/Var (vt)/Var (Dqt), estima-

tion of Vk and A (1) can be done non-parametrically employing sample estimates of
the autocorrelation function, i.e. rj � ĝ(j)=ĝ(0): An estimate of Vk (consistent for V if

k is large) is found simply by replacing population auto-correlations with sample

counterparts (after having corrected by a downward bias), i.e.:

V̂k�
T � k

T

�
1�2

Xk

j�1

�
1�

j

k � 1

	
rj

�
;

while A (1) is estimated (for large k ) by:

Âk(1)�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂k

1 � r2
1

s
:

Notice also that since r1
2 underestimates R2, Âk(1) tends to underestimate A (1) for

large k . Also, the standard error of V̂ k is equal to:
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S:E:(V̂k)�V k

�
3T

4(k � 1)

��1

2
:

Finally, both MC standard deviations and theoretical standard errors are increasing

with Vk (or with its estimate).
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