The Multiprocessor BandWidth Inheritance Protocol

Dario Faggioli, Giuseppe Lipari, Tommaso Cucinotta
e-mail: {d.faggioli, g.lipari, t.cucinotth@sssup.it
Scuola Superiore Sant’Anna, Pisa (ltaly)

Abstract—In this paper we present the Multiprocessor Band- performing an idle loop, until the mutex is unlocked. Such
width Inheritance (M-BWI) protocol, an extension of the Band- technique is often called spin-lock busy-wait The advantage
width Inheritance (BWI) protocol to symmetric multiproces sor of busy waiting is that the overhead of suspending and
and multicore systems. Lo

Similarly to priority inheritance, M-BWI reduces priority reacuvatmg the task is avoided, and this is paruculadpfgl _
inversion in reservation-based scheduling systems; it aivs the When the time between the lock and the unlock operations is
coexistence of hard, soft and non-real-time tasks; it doesat very short.
require any information on the temporal parameters of the tesks; A resource access protocas the set of rules that the
hence, it is particularly suitable to open systems, where &ks can operating system uses to manage blocked tasks. The rules of

dynamically arrive and leave, and their temporal parametes are .
unknown or only partially known. Moreover, if it is possible to the protocol mandate whether a task blocks or it performs

estimate such parameters as the worst-case execution timaca @ busy-wait; how the queue of tasks blocked on a mutex is
the critical sections length, then it is possible to computan upper ordered; whether the priority of the task that owns the logk o
bound to the task blocking time. Finally, the M-BWI protocol g mutex is changed and how.
is neutral to the underlying scheduling scheme, since it cabe \\nen designing a resource access protocol for real-time
implemented both in global and partitioned scheduling schmes. o - NN
applications, there are two important objectives: 1) at-run
time, we must devise scheduling schemes and resource access
[. INTRODUCTION protocols to reduce theaiting-timeor blocking-timeof a task;

The wide popularity of multi-core platforms raised the in2) off-line, we must be able to bound the waiting-time and
terest of the real-time community for multiprocessor rgmle include it in a schedulability analysis.
scheduling. Recently, many authors focused their attentio In open real-time systemsasks can dynamically enter or
on multiprocessor scheduling and scheduling analysisgdesleave the system at any time. Therefore, an admission dontro
methodologies, etc. is needed to make sure that the new tasks do not jeopardize

When using symmetric shared memory multi-core plathe schedulability of the already existing tasks. In additifor
forms, one popular programming model is to implement tagrbustness, security and safety issues, it is necessasylete
communication through shared memory variables. To avo¥id protect the temporal behavior of one task from the others
inconsistencies due to concurrency and parallelism, adges In this way, it is possible to have tasks with different level
shared variables must be protected by an appropriate acc¥st¢mporal criticality coexisting in the same system.
scheme. In the literature, many different approaches haea b Resource Reservations [33] have been proved as effective
proposed until now, and it is not clear yet which one is going techniques to achieve the goals of temporal isolation and
be used in the future. Examples avait-free[16] andlock-free protection and real-time execution. Resource reservagioin-

[3] approaches. Recently, hardware supportstfamsactional hiques have initially been thought for independent taskiseto
memorysystems have been proposed [34]. executed on single processors. Recently, they were exdende

However, the most widely used techniques in the prograri@ cope with hierarchical scheduling systems [21, 36, 25],
ming practice so far are based totks before accessing aand to cope with tasks that interact with each other using
shared memory area, a task must loakiatex semaphorend shared memory and mutex semaphores [14, 22]. Lamastra
unlock it after completing the access. The mutex can be thcket al. proposed the Bandwidth Inheritance (BWI) protocol
by only one task at a time; if another tasks tries to lock d@6] that combines the Constant Bandwidth Server [1] with
already locked semaphore, the task muait for the previous Priority Inheritance [35] to achieve bandwidth isolatiom i
one to unlock it. open systems.

In single processor systems, the waiting task is usually @) Contributions of this paperin this paper, we propose
blocked and the scheduler chooses a new task to be execuidditiprocessor BWI (M-BWI) that extends the BWI protocol
from the ready queue. The blocked task will be unblockd@ symmetric multiprocessor/multi-core systems. To reduc
only when the mutex is unlocked by th@wvner In multi- the task waiting time, the protocol combines busy waiting

core systems, it may be useful to let the waiting task executéchniques with blocking and task migration. The protocol
allows the coexistence of hard, soft and non-real-timestaisk

The research leading to these results has received fundmg the Jges not require any information on the temporal parameters
European Community’s Seventh Framework Programme FP7rugdet fth ks: h L. icularl itabl
agreement n.214777 “IRMOS - Interactive Realtime Multiraefpplications of the tasks; hence, It Is particularly suitable to openeyst

on Service Oriented Infrastructures”. Nevertheless, the protocol supports hard real-time guaran

tees for critical tasks: when it is possible to estimate thzhical system’s work has been done by Behnam et al. in [8]
parameters of the task set, as worst-case execution tintes and by Fisher et al. in [22]. In both cases, a server that has
lengths of the critical sections, it is possible to compute aot enough remaining budget to complete a critical secton i
upper bound to the task waiting time. blocked before entering it, waiting for replenishment. 17]
Finally, the M-BWI protocol is neutral to the underlyingDavis and Burns propose a generalization of the SRP for
scheduling scheme, since it can be implemented both in blobéerarchical systems, where they allow servers that are run
and partitioned scheduling schemes. ning tasks inside critical sections to overcome their btidge

b) Organization of the paperThe reminder of this paper limitation. _ _ . o
is organized as follows: section Il analyzes the existing-so For all these algorithms, any kind of scheduling analysis is
tions to real-time multiprocessor synchronization. Qectill Only possible if computation times and critical sectiommiais
illustrate the system model and introduces some basic terff the tasks are known in advance, which might be not true
nology and definitions. Section V gives the details about tié @ open systems. To the best of the authors’ knowledge,
new synchronization protocol. Finally, section VI comneenthe only two attempts to overcome this requirement are the
the results of the simulations that have been conducted d3@ndWidth Inheritance protocol by Lipari et al. [26], and

section VII concludes and foresees some future work. the non-preemptive access to shared resources by Bertbgna e
al. [11]. These approaches are well suited for open systems,

but are limited to uniprocessors.
Finally, there is work ongoing by Nemati et al. [29, 30]

. . : . on both integrating the FMLP in hierarchical scheduling
Numerous solutions for sharing resources in multiproasss ; .
frameworks, or using a new adaptation of SRP — called

already exist. Most of these have been designed as extens“zn

. SRP — for resource sharing in hierarchically scheduled
of l.Jmprocessor approach(_a_s, such as [.32' 31, 15, .28’ 23, Jl_;ltiprocessors. However, they again need full knowledige o
19]; fewer have been specifically conceived for multipreoes

all systems parameters, critical sections duration, &ic.the
systems, such as [18, 13]. Y P ' , Hcl

. o . scheduling analysis to be performed.
The Multiprocessor Priority Ceiling Protocol (MPCP) has

been proposed in [32], and then improved in [31]. It is an [ll. SYSTEM MODEL
adaptation of PCP to work on fixed priority — partitioned This paper focuses on shared memory symmetric multi-
only — multiprocessor scheduling algorithms. Anotheraati processor systems, consisting of identical unit-capacity
of MPCP has been recently presented in [24]. It is differepfocessorsP,,. .., P,, that share a common memory space.
from the previous ones in the fact that it introduces sonMore specifically,open systemsre considered, where new
“busy waiting”. This succeeds in lowering the blocking tenetasks can dynamically arrive and be admitted into the system
of higher priority tasks, but the protocol still addressedyo or leave the system at any time. Also, the seamless support
partitioned, fixed priority scheduling. for hard real-time, soft real-time andnon real-time tasks is
Chen and Tripathi presented in [15] an extension of PC&#nong our goals.
while both Gai et al. in [23] and Lopez et al. in [28] extended A task 7; is defined as a sequence of jods; — each
the SRP for partitioned EDF. They deal with critical sectionjob being a sequential piece of work to be executed on one
shared between tasks running on different processors bgsneprocessor at a time. Every job has an arrival timg;, a
of FIFO-based spin-locks, and forbid their nesting. computation time:; ; and a finishing timef; ; > a; j +¢; ;. A
As for global scheduling algorithms, Devi et al. proposet@sk is sporadic iti; j+1 > a; j+1+7;, andT; is the minimum
in [18] the analysis for non-preemptive execution of globanter-arrival time (MIT). If Vja; 1 = a;; + T; the task is
critical sections and FIFO-based wait queues under EDOFeriodic with T; as its period. Finally, given the worst case
Block et al. proposed the FMLP in [13] and validated it foexecution time (WCET) of;, C; = max;{c; ;}, its processor
different scheduling strategies (global and partition&Fgand utilization U; is defined ad/; = %
Pfair). FMLP employs both FIFO-based non-preemptive bu&geal-time tasks have a relative deadlifg and an absolute
waiting and priority inheritance-like blocking, dependion deadlined; ; = a; ; + D;. A deadline is missed by a jof; ;
the critical section being declared as short or long by thee.usif fi; > d; ;.
Nesting of critical sections is not avoided in FMLP, but the Hard real-time tasks must respect all their deadlines,rothe
degree of locking parallelism is reduced by asking the userWise their computation cannot be considered as correct. Sof
group the accesses to shared resources. real-time tasks can tolerate occasional and limited Vit
Recently, Easwaran and Andersson presented in [19] pletheir timing constraints, which usually lead to Qualith o
generalization of PIP for globally scheduled multiprocessService degradation. Non real-time tasks have no particula
systems. They also introduced a new solution, which is tning behavior to comply with. _ _
tunable adaptation of PCP to such context, with the aim of 10 guarantee a-priori that hard real-time tasks will corteple
limiting the number of times a low priority task can block Al their jobs before the absolute deadlines, it is necgssar

hlghe.r priority one. 1These, under certain assumptions and for the purposessopdpier, can
As it comes to sharing resources in reservation and hierag-considered as a particular form of reservation-basetrags

Il. RELATED WORK

to have a-priori information on their temporal behavioe. i. V. BACKGROUND
worst-case execution time and access to shared resourgesresource Reservation

Given such information, it is possible to do an off-line sthe
lability analysis. Therefore, in the remainder of the pajper
is assumed that we have the correct information on all haj
real-time tasks.

For soft real-time and non-real time tasks, instead, norapsu
tion will be made on the knowledge of their temporal behavi

Resource Reservatiomas proven to be an effective tech-
Hque to keep the deadline misses under control in Open
ystems [33, 2]. It basically builds up on the concepgafver
as the main schedulable entity. A sen/&rhas a maximum
opudgetQi, a periodP; and a bandwidthB; = Q,/P;. Each
task 7; is attached to a serve$; and when the scheduler
chooses to runS;, 7; is actually executed on that CPU.
Tyrpically, the fact that a reserved task is always able to

eécute at least); over P; time intervals is also guaranteed.

>éerefore, tasks are both confined — i.e., their capability o
making their deadlines only depends on their own behavior —
and protected against each other — i.e., they always receive
their reserved share of the CPU, without any interferenme fr
other tasks — and this is calldthndwidth isolation

In this work, only the case where each server has one task
attached is considered. Situations where more than a tagk, e
The code between a lock operation and the correspondigentire application, are scheduled inside a server aegreelf
unlock operation on the same resource is calteilical to future works.
section A critical section of taskr, on resourceR; can be ~ Two examples of resource reservation algorithms are the
nestedinside another critical section on a different resourdéonstant Bandwidth Server (CBS [2]), for dynamic priority
Ry, if the task executes the locking operations in the follayinscheduling, and the Sporadic Server (SS [37]), for fixed
order: lock onRy, lock on R;, unlock on R; and unlock priority scheduling. The state machine diagram of a semer f
on R;,. The worst case execution time (without blocking o general reservation algorithm is depicted in Fig. 1. Ugual
preemption) of the longest critical sectionof is denoted by server has aurrent budge{or simply budgej that is depleted
& (R;), and it is called théengthof the critical section. The as long as the server is dispatched. A servemdd i ve
length &, (R;) includes any nested critical section. whenever its task is ready for execution, the server has some
_ ~ budget left, but some other server is being scheduled. When
Classical mutexes are prone to unbounded priority invegp active server is dispatched, it becomesini ng, and its

sion [35], which is an harmful phenomenon for real-timgeryed task is able to run. From there on, the server may:
activities. Many solutions have been proposed, such as the

Priority Inheritance, Priority Ceiling Protocols (PIP,P€35]) » becomeactive, if preempted by another server;
or the Stack Resource Policy (SRP [7]). In the case of nestec becomer echar gi ng, if its budget gets depleted;
critical section, the system can be subject to deadloclessnl
a specific protocol is used (as the PCP or the SRP).

c) Critical Sections: Concurrently running tasks often
need to interact through shared data structures, located
common memory areas. Since an uncontrolled access to t
data may result into inconsistent states, they have to
protected by locks (or mutexes). In more detail, whgn
successfully locks a resourdg; it said to become the lock
owner of R;. If any other taskr; tries to lock R, ownedby
7; it is blocked onR,;. When thenr; releasesk,;, one of the
blocked tasks wakes up and becomes the new ownét; .of

« become dl e, if its task blocks or suspends.

On the way out front echar gi ng andi dl e many reser-
vation algorithms check whether the budget and the priori-

d) Multiprocessor SchedulingThe OS scheduler typi- %/Sdeadline of the server need to be updated.

cally assigns priorities to each task and chooses which or%
must run on each processor at any given time. In real-time - bdg_exhausted
scheduling literature, dynamic and static priority altfumis [Rema%

have been proposed, e.g., Earliest Deadline First and Rate

Monotonic (EDF, RM [27]). From a different standpoint, recharge/update_params
scheduling algorithms can be classified as global or parti-

tioned. Global algorithms use only one queue for all theslas[igle)unblockiupdate params ", o dispatch Run@
in the system, while in partitioned algorithms each progess —
has its own private scheduling queue. More details about preemption
achieved results in multiprocessor scheduling can be found
in [5, 4, 10, 6, 9, 12].

block

What iS notable to Say iS that the proposed SynChronization Flgure 1: state machine dlagram of a resource reservation server.

mechanism is independent from the specific characterisfics

the scheduler, and works with both dynamic and static gyiori))

and under both global and partitioning approaches. ThexefdB- The BandWidth Inheritance Protocol

in the remainder of the paper, it is assumed without loss oflf tasks share some resources in a reservation based en-
generality that the scheduling algorithm is global EDF. vironment, they might start interfering, and the number and

the severity of deadline misses is likely to increase. Irt,facontention. The final choice to be taken is how to order the
a special kind of priority inversion is possible in such gueue of tasks blocked on a locked resources.

case. However, allowing the lock owner server to overcomeThis section gives full details about M-BWI protocol rules
its budget, or trying to naively extend traditional prott®co and properties.

might lead to scheduling anomalies, as explained for exampl

in [26, 20]. A State Machi
The BandWidth Inheritance Protocol (BWI, see [26]) al-~ ate Machine

ready solves this issue for uniprocessor systems, by alpwi A server using the M-BWI protocol has some additional
the tasks that hold some resources to run also in the servgites. The new state machine is depicted in Figure 2. For the
of their lock owners. This helps in anticipating the res@urcsake of completeness, the diagram also considers the efents
release event, and prevents inversions. A taskat tries to a 3 task blocking on a non M-BWI mutex, or self-suspending,

resource lockiz;, either becomes its lock owner or blocks, angyhich are not expanded in the paper for space reasons.
some other task; inherits.S;. This means; is attached td;

and thus it is able to run when eithg&y (its default server) or (s Yoo
S; is dispatched. Notice that, if a chain of blocked tasks need
to be followed to find a non-blocked one this is done. When
7; later releasesky,, if 7; takes it,7; has to replace; in all @ unblockupdate params (") dspaten CD aver s
the servers it inherited in the meanwhilg; (excepted).)

A blocking chain for a taskr; is a sequence e outerlock

recharge/update_params|

{m1,R1,72,..., Rn_1,7,} Of alternating tasks and resources e e

such that: (i), = 7;; (i) both 7, andr,,1 lock R,,; (iii) each R
task 7y (with 1 < k& < n) locks Ry, in a critical section nested T
inside another critical section oRy_;. Proper nested access [(L0 s executing)

[LO not ¢xecuting]

to critical section is assumed, thus a task never appears

unblock/update_params

) _preemption/send(sigl)
|_active

than once in each blocking chain, and deadlock situatioas (s Y22 (o)
not possible. There might exist more than one blocking chain et s
for a taskr;, and H! denote theh-th one. Swreming
BWI_rechargin
V. MULTIPROCESSORBANDWIDTH INHERITANCE L’ bdg.exhaustedisend(son)

block[tbwi_mutex]

) Due to thgir heterogerleous nature, open systems SigrI‘—jifgure 2: State machine diagram of a resource reservation server
icantly benefit from multiprocessor support, probably muchhen M-BWiI is in place.

more than safety critical real-time ones. The BWI protosol i
a natural candidate for use in open systems, so it seemsahatur
to use the BWI on multiprocessor systems. Unfortunately, th As long as the task does not try to take a M-BWI lock, the
extension of BWI over multiprocessors is not trivial. server follows its original behavior. However, wheptry to

An important problem to be solved is what happens whenfake a lock — whatever it manages or not — its selvestart
task tries to lock an already locked resource, and the loBrRhaving as in the bottom part of the diagram. Obviously, the
owner is executing on a different processor. In this casg@me will happen to the tasks iy (see later) and to their
it makes no sense to attach the lock owner to the seng&fvers.
of the blocked task, since it is not possible to execute theSome of the new states are replication of their original
same task on two processors at the same time. On the ott@unterparts, e.g.r echar gi ng and BW _r echar gi ng,
hand, blocking the task and suspending the server may crezitd have been added just to make the diagram simpler to
problems to the resource reservation algorithm: the sulmen understand. This is not true for thH8W _r unni ng state,
server must be treated as if its task were terminated andvihich has also been split in two sub-state€®- Runni ng,
unblocking must be treated as a new instance of the serverwhich stands for Lock Owner Running, ah@®- RAS, which
this condition, it may be impossible to provide time guaeast stands forLock Owner Running in Another Server
to the task, as shown in [26]. When a servef5; enters staté.O- Runni ng, it executes a

In this case, as it will be described later, M-BWI letdask, eitherr; or the lock owner of the resource upon whigh
the blocked task perform an active waiting inside its serves blocked. If7; or its lock owner are already running in some
However, if the lock owner is not executing, because itseserwther server §,) on a different CPUS; enters theLO- RAS
has been preempted or exhausted its budget while inside sud state. A server in this state execytesemptivelya busy
critical section, the inheritance mechanisms of BWI mudit stwait until: (i) it is preempted, or (ii) it exhausts its budge
be applied, otherwise the waiting time could be too lond-hese two events are modelled in the diagram as signals that
Therefore, it is necessary to understand what is the stdtusace broadcasted to all tHeO- RAS servers, and consumed by
the lock owner before taking a decision on how to resolve tlemly one of them.

B. Protocol Rules s T u(D)
The M-BWI protocol works accordingly to the following iy A
blocking and scheduling rules. Let; = {7 | % — :
7, for someh} be the set of tasks blocked on, and let 54 &) = U(1
A; = {Sk | 7 € A\;} U{S;} be the set of servers currently | ———2—1
inherited by7; (S; included). Then: sd LQ) :
M-BWinbleckingstajdlocks trying to lock an already owned c |, @ 1
resourceRy,, the chain of blocked tasks is followed
. . . H 0 2 6 8 0 2 6 8 20 22 2 26 28 30
until one that is not blocked is found — let it bg. Figure 3: First exaltmplle,Bl‘tlaslks on2 CPUs andi resource.

Therefore,r; inherits S; and all the servers in;.

M-BWinvdetrenheing rale\l; is dispatched, it runs the lock . N . .
owner (;, in the LO-Runni ng state). If 7; is The second example, depicted in Figure 4, is more compli-

already executing somewhere else, it performs a bugzted by the presence btasks or processors, two resources,
wait (LO- RAS state). WhenevesS; is preempted and a nested access: the requestipiis issued by at time

or exhausts the budget while running, one of 7 when it already ownst,.
the other server that were busy waiting will start

executing it. sl f
M-BWinvdetrenhalingrmeig 1€ A; blocks on somethingiot A 1
related to M-BWI, all the servers in; become idle

T
|
(BW _i dl e state). When it unblocks, af; € A; S5 h 1 l
become active agaiB(W _act i ve state). 5 :
M-BWimnellockimigaksd?;, and wakes up;, 7; is discarded g | L) L}
from S; and7; replaces it in allS; € A;. l
M-BWimvekingamelehan one task is blocked waiting for
locking Ry, access is granted in FIFO ordering, i.e.?1 ;(2)‘) 1

tasks enters the critical section @t), according to EEEE 1

the order they issued the lock request. sh [Xo) u@)
B

C. Examples

To better explain M-BWI, this section contains two COMigfre 4: Secdnd exatplé; 1AskE ot &P ith P reouites —
plete examples, conceived to highlight the rules of the@@rotone accessed nested inside the other by one task.
col.

In the figures below, each time line is a server, and the .
default task of serve6 4 is 74. However, since with M-BWI Notice that bothrp gnd 7, despite they_ Only uséty,
tasks can execute in servers different from their defawdt tme 3¢ blocke_d by74, Wh'Ch_ uses onlyR;. _Th's |s.because
label in the execution rectangle denotes which task is dieru the behavior ofrc establishes the blocking chaip =
in that server at that instant. Light gray rectangles ar& ta’D> B2, 70, Ba,74) and Hp = (75, Ra, 7c, R1, 7a). For the
executing non critical code, dark gray rectangles arecatiti same reaso_t‘jD andSg are SUb]ecF t.o the interference either
sections and black rectangles corresponds to the servegr b@é busy waiting or executing, until it releases?;.
waiting. Which critical section is being executed by whiabBk p Formal Correctness
can again be inferred by thexecutionlabel, thusA; denote
task 74 executing a critical section on resourég. Finally,
arrows represents “inheritance events”, i.e., tasks itihgr
servers as consequences of some blockings.

The schedule for the first example is depicted in Figure

In this section formal proofs of the following are given:
(i) a task only executes when it is ready, and never in more
than one server at a time; (ii) no server misses its scheglulin

eadline. The former is the basic property for complyinghwit

It consists of3 tasks accessing only resource, scheduled onth® sy_stem mod_el, and proof is given in Lemma 1 and 2. The
2 processors. latter is proven in Theorem 2 and it means that:

At time 6, 7 tries to lock Ry, which is already owned 1) bandwidth isolation among non interacting tasks at-

by 7¢. Thus, ¢ inherits Sz and starts executing its critical tached to servers is always enforced,

section onR; inside it. Then, when at timé 7, tries also 2) tasks attached to servers are not automatically guaran-
to lock Ry, both 7o and 7z inherit S, and bothS,4 and Sp teed to meetheir deadlines. However, as long as it is
wants to executec. Therefore, as prescribed by scheduling ~ Possible to compute theterferenceof other tasks, hard
rule 1, one of the two servers has to start busy waitig {n guarantees can be provisioned.

this example). Also, the FIFO wakeup policy is highlighted i Thus, if the system is correct and feasible with a resource
this example: when at timé4 - releasesR,, g grabs the reservation algorithm of any king, the following lemmas and
lock because it made the locking request before theorems hold if M-BWI is used on-top of it.

Lemma 1. M-BWI will never cause a task; to execute on blocks.
more than one server at the same time. Given Theorem 1, in all such caség either becomesdI| e
(BW _i dl e), or staysBW _runni ng — no matter if in

that has inherited some server. Fgrto execute in more than LG Runni ng or in LO-RAS. In the former case, there is
- F9 no blocking involved, since the server scheduler only sees a

one server, at least two serversin should be.O- Runni ng. server deactivation and treat it accordingly. Since, olbsiy

However, the scheduling rule | ensures that there is onlyobne S :
P . .7~ ""no blocking is involved in the latter case as well, the camll
these server in theO- Runni ng state. Here the Contradlcnon’follows 9 ' m

and the lemma follows.

Proof: By contradiction. Suppose thaf is a lock owner

. Theorem 2. A serverS; never misses its scheduling deadline.
Lemma 2. M-BWI will never cause a blocked or suspended g

task; to execute in any server. Proof: If the set of server is feasible, it means that a
scheduling test, among the many existing, has been chosen
accordingly with the system configuration, i.e., fixed or dy-
namic priority and partitioned or global scheduling. Thes i

’) !) ; correct since it has be shown, e.g., in [1], that the regultin
blocks, its lock owner inherits all the serversin This means gopeqyle of a resource reservation based system is the same
It can execute . mst_ead of — when they are d|spatched_,as the one of a set of real-time tasks— one per serves;

and the lemma is still true. Thus, according to scheduling o,ch with bandwidth demand limited 16y, / P,.

gj\;\? I.’ (;Ifl Ti blngS or sluspendbs, 3'_' the r?e(;versdzim trn However, if during the test no blocking time is taken into
! dl'e and can no longer be dispatched and execiite account, the results are valid only if servers never block.

Hence the lemma. Therefore, the result is valid as long as servers do not block

Proof: This directly follows from the blocking rule and
from scheduling rule Il. Suppose the lemma is true wheis
not blocked or suspended. According to the blocking rule; if

Theorem 1. An BW _)act i ve or (BW _)r unni ng server and given corollary 1 the theorem follows. . =
S; always has in its task list exactly one ready or running Inan open system, temporal isolation and protection are key
task. features. However, it is also important to be able to bound

_ o]] the blocking time of a task on a resource, so to be able to
Proof: Suppose initially S; is (BW_)active or gyarantee task deadlines. In Section V-F, we present a ghetho

(BW _)runni ng with only one ready (running) task. 1o compute the interference that tasks impose on servers tha
attached. It is not important if; is its default task, and the gyeocute hard and and soft real-time tasks.

theorem holds.
Task blocking and suspending can decrease the numbeEofM-BWI Design and Implementation Considerations

ready or running tasks in a server. However, if it reaches zer \WWhen more than a task is waiting for a lock, which one
S; becomes BW _)i dl e, and the theorem still holds. Onhas to be woken up when the owner releases the lock is
the contrary, task unblocking or resuming always raise thedesign choice that deserves some consideration here. The
number of ready or running tasks from zero to one, singfo most widespread alternatives are (i) FIFO and (ii) pityor
it must have been preceded by a corresponding blocking R§sed wakeup. In FIFO, waiting tasks are provided access to
suspending event, and the thesis keeps being respected. the resource according to the order they issued the requests

According to the blocking rule, as long asblocks, its lock je., it is the task that blocked for first that now grabs the
owner inheritsS;. 7, is thus quitting ready state, and its lockock. On the other hand, if priority is considered as quegein
owner may be ready, running, blocked or suspended. If it dgscipline, the waiting task with the highest priority witie
ready or running,5; remainsBW _r unni ng, with such lock the next lock-owner, independently from when the request
owner as the only task to run. If it is blocked or suspende@as issued. Priority based queue handling is very effedting
S; becomesBW _i dl e, and in both cases the theorem holdgyuaranteeing the highest priority tasks get quickly theuese

Finally, according to the unblocking rule, the unblockirfg otheir requesting, but this might starve the other tasks and
7, — either if 7, is the default task or a lock owner — turns itcause their servers an high amount of interference. Henee, d
back to ready or running state and makediscard the former to space constraints, this paper only considers the cage loc
lock owner. MoreoverS; becomes eitheBW _r unni ng or ownership is granted to blocked tasks in FIFO order. This als
runni ng, with 7, as the only runnable task, which meangnake it easier to compare M-BWI with some other important
the theorem follows. B resource-sharing protocol such as MSRP and FMLP, which
both use FIFO based locks.

Another important consideration to be made concerns the
busy waiting each server performs while irD- RAS state.
In fact, the properties of the protocol are enforced as long
as a servelLO RAS server stays schedulable and depletes

Proof: Sy, is ar unni ng or BW _r unni ng server, with its budget while running, but it is not mandatory for it

one runnable/running task, attached to it. The only meansto waste processor time by busy waiting. A smart enough
of server blockings to occur are whep blocks, suspends or implementation of M-BWI can avoid busy waits and let some

Corollary 1. There is no way, for a lower priority serves;
to prevent a higher priority servef;, from being dispatched,
if is active (BW _acti ve), or to continue executing it it
is BW _runni ng — i.e., a server never blocks.

other task run while keeping depleting th&- RAS server than 7; (S;) that can interfere withr; (S;) itself. Let also
budget. This way many tasks may potentially receive mof® = {(R;) | m € T; A P < P} — {&(R;)} be the set
processing time than it can be expected by off-line systemfi maximal critical sections length of tasks interactinghwi;

analysis. E.g., non real-time interactive tasks will rewpo (attached to servers) with smaller period thans;). Given

with reduced latency. It is also possible to see this extthe two Lemmas, the interference a senggris subject due
time intervals as some sort of reclaiming mechanism mate M-BWI, can be expressed as follows:

available to even real-time tasks, but precise consideratn 1

how it have _to be.properly accounted fqr and hovv_ to drawq I = Z &u(R;) + L"j QO)

some benefits —with respect to scheduling analysis— from it

are deferred to future research. klmeedy
F. M-BWI Interference Time Computation and I ij 3)
Knowing some information about the tasks in the system, f 5 !

e.g., what tasks access which resources, for how long,aetc.,

estimation of the interference timg each server will incur Whereld” S is the sum of thenin(n, ||S||) biggest elements

on can be given. The interference tindgis defined as the Of setS (and||S|| is the number of elements ifi).

amount of time a serve$; is running but it is not executing In Open Systems it is possible that hard real-time tasks
its default taskr;. In other wordsJ; for S; is the sum of two actually share some resources with some soft real-time one,

kind of time intervals: e.g., if critical sections are part of a shared library. listh
« the ones when tasks other thanexecutes inside;; scenarip, even if the duration of the criticall section are
« the ones when; is blocked and5; busy waits inLO- RAS known in advance, the problem that soft real-time tasks can
state. deplete the budget of their servers — even inside these code

segments — has to be taken into account. When this happens,
the conditions of Lemma 3 and 4 are no longer verified.
This basically implies that all the potentially interfegitasks
Theorem 3. A hard real-time task;, with WCETC; and MIT should be always considered, since all the assumptionseon th
T; attached to a serves; = (Q; = C; + I;, P; = T;) never deadlines of the server are no longer true. An upper bound to
misses its scheduling deadline. the interference a serve; — servicing a hard task — incurs

on because of the presence of soft tasks is:

Hence, schedulability guarantees to hard real-time dietivin
the system are given by Theorem 3.

Proof: As for Theoremt in [26], well known results (e.qg.,
from [1_, 2]) ensures thai; never postpone its deadline if never = Z &(R;) (4)
executing more tharf);, and this guarantees that always
makes its scheduling deadline. With M-BWI, the budgetof
can be consumed both by the up to C;, and by execution It must be said that if a system consists only of hard real-
of other tasks and busy waiting up fo. Hence the theorem time tasks, then M-BWI is probably not the best solution.
follows. m [In fact, other protocols —specifically aimed at that— might

The set of tasks that are directly or indirectly (i.e., by mea provide more precise estimation of blocking times that fave
of a blocking chain due to critical section nesting) intéssith ~ be considered in admittance tests. Where M-BWI is —as per

k|rn €D, ki

a resourceR; is defined as the authors’ knowledge— really unique, is in heterogeneous
N environments where isolation is the key feature for making i
Uj={n|3Hy =(..7...R;...)} @) possible that hard real-time, soft real-time and non riead-t

Theorem 3 also implies that if the system comprises only &¥sSks to coexist.
hard real-time tasks, servers are scheduled in task’sityrior
order. Thus, as Corollary 1 states that with M-BWI a server
never blocks, then earliest deadlineBW)act i ve servers The closed-form expression for the interference time @eriv
are always executing. Under these conditions, the follgwirbove can be used to evaluate how, and under what conditions,
two Lemmas hold. the interference that M-BW!I introduces affects the schadul
bility of hard real-time tasks in the system. To this purpose
the effectiveness of the protocol has been evaluated throug
extensive simulations. Synthetic task sets and sharedne=o
Proof: m have been generated, according to the following parameters

Simulations have been carried out far= {2, 4,8} CPUs.
Each time, the maximum number of tasks was sé{te 5-m,
and tasks are added to the task set until this limit is reached

Proof: m or their total utilization exceeds:/2.

Let ®! = {r, | m € T; A7 usesR; A P, > P;} — {r;} Each task has a processor utilization chosen uniformly

be the set of tasks (attached to servers) with larger periatithin (0, U,,..], and a computation time chosen uniformly

VI. SIMULATION RESULTS

Lemma 3. For each resourcel; a taskr, € I'; contributes

to the interference to a served; if T) < P;.

Lemma 4. For each resource?; at mostm — 1 tasksr; € T';
with T; < P; contribute to the interference on a servéy.

within [0.5ms, 500ms) (the task period is calculated accordMoreover, in these cases (insets (c) and (d)), the actugthen
ingly). Tasks execution time includes the execution of arof the short critical sections does not seem to negativégcaf
critical section it will use. schedulability.

As per the resources, both short and long critical sec-In short, these results reflect what could have been expected
tions have been considered. Short resources are acces$smd the M-BWI protocol, since it main focus is on providing
by critical sections with a duration uniformly chosen withi isolation: the protocol can effectively support a few hazdlf
(10445, Emaz), While long ones withirf80.s, 120.s]. Each task time tasks by providing temporal isolation and by boundhme t
has a probability of accessirg 1, 2 or 3 short resources of interference time. The protocol is very suited to soft rtialke
0.125, 0.25, 0.50 and 0.125, respectively. On the other handtasks, as we expect that in low contention systems, the geera
each long resource (if any) is accesse®b$ or 4 tasks with interference time (and thus the overhead of the protocol) is

a probability 0f0.125, 0.625 and0.25, respectively. particularly low.
Finally, for each task and each resource it acceskes,
2 nested resources are generated with a probabilit9. 25 VII. CONCLUSIONS ANDFUTURE WORK

and 0.0625, respectively. Nested resources are always short
and their length is obtained exactly as above. A resoiige
nested inside?;, by means ofr; is always accessed by but

In this paper we present the Multiprocessor Bandwidth

Inheritance (M-BWI) protocol, an extension of the Banduidt

it may also be accessed by any other task that accd%@eslnhe.r itance (BWI) protocol to symmetr Ic muIt|prlocessodan
multicore systems. The protocol is particularly suitalolepen

with probability 0.5.
. . systems, where tasks can enter and leave the system at any
The results are obtained by generatiti)0 task sets for .))
tlrge, and hard, soft and non real-time tasks can coexist.

each combination of the parameters of the experiment, an h\fter describing the obrotocol. we proposed a method to
then inflating the computation time of each task by thgalculate an LII I gr bourrl)d to thé ;/xterﬁ‘)ergnce due to blockin
interference it suffers. After that, checking how many of th PP 9

generated task sets remained schedulable was done usingf{hghareq[rei;oul;c%s. 'It'rlanlI;s to th's ugpterr:)ozlnd, 'T l[.s pe?smk
response time based test by Bertogna et al. [9]. 0 compute the budget 1o be assigned 1o hard rea-ime tasks

In the first set of experimentsVono: — N/2 short re- in order to guarantee they will meet their deadlines in the

sources andV;,,, = m/2 long resources have been generatew,ors'['case' . o
e proposed upper bound is very pessimistic. As a future

and then nested requests are added as described. Diﬁerea—t{: : :

simulations have been performed, changing the valué of, work we plan to improve the expression by a more careful
among0.2, 0.4, 0.6 and 0.8, and éach of them fo¢ _ analysis. In addition, we plan to implement the algorithm to
10.20.30. 40.50.60. 70 80@; e estimate the average interference time of a task undereiiffe

Figure 5 shows that in presence of both short and |Or9é)eratlng conditions.

resources, especially whd,,,, is small (which results in
higher number of tasks in the task set), the schedulability
loss is significant (insets (a) and (b)). This is due to thgl] L. Abeni. Server mechanisms for multimedia applica-
accumulation of interference of the pessimistic upper lboun tions. Technical Report RETIS TR98-01, Scuola Supe-
However, it is interesting to see that, if the number of tasks riore S. Anna, 1998.
is kept small, even in presence of long resources, of shoff] L. Abeni and G. Buttazzo. Integrating multimedia appli-
resources lasting much more than what it is expected from cations in hard real-time systems. Bioc. IEEE Real-
them, and even if individual tasks utilizations are quitghhi Time Systems Symposiupages 4-13, Madrid, Spain,
the loss is abou80% on 8 CPUs, and much better ohor Dec. 1998.
2 CPUs (insets (c) and (d)). This also suggests that if th§3] J. H. Anderson and S. Ramamurthy. A framework for im-
number of hard real-time activities is small enough — which plementing objects and scheduling tasks in lock-free real-
is common case in open systems — the M-BWI protocol can time systems. INEEE Real-Time Systems Symposium
be used without wasting too much bandwidth. pages 94-105. IEEE Computer Society, 1996. ISBN 0-
Nevertheless, given the fact that it is both desirable and 8186-7689-2.
common for critical sections to be short, a second set of4] B. AnderssonStatic-Priority Scheduling on Multiproces-
experiments has been performed where aNly,,.. = N/2 sors PhD thesis, Department of Computer Engineering,
short resources (and the nested ones generated from them) Chalmers University, 2003.
were used. Again, different runs for the same combinationf5] B. Andersson, S. Baruah, and J. Jansson. Static-priorit
of values ofU,,., and &,,., as above have been studied. scheduling on multiprocessors. Proceedings of the
Results in Figure 6 are much more encouraging, since even in IEEE Real-Time Systems Symposiymages 193-202.

REFERENCES

worst possible conditions, e.g., many small tasks intergct IEEE Computer Society Press, December 2001.
on resources with high,,.. as depicted in inset (a), the M- [6] T. P. Baker. An analysis of fixed-priority schedulalilit
BWI protocol only suffers from moderate schedulabilitydos on a multiprocessor.Real-Time Systems: The Interna-

Again, if the number of hard real-time interacting tasks is tional Journal of Time-Critical Computing32(1-2):49—
limited, the protocol causes almost no waste of CPU capacity 71, 2006.

% of Schedulable Task Sets
D
o

% of Schedulable Task Sets

0 10 20 30 40 50 60 70 80
Maximal Duration of Short Resources

(a) Umax =0.2

100

90

80

70 +

60 -

% of Schedulable Task Sets
% of Schedulable Task Sets

50 L
0 10 20 30 40 50 60 70 80

Maximal Duration of Short Resources

©) Umaz = 0.6

0 10 20 30 40 50 60 70 80
Maximal Duration of Short Resources

(b) Umax =04

100

90

80 e

70

60 - 4 cpus

50 I !
0 10 20 30 40 50 60 70 80

Maximal Duration of Short Resources

() Umaz = 0.8

Figure 5: Schedulability loss due to M-BWI for hard tasks, varying thaximal duration of short resources. Insets show simulatigith
different values used fol/.... In these experiments, both short and long resources wesemt.

100 —
95 R L M e, -
% -
85
80
75
70 - 2CPUs
65 |- 4 CPUs-------
60 L

0 10 20 30 40 50 60 70 80

Maximal Duration of Short Resources

(a) Umax =0.2

% of Schedulable Task Sets
% of Schedulable Task Sets

98

96

94

92 -

% of Schedulable Task Sets
% of Schedulable Task Sets

90 L
0 10 20 30 40 50 60 70 80

Maximal Duration of Short Resources

(©) Umaz = 0.6

100 ———F—o——
95 [t
90
85

80 S

75

70 |- 2CPUs

65 | 4 CPUs-------

60 L .

0 10 20 30 40 50 60 70 80
Maximal Duration of Short Resources

(b) Umax =04

98

96

94

92 4CPUs-------

90 I !
0 10 20 30 40 50 60 70 80

Maximal Duration of Short Resources

() Umaz = 0.8

Figure 6: Schedulability loss due to M-BWI for hard tasks, varying theximal duration of short resources. Insets shows sinmiativith
different values folU,.... In this experiments, only short resources were present.

[7]
(8]

[9]

[10]

T. P. Baker. Stack-based scheduling of real-time pro-
cessesReal-Time System§3), 1991.

M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: a
synchronization protocol for hierarchical resource shar-

ing real-time open systems. IRroceedings of the 7th [11]

ACM and IEEE international conference on Embedded
software 2007.

M. Bertogna and M. Cirinei. Response-time analysis for
globally scheduled symmetric multiprocessor platforms.

In 28th IEEE Real-Time Systems Symposium (RTSRP]

Tucson, Arizona (USA), 2007.
M. Bertogna, M. Cirinei, and G. Lipari. New schedula-
bility tests for real-time tasks sets scheduled by deadline

monotonic on multiprocessors. IRroceedings of the
9th International Conference on Principles of Distributed
SystemsPisa, Italy, December 2005. IEEE Computer
Society Press.

M. Bertogna, F. Checconi, and D. Faggioli. An Imple-
mentation of the Earliest Deadline First Algorithm in
Linux. In Proceedings of the 1st Workshop on Composi-
tional Theory and Technology for Real-Time Embedded
SystemsDec. 2008.

M. Bertogna, M. Cirinei, and G. Lipari. Schedulability
analysis of global scheduling algorithms on
multiprocessor platforms. IEEE Transactions
on Parallel and Distributed Systems2008. doi:

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

http://doi.ieeecomputersociety.org/10.1109/TPDS32029.

A. Block, H. Leontyev, B. B. Brandenburg, and J. H.
Anderson. A flexible real-time locking protocol for[28]
multiprocessors. IfProceedings of the 13th IEEE Inter-
national Conference on Embedded and Real-Time Com-
puting Systems and Applicatigrnzages 47-56, 2007.

M. Caccamo and L. Sha. Aperiodic servers with resource
constraints. InIEEE Real Time System Symposiunfi29]
London, UK, December 2001.

C.-M. Chen and S. K. Tripathi. Multiprocessor priority
ceiling based protocols. lrech. rep., College Park, MD,
USA 1994.

H. Cho, B. Ravindran, and E. D. Jensen. Space-optimal,
wait-free real-time synchronizationEEE Trans. Com- [30]
puters 56(3):373-384, 2007.

R. I. Davis and A. Burns. Resource sharing in hierarchi-
cal fixed priority pre-emptive systems. Rroceedings of

the IEEE Real-time Systems Symposif606.

U. C. Devi, H. Leontyev, and J. H. Anderson. Ef{31]
ficient synchronization under global edf scheduling on
multiprocessors. IfProceedings of the 18th Euromicro
Conference on Real-Time Systempages 75-84, 2006.

A. Easwaran and B. Andersson. Resource sharing [B2]
global fixed-priority preemptive multiprocessor schedul-
ing. In Proceedings of IEEE Real-Time Systems Sympo-
sium 2009.

D. Faggioli, G. Lipari, and T. Cucinotta. An efficient[33]
implementation of the bandwidth inheritance protocol
for handling hard and soft real-time applications in the
linux kernel. In Proceedings of thet’” International
Workshop on Operating Systems Platforms for Embeddgd]
Real-Time Applications (OSPERT 200Byague, Czech
Republic, July 2008.

X. Feng and A. K. Mok. A model of hierarchical real-
time virtual resources. IProc. 23'4 |IEEE Real-Time [35]
Systems Symposiypages 26—35, Dec. 2002.

N. Fisher, M. Bertogna, and S. Baruah. The design of
an EDF-scheduled resource-sharing open environment.
In Proceedings of the 28th IEEE Real-Time Systeff6]
Symposium2007.

P. Gai, G. Lipari, and M. di Natale. Minimizing memory
utilization of real-time task sets in single and multi{37]
processor systems-on-a-chip.Rroceedings of the IEEE
Real-Time Systems Symposijupec. 2001.

K. Lakshmanan, D. de Niz, and R. Rajkumar. Coor-
dinated task scheduling, allocation and synchronization
on multiprocessors. IfProceedings of IEEE Real-Time
Systems Symposiu2009.

G. Lipari and E. Bini. A methodology for designing
hierarchical scheduling systemsournal of Embedded
Computing 1(2), 2004.

G. Lipari, G. Lamastra, and L. Abeni. Task synchroniza-
tion in reservation-based real-time systedt&EE Trans.
Computers53(12):1591-1601, 2004.

C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environment.

Journal of the Association for Computing Machine?{
(1):46-61, Jan. 1973.

J. M. Lopez, J. L. Diaz, and D. F. Garcia. Utilization
bounds for EDF scheduling on real-time multiprocessor
systems. InReal-Time Systems: The International Jour-
nal of Time-Critical Computingvolume 28, pages 39-68,
2004.

F. Nemati, M. Behnam, and T. Nolte. Multiprocessor
synchronization and hierarchical schedulingPioceed-
ings of the First International Workshop on Real-time
Systems on Multicore Platforms: Theory and Practice
(XRTS-2009) in conjunction with ICPP’0%eptember
20009.

F. Nemati, M. Behnam, and T. Nolte. An investigation
of synchronization under multiprocessors hierarchical
scheduling. InProceedings of the Work-In-Progress
(WIP) session of the 21st Euromicro Conference on Real-
Time Systems (ECRTS'Q0@ages 49-52, July 2009.

R. Rajkumar. Real-time synchronization protocols for
shared memory multiprocessors. Proceedings of
the International Conference on Distributed Computing
Systemspages 116-123, 1990.

R. Rajkumar, L. Sha, and J. Lehoczky. Real-time syn-
chronization protocols for multiprocessors. Proceed-
ings of the Ninth IEEE Real-Time Systems SympQqsium
pages 259-269, 1988.

R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Re-
source Kernels: A Resource-Centric Approach to Real-
Time and Multimedia Systems. IfProc. Conf. on
Multimedia Computing and Networkinganuary 1998.

T. Riegel, C. Fetzer, and P. Felber. Time-based transac
tional memory with scalable time bases. In P. B. Gibbons
and C. Scheideler, editorSPAA pages 221-228. ACM,
2007. ISBN 978-1-59593-667-7.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
inheritance protocols: An approach to real-time syn-
chronization. IEEE Transactions on Computer39(9),
September 1990.

I. Shih and I. Lee. Periodic resource model for com-
positional real-time guarantees. Bioc. 24" Real-Time
Systems Symposiyupages 2-13, Dec. 2003.

B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task
scheduling for hard-real-time systemi¥purnal of Real-
Time Systemsl(1):27-60, 1989.

