A framework for hierarchical scheduling on multiprocessors: from application
requirements to run-time allocation

Giuseppe Lipari, Enrico Bini
Scuola Superiore Sant’/Anna, Pisa, Italy
Email: {g.lipari,e.binit@sssup.it

Abstract—Hierarchical scheduling is a promising methodol- [Application A]
ogy for designing and deploying real-time applications, sice [
it enables component-based design and analysis, and suppor v
temporal isolation among competing applications. In hiera ‘ Interface selection H Interface model]
chical scheduling an application is described by means of a
temporal interface. The designer faces the problem of how l
to derive the interface parameters so to make the applica- [Application InterfaceIJ
tion schedulable, at the same time minimizing the waste of
computational resources. The problem is particularly relevant l)
in multiprocessor systems, where it is not clear yet how Admission control)-etadmitted

the interface parameters influence the schedulability of te
application and allocation on the physical platform.

In this paper we present three novel contributions to [Virtual platform IT J E Other applicationsﬂ]
hierarchical scheduling for multiprocessor systems. Firs we

propose the Bounded-Delay Multipartition (BDM), a new in- \—L ¢—‘

terface specification model that allows the designer to batee ‘ Root-level Scheduler‘
resource usage versus flexibility in selecting the virtual katform

parameters. Second, we explore the schedulability regionfa
real-time application on top of a generic virtual platform, and
derive the interface parameter. Finally, we propose-luid Best-
Fit, an algorithm that takes advantage of the extra degree

of flexibility provided by the BDM to compute the virtual . L) i
platform parameters and allocate it on the physical platfom. interfaceZ. After the application is admitted into the system,

The performance of the algorithm is evaluated by simulatios. ~ a root-level scheduleris in charge to accommodate all
interfaces onto the available physical resources. Thegdesi
of a hierarchical scheduling system involves the following

|. INTRODUCTION phases summarized in Figure 1.

Multiprocessor systems are becoming increasingly com- 1) Interface SpecificationAt design time, the application
monplace, not only in desktop/laptop PCs and in servers, butesigner must characterize the temporal requirementseof th
also in embedded systems [1], [2]. This trend is expectedpplication, and derive an appropriate temporal interface
to increase in the near future. Following the trend, real-specification that summarizes the requirements. We distin-
time researchers focused on multiprocessor scheduling arglish two aspects here: the choice of iaterface model
schedulability analysis, in some cases extending existingnd the selection of the parameters in accordance with the
techniques proposed for single processors to multiproceghosen model.
sors. It is the case ofiierarchical scheduling methodolo- Given an interface model, the designer needs to instantiate
gies[3], [4], [5], [6], which are regarded as useful tools to an interfaceZ so that the application is guaranteed on it.
handle the complexity of medium to large-sized applicagion When selecting the “optimal” interface parameters for an
and enable a component-based approach to schedulabiligpplication, the designer must trade-off different go&is:
analysis; also, such techniques are helpful for providingexample, in [7], we proposed a methodology for single
temporal isolation and timing guarantees in open system§rocessor systems that, starting from the worst-casenequi
and for enabling application-specific schedulers (alstedal ments of the application tasks, derives an interface based
local schedulers on the bounded partition modék, A) from the application

In the hierarchical scheduling model, the computationatequirements, trading off the maximum deldy (that we
requirement of an applicatiod is described by &emporal want as large as possible to reduce overhead) versus the

The research leading to these results has received fundorg fhe maximum bandwidtfo, (that we want as little as possible

European Communitys Seventh Framework Programme FP7 wndet to reduce usage of resource). Whe_n the ap_pllcatlon IS a set
agreement n.248465 “S(0)OS Service-oriented OperatirsieS)s.” of tasks scheduled by EDF, the optimal design problem has

ladmitted

Figure 1: Design phases of a hierarchical scheduling system

been analytically solved [8]. a global EDF test developed on top of it. However the
2) Run-time allocation: In this paper we assume an assignment of the parameters of the virtual platforms is not
open systemwhere applications can dynamically join and investigated.
leave. When an application joins the system, it presents it% Contributi thi
interface to theadmission controlpolicy, which performs - Contributions of this paper
a feasibility analysis to check if the application can be In this paper we propose a framework for designing
safely admitted without compromising the guarantees of théierarchical scheduling systems that covers both phases
existing applications. If the answer is positive, the syste Of the design. First, we propose a novel interface model,
instantiates avirtual platform II that respects the temporal called bounded-delay multipartitio(BDM) interface that
interface. The virtual platform is then scheduled on theallows the designer to balance the amount of consumed
physical platform together with the other virtual platfarm bandwidth vs. the flexibility of the interface, making easie
of already running applications. the admission control problem. Second, rather than simply
If the application cannot be admitted, the designer must géhecking the schedulability of an application, as all past
back to the interface specification and derive new interfacavorks did, we mostly focus on the derivation of the interface
parameters that enables a wider search in the design spa&éarting from the application requirement. For this pugos
In this paper, we investigate how the selection of thewe propose a schedulability test from which the impact of
interface parameters influence the schedulability of th@iap the interface is more apparent.
cation on the virtual platform on one side, and the problem Third, we propose an allocation policy, calléidid best-
of allocating the virtual platforms on the physical process ~ fit that performs admission control and, at the same time,

on the other side. instantiates the virtual platform parameters from therinte
face specification so as to optimize the underlying resource
A. Related Work allocation. In addition, our model is suitable for a number

) of extension and modifications, so to cope with additional
In single processors, Mok et al. [9] proposed lweinded- ¢qhstraints and goals. We demonstrate by experiments that,
delay partition Shin and Lee [6] proposed theeriodic anks to the extra level of flexibility allowed by the intece

resourcemodel, Easwaran et al. [10] extended the periodiGy el our allocation policy performs better that existing
resource model by allowing deadline different from per'Od'poIicies.

Recently, some authors have addressed the problem of
how to specify the application interface for an application [l. SYSTEM MODEL

to be executed on multiprocessor systems, and provide The overall system is composed of a set reél-time
appropriate schedulability analysis to check if the agi@n applications {.4/} that run concurrently onto a multipro-
is schedulable on the interface. cessor constituted by/ processors. Some applications are
Leontyev and Anderson [11] proposed to use the onlyg\ways running, while some others dynamically join and
overall bandwidth requirement as interface for soft real- |ggve the system. To enable composability and isolation,
time applications. The authors propose to allocate a bangsgch application4? is executed onto a dedicatedrtual
width requirement ofv onto |w] dedicated processors, plus platform IT¢. The real-time requirements of the application

an amount ofv—|w| provided by a periodic server globally 4¢ are guaranteed onto the platfoii by a guarantee test
scheduled onto the remaining processors. An upper boung

of the tardiness of tasks scheduled on such interface was |n the rest of this section we provide a more detailed

provided. _ model of each notion we introduced above. Since we focus
Shin, Easwaran and Lee [12] proposed the multiprocessdy each application in isolation, from now on we drop the

periodic resource model (MPR): each application is assignejndex ¢ of the application. We denoteax{0, -} with (-)o.
a set of periodicm reservations{(Q;, P)} all with the

same period. This interface model is quite intuitive, but itA. Application model

has a drawback: it implicitly requires the synchronization The application4 is composed of a set of independent

between reservations running on different processorsishat sporadic taskg{7i, ..., 7,}. Every time a task is activated,

difficult to implement in a real system; when periods are nota job must be executed. Thminimum interarrival timeT;

synchronized, it does not exist a worst-case scenario of thig the minimum separation between two consecutive jobs of

resource allocation, as explained in Section IV-A. ;. Each job ofr; has acomputation time”; and must be
Chang et al. [13] proposed to partition the resourcecompleted within adeadlineD, from its activation.

available from a multiprocessor by a static periodic scheme

The amount of resource is then provided to the applicatiors- Platform model

through a contract specification. The virtual platformII is modeled by a set of virtual
Bini et al. [14] proposed the Parallel Supply Functionprocessordm, ..., T} that we also calvirtual multipro-

(PSF) interface of a virtual multiprocessor and developedctessor

A platform interfaceZ is a predicate on the values that the [0,2(P — @)], and the budget) is provided at the end
virtual platform parameters may have. Hence, an interfacef the server period [7], [6]. The existence of the worst-
7 vyields naturally the subset of all virtual platforms that case platfornil*c for an interfaceZ justifies the advantages
are compliant with it. We denote this subset of platformsof an interface-based analysis, since if the application is
by II(Z). Examples of interface specifications are: “all the guaranteed oI then it is guaranteed on any platform
platforms with an overall bandwidth of.5”, or “all the in II(Z), so that during the allocation phase the designer
platforms in which one virtual processor has a bandwidth oftan freely select any platform H(Z).
at least).8”, etc. An interface that specifies many constraints In the context of real-time applications, the guarantee tes
yields a small sell(Z). On the other hand, if we specify T is also calledschedulability testif 7 (A, IT) returnSTRUE
only loose constraints iff, the seflI(Z) becomes larger. then no task deadline will be missed wheghruns onII.

In this paper, we assume that the virtual platform is de-On the other hand the te§t can also encode other kinds
ployed on the physical platform using partitioning. Once th of requirements: the minimum throughput of an MPEG
application is admitted and the virtual platform is created decoder, an average response time with some confidence
each one of the virtual processors is allocated on one of thievel, etc.
physical processors. We choose the partitioning approach
for practical and theoretical issues. From a practical {poin
of view, partitioning is easier to implement in a multicore Applications must be guaranteed on the corresponding
operating system, as it reduces the amount of shared dap@atforms. In the next section we recall a tight description
structures. Also, it can be advantageous for application®f a platform that is well suited for schedulability tests.

In facts, many multiprocessor systems have a non-unifor .

memory archi):ecturep(NUMA mgchines), and it is desirablgl" The Parallel SUpr Functlons_ of a pIaFfo_rm)
that tasks belonging to the same application do not arbjtrar To introduce the minimum p055|blle pessimism in abstract-
migrate across the entire physical platform, but only on thdnd the amount of resource provided by a platform, we
subset of processors that have the same latency in accessitigt @dopt the Parallel Supply Function (PSF) abstraction,
the memory. In our model, this can be achieved by allocatingecently introduced by Bini et al. [14]. Without entering
all the virtual processors of the same virtual platform on a2l the details of the definition (that can indeed be found

Ill. SCHEDULABILITY TEST ON A VIRTUAL PLATFORM

group of “neighbor” processors. in [14]), we recall here the basic concepts.
Also, as we will show in Section VI, the partition ap- D_efinition 2: Given a virtual plat_fornﬂ Cqmposed by the
proach coupled with our the flexible interface specification’ Virtual processorgm, ..., mn,}, its PSF is composed by

that we will introduce in Section IV allows a high density the set of function{Y; };,, whereY;(t) is the minimum

of packingfor the virtual platforms. This property leads to @mount of resource provided amyinterval of lengtht with

a better utilization of the overall system, as well as to the? Parallelismat mostk.

possibility to power-off or put in stand-by mode non used T© clarify this definition we propose an example (please

processors. refer to Figure 2). Suppose that in the interyal11] the
three virtual processorr, mo, w3} composing the virtual
C. Model of the guarantee test platform, provides resource in accordance to the schedule

We model a guarantee teB(.A, I) as a boolean function drawn in gray.
that returnsTRUE if the application.4 is guaranteedon

platform IT, FALSE otherwise. We also extend a guarantee 7777777777777777777 T
test to an interfac& as follows e
T2 I
TAIL) = N T(AD). (1) | |
TIeM(T) 3 AN I S S N B

0 1 2 3 4 5 6 7 8 9 10 1

Guaranteeing an application over an interfa€ewould Figure 2: From a resource schedule to the PSF.

require to test it over all the platforms H(Z) unless it
exists aworst-case platform

Definition 1: Given an interfac& and a test], we say
thatIT*< is the worst-case platform &f when:

In this caseY;(11) = 10 because there is always at
least one processor available[in 11] except in[8,9]. Then
Y2(11) = 16, that is found by summing up all the resource

" e II(7) (2) except one with parallelisn3 (provided only in [4, 5]).
VA T(A) = T(AT). 3) Finally Y3(11) = 17_that is achieved by summing all the
resources provided ifo, 11].

For example, in the uni-processor case the worst-case In general, the parallel supply functions are computed also
platformII¥c of a periodic interfac& that provides a budget by sliding the time window of length and by searching for
Q@ every period P occurs when there is an idle interval the most pessimistic scenario of resource allocation. This

minimization is somehow equivalent to the one performed
on uni-processor hierarchical scheduling [7], [6].

B. A schedulability test on the PSF interface

Since we aim at describing all possible interfagethat
can guarantee the given applicatich we find it useful
to propose a schedulability condition that is equivalent to
Theorem 2 in [14]. We choose this condition because it
applies to several different local schedulers such as globa

EDF or global FP, but it applies to constrained deadline I ‘
tasks, i.e. for all tasks; D; < T;. While choosing other : _
tests is possible [15], the proposed (equivalent) fornmutat 0 D,

has the advantage of highlighting the constraint on therigure 3: Schedulability of task; onto the virtual platform.
interface.

Theorem 1:An application A = {7;}!"_; is schedulable
on a virtual platformlI modeled by the PSFY;}7 , if and byYy-(D;) — W;. In the figurek* = 3, on top of the

figure a legend explains hoWj,(D;) and W; are depicted.
/\ \/ kCi+ Wi < Yi(Di), 4) Equation (8) can be rewritten as

i=1,...nk=1...,m Y (D;) — W,
k* i) — VVi
Ye (D)~ W (©)

By observing that the evaluation of the RHS of (9) for
- D; D; [i i
W, — Z {_J C; + min {Cj, D, - L_J Tj} G any other indexc # k* is not smaller thar;, it follows

whereW; is the maximumninterfering workloadthat can be I, =D, —
experienced by task; in the interval[0, D,], defined as

iz LT T I — min {Di ~ Y(Di) - Wi}
if the application tasks are scheduled by global EDF. Iitstea =Ly k
if the application tasks are scheduled by global FP D - max {Yk(Di) - Wi} (10)
¢ k=1,....m k '
Wi = Z Wi, (6)

et Hence the classic interference-based schedulability] 1€$t
Je€hp(z

wherehp denotes the set of indices of tasks with higher pri-
ority thans, andW;; is the amount of interfering workload pecomes

Vi=1,...,n Ci+1I; <D,

caused byr; on 7;, that is ' Yi(Ds) — W,
Vi=1,....n C;i< max ¢ ————— 5,
Wji = N;;Cj + min {C}, D; + D; — C; — N T3} (7) k=1,..m k
with IV, _iDﬁ%‘—cj _ which can be rewritten with the ANDA) and OR {/) as
Proof: The interfering workload/V; is an upper bound /\ \/ C: < Yi(Di) — Wi
1 = I{: I

to the amount of work that can be requested[inD;]
by tasks with priority higher tham; [16]. The workload
W, interferes onr; only if it occupies all the available

processors (otherwise; could execute). Thénterference IV. THE BOUNDED-DELAY MULTIPARTITION MODEL

IIZ' Is maximli)zled WhI(IanI' the Worr]I{/Vi is eTeC;'te_d at theh The PSF could be indeed used a tight interface model.
owest possible parallelism. In the example of Figure 3, the ., eyer it is too detailed to be intuitively handled by the

yvc_)rkload Wide 8 causes the maximum ||nterference \g'fhendesigners, whereas it is often highly desirable to provide a
it is executed for one time unit on a single processor.2for simpler and more manageable interface.

units at parallelism of and for one last unit at parallelism
3. To reach the interferencE = 6 we must also account A. Inappropriateness of the periodic interface

i=1,...,n k=1,....m

from which the Theorem follows. [|

for the two time units with no resource available. ~ Anatural candidate for a simple interface is the specifica-
If we call £* the highest degree of parallelism that is tion of a common period® among all the virtual processors
occupied byW;, then {m1,...,mn} and an overall budge that is shared by all
KDy — k*I; = Yy (D3) — W, 8) the 7;’s. Following this idea, Shin et al. [12] proposed the

multiprocessor periodic resource model (MPR).
This relationship can be explained in Figure 3, by exprgssin According to the MPR interface the virtual multiprocessor
the work represented in the dashed box ByD; — k*I; is abstracted by three parameters: a periddan overall

budgetQ, and a maximum parallelism < M. In [12], the Yo() | |||] AT

authors implicitly assumed a tight synchronization among —— Q1 =38 — ‘
the virtual processors; that ensures that all virtual pro- | | || o Q=7 LT
cessor implementation (that we call servers) are activated Q=6
simultaneously on all the processors. Unfortunately, due 1 ----- Q1=5 AT
to the difficulty of synchronizing clocks among different — 1= / AT
processors, this hypothesis often cannot be guaranteed. If / A %
this hypothesis is removed, the periodic interface becomes R
inappropriate for a very subtle reason that may however ST AV
cause a deadline miss: The worst-case platfithdoes not P2 I e
exist for the MPR interface. We show this by an example. — 7 -

Suppose an MPR interface specifies a virtual platform
composed by2 virtual processors that provide an overall 1117 v

budget of @ = 8 time units with a period ofP = 8. The
interface does not specify how the budget is split betw@en
and@- on the two virtual processors andms, respectively. 1
In Figure 4 we show some possible scenarios of distribution 2
of the budget) = 8. At the bottom of the figure we report
the worst-case resource schedulaasranges fron8 to 4 P
(and Q- varies accordingly fron® to 4). These schedules e
are worst in the sense that the overall resource provided in .,
[0,¢] is minimal. In the resource schedule, a vertical thick
black line is drawn at each server period. In the upper part ;l
we show the cumulative supply functidry that measures 2 ‘ ‘
the amount of resource provided in each scenario. T
It can be noticed thadlmost alwaysthe worst case of T2
the parallel supply functio; happens when the budget is Figure 4: A periodic interface is inappropriate for multpr
evenly divided between the two virtual processofs (= cessor.
Q2 = 4). This result would be in accordance to well-
known results on uniform multiprocessor scheduling, where

the worst-case speed distribution over a multiprocessbeis tjtion (BDM) interfaceZ = (m, A, [B1, . .., Bm]) With
case when all the speeds are equal to each other [17]. Un-

expectedly, assigning the two budgéls = 6 and Q2 = 2 A >0,

leads to the most pessimistic condition (minimum value of Ve=1,....m 0<pBp—fBr1<1, (11)
Y>) for an interval of lengthl2. Hence, an application that VE=1,....m Bs—Br1>Besr— B (12)

is schedulable on a “more difficult” platform (the one with
@1 = Q2 = 4) may be not schedulable on an apparentlywhen the following two statements are equivalent
“easier” platform (the one withQ; = 6 and Q2 = 2). It o I eII(T)
follows that there is no worst-case platfofiit for the non- o the PSFs{Y;} of II are
synchronized MPR interface.

In the next Section we propose an interface that does Vk=1,...,m, Yt >0 Yi(t) > B(t — A)o. (13)
not suffer this drawback, and we formalize the concepi-y \\otational convenience, we defifig= 0 and 8 = 5.,
of concavityof the platform which measures the intuitive ¢, o % > m.

concept of “difficulty” of schedulability on the platform. The BDM offers a greater simplicity compared with

_ the PSF interface. However, it certainly introduces some

B. The proposed interface model resource waste similarly to what happens with the uni-
The problem highlighted in Section IV-A happens be- Processor bounded-delay time partition.

cause the Supp|y functions grow discontinuous|y_ If the The main difference between the BDM interface and the
supply functions of the virtual processors are linear, thisMPR interface is that the time granularity is specified by a
phenomenon does not happen. This observation leads §@mmon delayA (that represents the length of the longest
to formulate the following interface model of a multipro- interval with no resource) rather than by a common peftod
cessor, based on an extension of the bounded-delay tinRmong the virtual processors. However this small diffeeenc
partition [9]. enables the statement of the following Theorem that would

Definition 3: An interfaceZ is abounded-delay multipar- be otherwise impossible to prove.

Theorem 2:Let Z = (m,A,[f1,...,5m]) be a BDM The proposed interface has several additional advantages:
interface. Its worts-case virtual platforid*© is the set of it does not rely on synchronization of the virtual resources
m bounded-delay virtual uni-processors [9] it does not rely on a specific underlying mechanisms (i.e.

we periodic servers), and can be applied to any bounded-delay
" = [(a1, A), ... (am,)] (14) partition (e.g. P-fair [18], static time partition [9]).
with C E |
Vk=1,....,m o= PB%— Bre_1. (15) - EXxampie
] . To better clarify the BDM interface model and the appli-
Proof: From (11) and (12) it follows that cation of Theorem 2 and Corollary 1, we present a simple

1>a;>as>...>a, > 0. (16) example. Let us suppose that our application presents a
. BDM interfaceZ = (3,6,[0.7,1.2,1.4]).
Because of the ordering (16), the PSE;*} of the From (15) it follows that the worst-case platformiigc =
platform II** defined by (15), are [0.7,0.5,0.2] (we recall that these values are the bandwidths
k of the virtual processors; € II). Thanks to Corollary 1 it
Ye(t) = Z a;(t — A)g = Br(t — Ao, is possible to move some bandwidth framto 75 achiving,
i=1 for example, a platformil’ = [0.7,0.7], compatible withZ.
from which it follows directly thatlI*c € II(Z). Moreover_ it .is possible to move again bandwidth fram
If a real-time applicatio{7, ..., 7,,} is schedulable over {0 71 achieving another compatible platforfi’ = [1,0.4].
I1* by Theorem 1, we have: If instead, starting fromiI* we move bandwidth fromr,
to m3 we can find a platform incompatible with such as
NV ECi+ Wi < Bu(Di — A)o, I = [0.7,0.4,0.3]. In fact, in this case the constraint (17)
i=1,..,n k=1...,m for k = 2 is violated sincen/’ + of’ = 1.1 < 53 = 1.2.

from which it follows the schedulability on any other plat-
form I € II(Z), by the property (13). HencH"< is the
worst-case platform. m The amount of resource consumed by an interface can be
As explained in Section IV-A, Theorem 2 cannot be statedoughly summarized by overall bandwidth, . It is however
for the MPR interface, since it is not possible to define aconvenient also to formally represent the accuracy of an
worst-case platform for it. interfaceZ. For this reason we introduce the following index.
Since from now on we will only consider platforms with ~ Definition 4: The concavity index(or simply concavity)
the same delay\, for notational convenience we identify Of virtual platformIl = [a1, ..., a,,], is defined as:
a virtual platformII only by the array of bandwidths
[a1, ..., ay,]. Without loss of generality we assume thg o(Il) = k:fﬁf@—l(ak). (18)
to be sorted non-increasingly.
For the purpose of an intuitive design space exploration
the BDM model enables a simple descriptionIbfZ).

Corollary 1: Let Z = (m, A, [B1,...,5n]) be a BDM o) =c(II") = max 1(25’“ — Br1 — Brt1), (19)

D. Application schedulability vs. allocation flexibility

Definition 5: The concavity index(or simply concavity)
of interfaceZ = (m, A, [B1, ..., Bm]) is defined as:

interface. A platformIl = [a1, ..., a,] belongs toIl(Z) k=1,...,m—
when . wherell*c is the worst-case platform of the interfage
VE=1,....m Z i > B (17) A_s an exgmple, the concavity of the interface of the exam-
p ple in Section IV-C isc(Z) = max{0.7 — 0.5,0.5 — 0.2} =

0.3, while the concavity of the more compact platfofif
Proof: The corollary follows from the observation that is ¢(I") = 0.6.
a platform with bandwidths defined in accordance to (17) For any interface, the minimum value that the concavity

has the PSF$§Y}} that respect (13). B index can assume 5 and it corresponds to an interface with
In practice, if we test our application on the platform Vi, 8, = %ﬂm and a worst-case platform withy, = ﬂﬁf ,Vk

I1*¢, then at run-time we can choose any other virtual(from Theorem 2). Therefore, we can say that a smaller
platform II € II(Z) by simply moving bandwidth from concavity implies a more “difficult” interface for the apqdi-

a virtual processotr; to another oner, with ap < ay. tion, since the application must be schedulable on a platfor
This can be viewed as a sort of compacting the bandwidtivhere all virtual processors have similar bandwidth. Netic
on the “heaviest” virtual processors. This adjustment ef th also that when concavity is zero, the number of virtual
platform allows a degree of flexibility at run-time that can platforms compliant with the interface is the largest (from
be exploited by the allocation algorithm. In Section VI we Corollary 1). Hence this interface corresponds to a scenari
will present an algorithm that will take advantage of this with minimum schedulability and maximum platform flexi-
flexibility. bility.

©2 1 =1 Q2 =2 Q2 1=3

When the concavity index is large, instead, the virtual ! _
platform is unbalanced, having some virtual processors wit 58— 08 T 08
large bandwidth, and others with small bandwidth. Consider °¢ 08 TR 0®
the case of an interface with total bandwidfl), ¢ N, 04T 04 o 04 7 :
distributed as followsZ = {[B.1, A, [1,2, ..., |Bm] s Bm]- 02 L oz ¥
It is easy to show that the concavity of this interface is of I it g ol 1 L UL Ll Dlg ol Ll Hy,
¢(Z) = |Bm] — Bm + 1. In this case, no platform other than Qe
mve =[1,1,...,[Bm]—Bm] is compliant with the interface. g |1
The interface is “easier” from a schedulability point ofwie 06]
(larger values oft}(t)), however its flexibility is minimal, ¥ ot S Ve {1,2,3}
since it requires the availability dfs,,| empty processors. oa !
Summarizing, the concavity index is a measure of the 0;’ H h
trade-off between “schedulability” and “flexibility” of # 0 02 04 06 08 1'
interface. A small concavity index is more difficult from Figure 5: The space af; andas.

a schedulability point of view (thus it might imply more

wasted bandwidth), but it allows a high number of compliant

virtual platforms and possibly a more effective allocatian workload ; of each taskr; can be computed according
large concavity index implies a higher degree of schedulato (6).

bility of the application (allowing to spare some bandwjdth

but a minor number of compliant virtual platforms. f | Cii Té Dé WS
2|15 27 27 5
3] 9 52 52 39

V. FROM THE APPLICATION TO THE INTERFACE

To enable an allocation phase onto larger exploration o
spaces, it is always convenient to select the interface Table I: An example of application.
with the largest possible set of platforfi§7), among the
ones that can guarantee the application. For this reason we First of all, we setn = 2 andA = 2. By writing explicitly
introduce the following definition. (21), we find the following relationships am and as
Definition 6: Given an applicationd and a guarantee test

. : . =1 k=1 >
T, we say that an interfacg is maximalwhen: ! o1

k=2 041+042§

T(.A,I), =2 kzl 0412
20

(TAZ) NTI(Z) CIT') =T =T". (20) k=2 art+ax>

>

>

Hence the interface selection should be performed onto =3 k= o
maximal interfaces. For real-time applications, the sched
lability test of Theorem 1 can be used to readily derive theMoreover we assume that all,’s are sorted decreasingly.
maximal BDM interface§ = (m, A, [B1, ..., 3n]) thatcan Hencea; > az. In Figure 5 we draw in gray the space of
guarantee the real-time requirement of the application. ~ all feasible selections of the arrdy, az] of an interface
From Theorem 1 and the PSF of an interfac@eported with m =2 and A = 2.
in (13)), it immediately follows that the application is

QO YT O | s [=

i

Uw|<;mn
[l =)

B1=a1 B2 ap=P2—pF1 c(l)

guaranteed when 077 T4 07 0
0.8 1.14 0.34 0.46
N\ ECi+ Wi < Be(Di — Ao 0.96 0.96 0 0.96

Tl ELem _ . Table II: Candidate interfaces of the application.
or, by writing the constraint on the bandwidthg, equiva-

lentl) . . .
y In this case there are three maximal candidate interfaces

k to represent the application requirement whose parameters
/\ \/ Zo‘j(Di —A)o = kCi + Wi 2D are reported in Table Il. In Figure 5 the maximal interfaces
=1.nk=1...mj=1 are graphically represented as the left corners of the tmotto
keeping in mind that they, are sorted decreasingly. figure. The first choice consumes the maximum bandwidth,
To provide a deeper understanding of the space of possiblthough it leaves to the allocation phase the maximum
selections for the interfacg, we illustrate (21) by an exam- degree of freedom. On the other hand, the last one consumes
ple. Suppose we have the real-time applicatidrmwhose indeed the minimum amount of bandwidth, however it may

parameters are reported in Table I. Let us schedule thibe harder to allocate, since it requires a bandwidth.66
application by local fixed priority. In this case the inteifg on a single processor.

We highlight that (21) defines the design space of the
bandwidths of virtual processors belonging to the platform
Instead we let the designer to freely choose the valué of

to balance between schedulability and overhead cost. In the4f

future we plan to solve analytically this step as well as it 5
was done in the uniprocessor case [8]. 6

7

VI. FROM INTERFACE TO ALLOCATION 8

9:

In this section, we present an on-line algorithm called 1¢:
FLUIDBESTFIT that, given an interface specificatiab, 11:
selects one platfornI € II(Z) and allocates it on the 1o
physical platform. 13:

The algorithm is described in Figure 6. In short, the 14
algorithm performs a Best-Fit Decreasing partitioningleft 5.
11 platform of the interfac€. Then, it tries to find a more 4.
compact platformlI € II(Z), by moving bandwidth from .
virtual processors with higher index to the ones with lower 4.
index (thanks to Theorem 2 this move always preserves thgy,.

1: procedure FLUID BESTFIT(Z, ALLOCATED)

Vk U]g < Uk
if ALLOCATED is FALSE then
computell*© = {;} fromZ > Eq. (15)
Vi cpulD; + —1 > all m; are unallocated
ALLOCATED < TRUE
end if
|+ —00
for h e {1,...,m} do
if cpulD,, = —1 then
cpulD;, = BESTRIT({U} },)
if cpulD,;, = —1 then
ALLOCATED < FALSE
return
end if
end if
k < cpulD,,
U]/g — U]Q + ap
I+ max(l,h+1)

> make a copy

> initialization
> m;, to be allocated

schedulability of the application). 20:

We assume that the real platform consistsibfidentical ;.
processors, and we denote by the amount of bandwidth 5.
allocated on thehysical processoi. Initially the physical 5.
multiprocessor is empty, so ally = 0. The procedure ,,.
takes as parameters the interface specificaiomand a .

while 1 — U}, > 0 and! < m do
§ + min(1 — U, (I — h)(ou — cuy1))
U, < U+
for je{h+1,...,1} do
Qj < O — %
if cpulD; # —1 then

boolean variableLLOCATED. The procedure is called with 26: U’ U 5
ALLOCATED set to FALSE when the application joins the . end i?P“'D:' cpulD; — I=h
system, and it setsLLOCATED to TRUE if the application) end for

has been successfully allocated onto the available pHysic 2
platform. The arrajcpulD,, ..., cpulD,,] contains the pro-
cessor index where; has been allocated.

Initially, the procedure makes a local copy of &l (line
2). Then, if the application is joining the system for thetfirs
time, it computes the worst-case platfoiittc and sets all
elements of the arragpulD, to —1 (lines 3-7). We assume
that all =; are ordered in non-decreasing orderogf

Then, for each virtual processoy, it first tries to allocate
it on one of the physical processors, using the best-fit
strategy (line 11). If the bandwidth;, does not fit in any possible to select differently the indexes of virtual pmce
of the physical processors, the allocation fails, and setsors from which we steal bandwidth, our choice has the
ALLOCATED to FALSE (lines 12-15). Otherwise, let be advantage of reducing the maximum bandwidth across all
the physical processor on which the virtual processor hafollowing virtual processors, thus favoring their alloicat
been allocated. with the best-fit strategy.

It may happen that after the allocation, some free space When an application leaves the system, it is possible
is left on processok. At this point we try to modify the to further compact the existing applications enabling them
virtual platform by increasing they, and decreasing the to fill the available bandwidth caused by the departure of
bandwidth of successive virtual processors, until we fillapplications. This can be made by invoking the algorithm
processok (while cycle in lines 20-30). This transformation with ALLOCATED set to TRUE. In this case the algorithm
preserves the platforfl € II(Z): in fact, if the condition does not perform the initial allocation anymore, but juigstr
Vj, >, a; > B; is respected before the transformation, it to fill the available bandwidth.
is still respected after the transformation (see CorollBry In the case of a new application entering the system, the

The bandwidth of which virtual processors can we de-complexity of the algorithm isO(mM), wherem is the
crease? In our algorithm, we choose to decrease the bandumber of virtual processors (due to the for cycle at line
widths g1, - - -, ay], with [> h, taking care of preserving 9), andM is the number of physical processors (due to the
the decreasing order (lines 21-28). While it would beBEsTFIT algorithm invoked at line 11). In the latter case

: l+—1+1
30: end while
31: end for

32 Vk U, ="Uj
33: end procedure

Figure 6: The EUIDBESTFIT algorithm

ol] H H H i i i VIl. SIMULATIONS

T T In this section, we compare our proposed algorithr +
b) — H I i IDBESTFIT with BESTFIT and RRSTFIT.

L] [Application 1 In the experiments, we assumed a physical processor with

1 e - o an unlimited amount of processors. The goal of the three

Application 2 . . .
0 — ! i algorithms is simply to use the least number of processors.
B appiication 3 We have performed two sets of simulations, one with “light”
Figure 7: Different strategies for allocating interfaces. interfaces, the other one with *heavy” interfaces.

Every interface was randomly generated as follows. We
first extracted the maximum interface parallelismas an
random number uniformly distributed ij2, 5]. We also set
the overall bandwidth requirement of the interfagg =
) r - m, wherer is a random number uniformly distributed
A. Example of allocation between0.2,0.5] in the “light” experiment, and0.3, 0.7] in

We now present a very simple example. Consider threéhe “heavy” experiment. The other interface parametgrs
interfaces, each one presents a total bandwidthl.68 were calculated so that the interface had a certain corycavit
equally distributed or8 different virtual processor<Z! = index. We defined theConcavity ratiq a parameter of the
72 = 73 = (3,A,]0.51,1.02,1.53]). If we apply a simple random generation algorithm, as the ratio between the lactua
best-fit strategy to th& interfaces, we end up with requiring concavity and the maximum possible concavity.

9 processors (see Figure 7a, where each rectangle represenfor each value of the concavity ratio[ih 1], with steps of
a processor, and the filled part represent the percentage 6fl, we generated00 interfaces, that were submitted to each
allocated bandwidth). of the three algorithms. A maximum &fapplications were

Inspired by the work by Leontyev and Anderson [11], for allowed in the system at any time. This means that, after the
any interfaceZ with an overall bandwidth requirement of first 5 interfaces, whenever an interface was submitted one

(allocated set to true), the complexity reducegXon).

Bm, We could use a platform with bandwidths application was removed from the system. After the removal,
algorithm R.UIDBESTFIT was run again witlrALLOCATED
[1,....1, Bm — [Bm]]- set toTRUE, in order to compact existing applications.
N——

After each allocation, we computed tl®mpaction Index
for each algorithm, defined as the ratio between the number
This chosenlI is always, by construction, idI(Z). In of processors used by the algorithm and the (theoretical)
this example, for each interfacé we must prepare a Mminimal number of processofs/;o |.
virtual platformIT* = [1,0.53]. However, it is easy to see In Figures 8 and 9 we show the averagempaction Index
that a partitioned scheme cannot use less tharhysical ~ for the “light” and the “heavy” experiments, respectivehs
processors (see Figure 7b). expected, for small values of the concavity index Algorithm
Finally, we apply our algorithm to the same examp|e_FLU|DBESTFIT (lines labeled with ABF in the figures)
For all the three interfaces the worst-case platfdittf is performs much better thaneE3TFIT and ARSTFIT (labeled

[0.51,0.51,0.51]. The algorithm is first called off'. After ~ with BF and FF, respectively), because the extra flexibility
the first iteration of the loop of lines 9-31 with = 1, allowed by the interface model can be used to obtain a more

it allocatesal = 1, leavingal = o} = 0.265. Then, it ~compact allocation. As the concavity ratio increases, the
compactshe third virtual processor on the second, obtainingPerformance of ABF becomes similar to that of BF and
b = 0.53 and aj = 0. Now, the algorithm is called FF, because when there is little or no flexibility, ABF is
on the second interfacg?: 1) it allocatesa? = 1 on basically coincident with BF.

the third physical processor, leavingg = of = 0.265, Notice that allocating interfaces according to the band-
andU = [1,0.53,1]; 2) sincelU; = 0.53, it allocates the Width distribution of [11] (and explained in the example of
second virtual processor on the second physical processdpection VI-A) consists simply in applying the best-fit algo-
and compacts it, obtainingZ = 0.47, o = 0.06 and rithm to a platformIl’ € II(Z) with maximum concavity.

U = [1,1,1,0.06]; 3) Finally, 3 = 0.06 is allocated on Hence its performance is similar to the performance of BF
the fourth processor. It is easy to see that the last interfacat maximum concavity.

is allocated on physical processbrand 5, with a$ = 0.94

anda3 = 0.59 andU = [1,1,1,1,0.59]. The final situation

is depicted in Figure 7c. In total, our algorithm uses ofly ~_ ~For space constraints, we do not report here the algorithmeerating
an interface with the desired concavity index. The intexstader can

proce_ssors (which'is the min_ima! possible), againef the download the source code of the simulator from http:/rsssup.it* lipari/
best-fit and6 of the strategy inspired by [11]. abf.tgz

[Bm]

Compaction index

0.75

0.7

0.4 0.6
Concavity ratio

0 0.2

Figure 8: Compaction index for light interfaces

Compaction index

[4]

[5]

[6]

[7]

(8]

[9]

(10]
0.7 : : : :
0 0.2 0.4 0.6 0.8 1
Concavity ratio [1 1]
Figure 9: Compaction index for heavy interfaces
[12]

VIIl. CONCLUSIONS ANDFUTURE WORKS

In this paper we presented a framework for the hierar-
chical scheduling of real-time applications onto multipro
cessors. In particular, we addressed the problem of trading13]
off resource utilization versus flexibility in specifyindne
interface parameters.

Due to the generality of the methodology, we foresee sig-
nificant space for improvements. First, we want to account

for more realistic application model, including, for exdmp

task dependencies. Also, we want to further explore the allo
cation problem, by devising an algorithm with a guaranteed

approximation ratio w.r.t. an optimal algorithm.

AcknowledgementsWe gratefully thank the anony-

mous reviewers for having contributed to greatly improve
the paper with their keen and precise comments.

(1]
(2]

(3]

REFERENCES

“Automotive market overview,” ARM website, http://mwww
arm.com/markets/automotive/index.html, Sep. 2004.

Freescale semiconductors, “A smarter approach to multi
core: Freescales next-generation communications phaffor
Freescale, http://www.freescale.com/files/32bit/d dnitev
paper/MULTICOREFTFWP.pdf, Tech. Rep., 2008.

C. W. Mercer, S. Savage, and H. Tokuda, “Processor chpaci
reserves: Operating system support for multimedia applica

tions,” in Proceedings of IEEE International Conference on [18

Multimedia Computing and SystemBoston, MA, U.S.A,,
May 1994, pp. 90-99.

(14]

(15]

(16]

(17]

Z. Deng, J. w.-s. Liu, and J. Sun, “A scheme for scheduling
hard real-time applications in open system environment,” i

Proceedings of thé™ Euromicro Workshop on Real-Time

SystemsToledo, Spain, Jun. 1997, pp. 191-199.

G. Lipari and E. Bini, “Resource partitioning among real
time applications,” inProceedings of thel5" Euromicro
Conference on Real-Time Systefsrto, Portugal, Jul. 2003,
pp. 151-158.

I. Shin and I. Lee, “Periodic resource model for composial
real-time guarantees,” iRroceedings of th@4™ Real-Time
Systems Symposiui@ancun, Mexico, Dec. 2003, pp. 2-13.

G. Lipari and E. Bini, “A methodology for designing hier-
archical scheduling systemslburnal Embedded Computing
vol. 1, no. 2, pp. 257-269, 2005.

E. Bini, G. Buttazzo, and Y. Wu, “Selecting the minimum
consumed bandwidth of an EDF task set,2i{ Workshop on
Compositional Real-Time SystenWashington (DC), USA,
Dec. 2009, available at http://retis.sssupliihi/publications/.

A. K. Mok, X. Feng, and D. Chen, “Resource partition for
real-time systems,” ifProceedings of th" IEEE Real-Time
Technology and Applications Symposjuifaipei, Taiwan,
May 2001, pp. 75-84.

A. Easwaran, M. Anand, and |. Lee, “Compositional asay
framework using EDP resource models,” froceedings of
the 28" IEEE International Real-Time Systems Symposium
Tucson, AZ, USA, 2007, pp. 129-138.

H. Leontyev and J. H. Anderson, “A hierarchical multpes-

sor bandwidth reservation scheme with timing guaranteées,”
Proceedings of the0™ Euromicro Conference on Real-Time
SystemsPrague, Czech Republic, Jul. 2008, pp. 191-200.

I. Shin, A. Easwaran, and |. Lee, “Hierarchical schéuyl
framework for virtual clustering multiprocessors,”toceed-
ings of the20™ Euromicro Conference on Real-Time Systems
Prague, Czech Republic, Jul. 2008, pp. 181-190.

Y. Chang, R. Davis, and A. Wellings, “Schedulability adn
ysis for a real-time multiprocessor system based on service
contracts and resource partitioning,” University of Yofech.
Rep. YCS 432, 2008, available at http://www.cs.york.at.uk
ftpdir/reports/2008/YCS/432/YCS-2008-432.pdf.

E. Bini, M. Bertogna, and S. Baruah, “Virtual multipressor
platforms: Specification and use,” iRroceedings of the
30" IEEE Real-Time Systems Sympositfashinghton, DC,
USA, Dec. 2009, pp. 437-446.

S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and
S. Stiller, “Implementation of a speedup-optimal globalFED
schedulability test,” irProceedings of the EuroMicro Confer-
ence on Real-Time SystemBublin: IEEE Computer Society
Press, July 2009.

E. Bini, G. C. Buttazzo, and M. Bertogna, “The multy sbypp
function abstraction for multiprocessors,” Rroceedings of
the 15™ IEEE International Conference on Embedded and
Real-Time Computing Systems and ApplicatioBgijing,
China, Aug. 2009, pp. 294-302.

S. Funk, J. Goossens, and S. Baruah, “On-line schegloin
uniform multiprocessors,” ifProceedings of the2"™ |IEEE
Real-Time Systems Symposiubondon, United Kingdom,
Dec. 2001, pp. 183-192.

] S. K. Baruah, N. K. Cohen, G. Plaxton, and D. A. Varvel,

“Proportionate progress: a notion of fairness in resource
allocation,” Algorithmica vol. 15, no. 6, pp. 600-625, Jun.
1996.

