
A framework for hierarchical scheduling on multiprocessors: from application
requirements to run-time allocation

Giuseppe Lipari, Enrico Bini
Scuola Superiore Sant’Anna, Pisa, Italy

Email: {g.lipari,e.bini}@sssup.it

Abstract—Hierarchical scheduling is a promising methodol-
ogy for designing and deploying real-time applications, since
it enables component-based design and analysis, and supports
temporal isolation among competing applications. In hierar-
chical scheduling an application is described by means of a
temporal interface. The designer faces the problem of how
to derive the interface parameters so to make the applica-
tion schedulable, at the same time minimizing the waste of
computational resources. The problem is particularly relevant
in multiprocessor systems, where it is not clear yet how
the interface parameters influence the schedulability of the
application and allocation on the physical platform.

In this paper we present three novel contributions to
hierarchical scheduling for multiprocessor systems. First, we
propose the Bounded-Delay Multipartition (BDM), a new in-
terface specification model that allows the designer to balance
resource usage versus flexibility in selecting the virtual platform
parameters. Second, we explore the schedulability region of a
real-time application on top of a generic virtual platform, and
derive the interface parameter. Finally, we proposeFluid Best-
Fit, an algorithm that takes advantage of the extra degree
of flexibility provided by the BDM to compute the virtual
platform parameters and allocate it on the physical platform.
The performance of the algorithm is evaluated by simulations.

I. I NTRODUCTION

Multiprocessor systems are becoming increasingly com-
monplace, not only in desktop/laptop PCs and in servers, but
also in embedded systems [1], [2]. This trend is expected
to increase in the near future. Following the trend, real-
time researchers focused on multiprocessor scheduling and
schedulability analysis, in some cases extending existing
techniques proposed for single processors to multiproces-
sors. It is the case ofhierarchical scheduling methodolo-
gies [3], [4], [5], [6], which are regarded as useful tools to
handle the complexity of medium to large-sized applications
and enable a component-based approach to schedulability
analysis; also, such techniques are helpful for providing
temporal isolation and timing guarantees in open systems,
and for enabling application-specific schedulers (also called
local schedulers).

In the hierarchical scheduling model, the computational
requirement of an applicationA is described by atemporal

The research leading to these results has received funding from the
European Communitys Seventh Framework Programme FP7 undergrant
agreement n.248465 “S(o)OS Service-oriented Operating Systems.”

not admitted

admitted

ApplicationA

Interface selection Interface model

Application InterfaceI

Admission control

Virtual platformΠ Other applications

Root-level Scheduler

Figure 1: Design phases of a hierarchical scheduling system.

interfaceI. After the application is admitted into the system,
a root-level scheduleris in charge to accommodate all
interfaces onto the available physical resources. The design
of a hierarchical scheduling system involves the following
phases summarized in Figure 1.

1) Interface Specification:At design time, the application
designer must characterize the temporal requirements of the
application, and derive an appropriate temporal interface
specification that summarizes the requirements. We distin-
guish two aspects here: the choice of aninterface model,
and the selection of the parameters in accordance with the
chosen model.

Given an interface model, the designer needs to instantiate
an interfaceI so that the application is guaranteed on it.
When selecting the “optimal” interface parameters for an
application, the designer must trade-off different goals.For
example, in [7], we proposed a methodology for single
processor systems that, starting from the worst-case require-
ments of the application tasks, derives an interface based
on the bounded partition model(α,∆) from the application
requirements, trading off the maximum delay∆ (that we
want as large as possible to reduce overhead) versus the
maximum bandwidthα, (that we want as little as possible
to reduce usage of resource). When the application is a set
of tasks scheduled by EDF, the optimal design problem has

been analytically solved [8].
2) Run-time allocation: In this paper we assume an

open system, where applications can dynamically join and
leave. When an application joins the system, it presents its
interface to theadmission controlpolicy, which performs
a feasibility analysis to check if the application can be
safely admitted without compromising the guarantees of the
existing applications. If the answer is positive, the system
instantiates avirtual platform Π that respects the temporal
interface. The virtual platform is then scheduled on the
physical platform together with the other virtual platforms
of already running applications.

If the application cannot be admitted, the designer must go
back to the interface specification and derive new interface
parameters that enables a wider search in the design space.

In this paper, we investigate how the selection of the
interface parameters influence the schedulability of the appli-
cation on the virtual platform on one side, and the problem
of allocating the virtual platforms on the physical processors,
on the other side.

A. Related Work

In single processors, Mok et al. [9] proposed thebounded-
delay partition, Shin and Lee [6] proposed theperiodic
resourcemodel, Easwaran et al. [10] extended the periodic
resource model by allowing deadline different from period.

Recently, some authors have addressed the problem of
how to specify the application interface for an application
to be executed on multiprocessor systems, and provide
appropriate schedulability analysis to check if the application
is schedulable on the interface.

Leontyev and Anderson [11] proposed to use the only
overall bandwidth requirementw as interface for soft real-
time applications. The authors propose to allocate a band-
width requirement ofw onto⌊w⌋ dedicated processors, plus
an amount ofw−⌊w⌋ provided by a periodic server globally
scheduled onto the remaining processors. An upper bound
of the tardiness of tasks scheduled on such interface was
provided.

Shin, Easwaran and Lee [12] proposed the multiprocessor
periodic resource model (MPR): each application is assigned
a set of periodicm reservations{(Qi, P)} all with the
same period. This interface model is quite intuitive, but it
has a drawback: it implicitly requires the synchronization
between reservations running on different processors thatis
difficult to implement in a real system; when periods are not
synchronized, it does not exist a worst-case scenario of the
resource allocation, as explained in Section IV-A.

Chang et al. [13] proposed to partition the resource
available from a multiprocessor by a static periodic scheme.
The amount of resource is then provided to the application
through a contract specification.

Bini et al. [14] proposed the Parallel Supply Function
(PSF) interface of a virtual multiprocessor and developed

a global EDF test developed on top of it. However the
assignment of the parameters of the virtual platforms is not
investigated.

B. Contributions of this paper

In this paper we propose a framework for designing
hierarchical scheduling systems that covers both phases
of the design. First, we propose a novel interface model,
called bounded-delay multipartition(BDM) interface that
allows the designer to balance the amount of consumed
bandwidth vs. the flexibility of the interface, making easier
the admission control problem. Second, rather than simply
checking the schedulability of an application, as all past
works did, we mostly focus on the derivation of the interface
starting from the application requirement. For this purpose,
we propose a schedulability test from which the impact of
the interface is more apparent.

Third, we propose an allocation policy, calledfluid best-
fit that performs admission control and, at the same time,
instantiates the virtual platform parameters from the inter-
face specification so as to optimize the underlying resource
allocation. In addition, our model is suitable for a number
of extension and modifications, so to cope with additional
constraints and goals. We demonstrate by experiments that,
thanks to the extra level of flexibility allowed by the interface
model, our allocation policy performs better that existing
policies.

II. SYSTEM MODEL

The overall system is composed of a set ofreal-time
applications{Aℓ} that run concurrently onto a multipro-
cessor constituted byM processors. Some applications are
always running, while some others dynamically join and
leave the system. To enable composability and isolation,
each applicationAℓ is executed onto a dedicatedvirtual
platform Πℓ. The real-time requirements of the application
Aℓ are guaranteed onto the platformΠℓ by a guarantee test
T ℓ.

In the rest of this section we provide a more detailed
model of each notion we introduced above. Since we focus
on each application in isolation, from now on we drop the
index ℓ of the application. We denotemax{0, ·} with (·)0.

A. Application model

The applicationA is composed of a set ofn independent
sporadic tasks{τ1, . . . , τn}. Every time a task is activated,
a job must be executed. Theminimum interarrival timeTi

is the minimum separation between two consecutive jobs of
τi. Each job ofτi has acomputation timeCi and must be
completed within adeadlineDi from its activation.

B. Platform model

The virtual platformΠ is modeled by a set of virtual
processors{π1, . . . , πm} that we also callvirtual multipro-
cessor.

A platform interfaceI is a predicate on the values that the
virtual platform parameters may have. Hence, an interface
I yields naturally the subset of all virtual platforms that
are compliant with it. We denote this subset of platforms
by ΠΠΠ(I). Examples of interface specifications are: “all the
platforms with an overall bandwidth of2.5”, or “all the
platforms in which one virtual processor has a bandwidth of
at least0.8”, etc. An interface that specifies many constraints
yields a small setΠΠΠ(I). On the other hand, if we specify
only loose constraints inI, the setΠΠΠ(I) becomes larger.

In this paper, we assume that the virtual platform is de-
ployed on the physical platform using partitioning. Once the
application is admitted and the virtual platform is created,
each one of the virtual processors is allocated on one of the
physical processors. We choose the partitioning approach
for practical and theoretical issues. From a practical point
of view, partitioning is easier to implement in a multicore
operating system, as it reduces the amount of shared data
structures. Also, it can be advantageous for applications.
In facts, many multiprocessor systems have a non-uniform
memory architecture (NUMA machines), and it is desirable
that tasks belonging to the same application do not arbitrarily
migrate across the entire physical platform, but only on the
subset of processors that have the same latency in accessing
the memory. In our model, this can be achieved by allocating
all the virtual processors of the same virtual platform on a
group of “neighbor” processors.

Also, as we will show in Section VI, the partition ap-
proach coupled with our the flexible interface specification
that we will introduce in Section IV allows a high density
of packingfor the virtual platforms. This property leads to
a better utilization of the overall system, as well as to the
possibility to power-off or put in stand-by mode non used
processors.

C. Model of the guarantee test

We model a guarantee testT (A,Π) as a boolean function
that returnsTRUE if the applicationA is guaranteedon
platform Π, FALSE otherwise. We also extend a guarantee
test to an interfaceI as follows

T (A, I) =
∧

Π∈ΠΠΠ(I)

T (A,Π). (1)

Guaranteeing an application over an interfaceI would
require to test it over all the platforms inΠΠΠ(I) unless it
exists aworst-case platform.

Definition 1: Given an interfaceI and a testT , we say
thatΠwc is the worst-case platform ofI when:

Πwc ∈ ΠΠΠ(I) (2)

∀A T (A,Πwc)⇒ T (A, I). (3)

For example, in the uni-processor case the worst-case
platformΠwc of a periodic interfaceI that provides a budget
Q every periodP occurs when there is an idle interval

[0, 2(P − Q)], and the budgetQ is provided at the end
of the server period [7], [6]. The existence of the worst-
case platformΠwc for an interfaceI justifies the advantages
of an interface-based analysis, since if the application is
guaranteed onΠwc then it is guaranteed on any platform
in ΠΠΠ(I), so that during the allocation phase the designer
can freely select any platform inΠΠΠ(I).

In the context of real-time applications, the guarantee test
T is also calledschedulability test: if T (A,Π) returnsTRUE

then no task deadline will be missed whenA runs onΠ.
On the other hand the testT can also encode other kinds
of requirements: the minimum throughput of an MPEG
decoder, an average response time with some confidence
level, etc.

III. SCHEDULABILITY TEST ON A VIRTUAL PLATFORM

Applications must be guaranteed on the corresponding
platforms. In the next section we recall a tight description
of a platform that is well suited for schedulability tests.

A. The Parallel Supply Functions of a platform

To introduce the minimum possible pessimism in abstract-
ing the amount of resource provided by a platform, we
first adopt the Parallel Supply Function (PSF) abstraction,
recently introduced by Bini et al. [14]. Without entering
all the details of the definition (that can indeed be found
in [14]), we recall here the basic concepts.

Definition 2: Given a virtual platformΠ composed by the
m virtual processors{π1, . . . , πm}, its PSF is composed by
the set of functions{Yk}

m
k=1, whereYk(t) is the minimum

amount of resource provided inany interval of lengtht with
a parallelismat mostk.

To clarify this definition we propose an example (please
refer to Figure 2). Suppose that in the interval[0, 11] the
three virtual processors{π1, π2, π3} composing the virtual
platform, provides resource in accordance to the schedule
drawn in gray.

10 2 3 4 5 6 7 8 9 10 11

π1

π2

π3

Figure 2: From a resource schedule to the PSF.

In this caseY1(11) = 10 because there is always at
least one processor available in[0, 11] except in[8, 9]. Then
Y2(11) = 16, that is found by summing up all the resource
except one with parallelism3 (provided only in [4, 5]).
Finally Y3(11) = 17 that is achieved by summing all the
resources provided in[0, 11].

In general, the parallel supply functions are computed also
by sliding the time window of lengtht and by searching for
the most pessimistic scenario of resource allocation. This

minimization is somehow equivalent to the one performed
on uni-processor hierarchical scheduling [7], [6].

B. A schedulability test on the PSF interface

Since we aim at describing all possible interfacesI that
can guarantee the given applicationA, we find it useful
to propose a schedulability condition that is equivalent to
Theorem 2 in [14]. We choose this condition because it
applies to several different local schedulers such as global
EDF or global FP, but it applies to constrained deadline
tasks, i.e. for all tasksτi Di ≤ Ti. While choosing other
tests is possible [15], the proposed (equivalent) formulation
has the advantage of highlighting the constraint on the
interface.

Theorem 1:An applicationA = {τi}
n
i=1 is schedulable

on a virtual platformΠ modeled by the PSF{Yk}
m
k=1, if

∧

i=1,...,n

∨

k=1...,m

k Ci +Wi ≤ Yk(Di), (4)

whereWi is the maximuminterfering workloadthat can be
experienced by taskτi in the interval[0, Di], defined as

Wi =
n∑

j=1,j 6=i

⌊
Di

Tj

⌋

Cj +min

{

Cj , Di −

⌊
Di

Tj

⌋

Tj

}

, (5)

if the application tasks are scheduled by global EDF. Instead
if the application tasks are scheduled by global FP

Wi =
∑

j∈hp(i)

Wji, (6)

wherehp denotes the set of indices of tasks with higher pri-
ority than i, andWji is the amount of interfering workload
caused byτj on τi, that is

Wji = NjiCj +min {Cj , Di +Dj − Cj −NjiTj} (7)

with Nji =
⌊
Di+Dj−Cj

Tj

⌋

.
Proof: The interfering workloadWi is an upper bound

to the amount of work that can be requested in[0, Di]
by tasks with priority higher thanτi [16]. The workload
Wi interferes onτi only if it occupies all the available
processors (otherwiseτi could execute). Theinterference
Ii is maximized when the workWi is executed at the
lowest possible parallelism. In the example of Figure 3, the
workloadWi = 8 causes the maximum interference when
it is executed for one time unit on a single processor, for2
units at parallelism of2 and for one last unit at parallelism
3. To reach the interferenceIi = 6 we must also account
for the two time units with no resource available.

If we call k∗ the highest degree of parallelism that is
occupied byWi, then

k∗Di − k∗Ii = Yk∗(Di)−Wi. (8)

This relationship can be explained in Figure 3, by expressing
the work represented in the dashed box byk∗Di − k∗Ii

Di

Ci

Ii

0

Y1(Di) Y2(Di) Y3(Di) Y4(Di)

Wi

Figure 3: Schedulability of taskτi onto the virtual platform.

and byYk∗(Di) −Wi. In the figurek∗ = 3, on top of the
figure a legend explains howYk(Di) andWi are depicted.
Equation (8) can be rewritten as

Ii = Di −
Yk∗(Di)−Wi

k∗
. (9)

By observing that the evaluation of the RHS of (9) for
any other indexk 6= k∗ is not smaller thanIi, it follows

Ii = min
k=1,...,m

{

Di −
Yk(Di)−Wi

k

}

= Di − max
k=1,...,m

{
Yk(Di)−Wi

k

}

. (10)

Hence the classic interference-based schedulability test[16]

∀i = 1, . . . , n Ci + Ii ≤ Di,

becomes

∀i = 1, . . . , n Ci ≤ max
k=1,...,m

{
Yk(Di)−Wi

k

}

,

which can be rewritten with the AND (∧) and OR (∨) as
∧

i=1,...,n

∨

k=1,...,m

Ci ≤
Yk(Di)−Wi

k
,

from which the Theorem follows.

IV. T HE BOUNDED-DELAY MULTIPARTITION MODEL

The PSF could be indeed used a tight interface model.
However it is too detailed to be intuitively handled by the
designers, whereas it is often highly desirable to provide a
simpler and more manageable interface.

A. Inappropriateness of the periodic interface

A natural candidate for a simple interface is the specifica-
tion of a common periodP among all the virtual processors
{π1, . . . , πm} and an overall budgetQ that is shared by all
the πk ’s. Following this idea, Shin et al. [12] proposed the
multiprocessor periodic resource model (MPR).

According to the MPR interface the virtual multiprocessor
is abstracted by three parameters: a periodP , an overall

budgetQ, and a maximum parallelismm ≤M . In [12], the
authors implicitly assumed a tight synchronization among
the virtual processorsπk that ensures that all virtual pro-
cessor implementation (that we call servers) are activated
simultaneously on all the processors. Unfortunately, due
to the difficulty of synchronizing clocks among different
processors, this hypothesis often cannot be guaranteed. If
this hypothesis is removed, the periodic interface becomes
inappropriate for a very subtle reason that may however
cause a deadline miss: The worst-case platformΠwc does not
exist for the MPR interface. We show this by an example.

Suppose an MPR interfaceI specifies a virtual platform
composed by2 virtual processors that provide an overall
budget ofQ = 8 time units with a period ofP = 8. The
interface does not specify how the budget is split betweenQ1

andQ2 on the two virtual processorsπ1 andπ2, respectively.
In Figure 4 we show some possible scenarios of distribution
of the budgetQ = 8. At the bottom of the figure we report
the worst-case resource schedule asQ1 ranges from8 to 4
(andQ2 varies accordingly from0 to 4). These schedules
are worst in the sense that the overall resource provided in
[0, t] is minimal. In the resource schedule, a vertical thick
black line is drawn at each server period. In the upper part
we show the cumulative supply functionY2 that measures
the amount of resource provided in each scenario.

It can be noticed thatalmost alwaysthe worst case of
the parallel supply functionY2 happens when the budget is
evenly divided between the two virtual processors (Q1 =
Q2 = 4). This result would be in accordance to well-
known results on uniform multiprocessor scheduling, where
the worst-case speed distribution over a multiprocessor isthe
case when all the speeds are equal to each other [17]. Un-
expectedly, assigning the two budgetsQ1 = 6 andQ2 = 2
leads to the most pessimistic condition (minimum value of
Y2) for an interval of length12. Hence, an application that
is schedulable on a “more difficult” platform (the one with
Q1 = Q2 = 4) may be not schedulable on an apparently
“easier” platform (the one withQ1 = 6 and Q2 = 2). It
follows that there is no worst-case platformΠwc for the non-
synchronized MPR interface.

In the next Section we propose an interface that does
not suffer this drawback, and we formalize the concept
of concavityof the platform which measures the intuitive
concept of “difficulty” of schedulability on the platform.

B. The proposed interface model

The problem highlighted in Section IV-A happens be-
cause the supply functions grow discontinuously. If the
supply functions of the virtual processors are linear, this
phenomenon does not happen. This observation leads us
to formulate the following interface model of a multipro-
cessor, based on an extension of the bounded-delay time
partition [9].

Definition 3: An interfaceI is abounded-delay multipar-

0 2 4 6 8 10 12 14 16 18 20 22

Y2(t)

t

Q1 = 8
Q1 = 7
Q1 = 6
Q1 = 5
Q1 = 4

π1

π1

π1

π1

π1

π2

π2

π2

π2

π2

Figure 4: A periodic interface is inappropriate for multipro-
cessor.

tition (BDM) interfaceI = (m,∆, [β1, . . . , βm]) with

∆ ≥ 0,

∀k = 1, . . . ,m 0 ≤ βk − βk−1 ≤ 1, (11)

∀k = 1, . . . ,m βk − βk−1 ≥ βk+1 − βk, (12)

when the following two statements are equivalent
• Π ∈ ΠΠΠ(I)
• the PSFs{Yk} of Π are

∀k = 1, . . . ,m, ∀t ≥ 0 Yk(t) ≥ βk(t−∆)0. (13)

For notational convenience, we defineβ0 = 0 andβk = βm

for all k > m.
The BDM offers a greater simplicity compared with

the PSF interface. However, it certainly introduces some
resource waste similarly to what happens with the uni-
processor bounded-delay time partition.

The main difference between the BDM interface and the
MPR interface is that the time granularity is specified by a
common delay∆ (that represents the length of the longest
interval with no resource) rather than by a common periodP
among the virtual processors. However this small difference
enables the statement of the following Theorem that would
be otherwise impossible to prove.

Theorem 2:Let I = (m,∆, [β1, . . . , βm]) be a BDM
interface. Its worts-case virtual platformΠwc is the set of
m bounded-delay virtual uni-processors [9]

Πwc = [(α1,∆), . . . , (αm,∆)] (14)

with
∀k = 1, . . . ,m αk = βk − βk−1. (15)

Proof: From (11) and (12) it follows that

1 ≥ α1 ≥ α2 ≥ . . . ≥ αm ≥ 0. (16)

Because of the ordering (16), the PSFs{Y wc
k } of the

platformΠwc defined by (15), are

Y wc
k (t) =

k∑

i=1

αi(t−∆)0 = βk(t−∆)0,

from which it follows directly thatΠwc ∈ ΠΠΠ(I).
If a real-time application{τ1, . . . , τn} is schedulable over

Πwc by Theorem 1, we have:
∧

i=1,...,n

∨

k=1...,m

kCi +Wi ≤ βk(Di −∆)0,

from which it follows the schedulability on any other plat-
form Π′ ∈ ΠΠΠ(I), by the property (13). HenceΠwc is the
worst-case platform.

As explained in Section IV-A, Theorem 2 cannot be stated
for the MPR interface, since it is not possible to define a
worst-case platform for it.

Since from now on we will only consider platforms with
the same delay∆, for notational convenience we identify
a virtual platform Π only by the array of bandwidths
[α1, . . . , αm]. Without loss of generality we assume theαk

to be sorted non-increasingly.
For the purpose of an intuitive design space exploration,

the BDM model enables a simple description ofΠΠΠ(I).
Corollary 1: Let I = (m,∆, [β1, . . . , βm]) be a BDM

interface. A platformΠ = [α1, . . . , αm] belongs toΠΠΠ(I)
when

∀k = 1, . . . ,m

k∑

i=1

αi ≥ βk. (17)

Proof: The corollary follows from the observation that
a platform with bandwidths defined in accordance to (17)
has the PSFs{Yk} that respect (13).

In practice, if we test our application on the platform
Πwc, then at run-time we can choose any other virtual
platform Π ∈ ΠΠΠ(I) by simply moving bandwidth from
a virtual processorπk to another oneπℓ with αk ≤ αℓ.
This can be viewed as a sort of compacting the bandwidth
on the “heaviest” virtual processors. This adjustment of the
platform allows a degree of flexibility at run-time that can
be exploited by the allocation algorithm. In Section VI we
will present an algorithm that will take advantage of this
flexibility.

The proposed interface has several additional advantages:
it does not rely on synchronization of the virtual resources;
it does not rely on a specific underlying mechanisms (i.e.
periodic servers), and can be applied to any bounded-delay
partition (e.g. P-fair [18], static time partition [9]).

C. Example

To better clarify the BDM interface model and the appli-
cation of Theorem 2 and Corollary 1, we present a simple
example. Let us suppose that our application presents a
BDM interfaceI = (3, 6, [0.7, 1.2, 1.4]).

From (15) it follows that the worst-case platform isΠwc =
[0.7, 0.5, 0.2] (we recall that these values are the bandwidths
of the virtual processorsπk ∈ Π). Thanks to Corollary 1 it
is possible to move some bandwidth fromπ3 to π2 achiving,
for example, a platformΠ′ = [0.7, 0.7], compatible withI.
Moreover it is possible to move again bandwidth fromπ2

to π1 achieving another compatible platformΠ′′ = [1, 0.4].
If instead, starting fromΠwc we move bandwidth fromπ2

to π3 we can find a platform incompatible withI such as
Π′′′ = [0.7, 0.4, 0.3]. In fact, in this case the constraint (17)
for k = 2 is violated sinceα′′′

1 + α′′′
2 = 1.1 < β2 = 1.2.

D. Application schedulability vs. allocation flexibility

The amount of resource consumed by an interface can be
roughly summarized by overall bandwidthβm. It is however
convenient also to formally represent the accuracy of an
interfaceI. For this reason we introduce the following index.

Definition 4: The concavity index(or simply concavity)
of virtual platformΠ = [α1, . . . , αm], is defined as:

c(Π) = max
k=1,...,m−1

(αk − αk+1). (18)

Definition 5: The concavity index(or simply concavity)
of interfaceI = (m,∆, [β1, . . . , βm]) is defined as:

c(I) = c(Πwc) = max
k=1,...,m−1

(2βk − βk−1 − βk+1), (19)

whereΠwc is the worst-case platform of the interfaceI.
As an example, the concavity of the interface of the exam-

ple in Section IV-C isc(I) = max{0.7− 0.5, 0.5− 0.2} =
0.3, while the concavity of the more compact platformΠ′′

is c(Π′′) = 0.6.
For any interface, the minimum value that the concavity

index can assume is0, and it corresponds to an interface with
∀k, βk = k

m
βm and a worst-case platform withαk = βm

m
, ∀k

(from Theorem 2). Therefore, we can say that a smaller
concavity implies a more “difficult” interface for the applica-
tion, since the application must be schedulable on a platform
where all virtual processors have similar bandwidth. Notice
also that when concavity is zero, the number of virtual
platforms compliant with the interface is the largest (from
Corollary 1). Hence this interface corresponds to a scenario
with minimum schedulability and maximum platform flexi-
bility.

When the concavity index is large, instead, the virtual
platform is unbalanced, having some virtual processors with
large bandwidth, and others with small bandwidth. Consider
the case of an interface with total bandwidthβm /∈ N,
distributed as follows:I = {⌈βm⌉ ,∆, [1, 2, . . . , ⌊βm⌋ , βm].
It is easy to show that the concavity of this interface is
c(I) = ⌊βm⌋− βm +1. In this case, no platform other than
Πwc = [1, 1, . . . , ⌈βm⌉−βm] is compliant with the interface.
The interface is “easier” from a schedulability point of view
(larger values ofYk(t)), however its flexibility is minimal,
since it requires the availability of⌊βm⌋ empty processors.

Summarizing, the concavity index is a measure of the
trade-off between “schedulability” and “flexibility” of the
interface. A small concavity index is more difficult from
a schedulability point of view (thus it might imply more
wasted bandwidth), but it allows a high number of compliant
virtual platforms and possibly a more effective allocation; a
large concavity index implies a higher degree of schedula-
bility of the application (allowing to spare some bandwidth)
but a minor number of compliant virtual platforms.

V. FROM THE APPLICATION TO THE INTERFACE

To enable an allocation phase onto larger exploration
spaces, it is always convenient to select the interfaceI
with the largest possible set of platformsΠΠΠ(I), among the
ones that can guarantee the application. For this reason we
introduce the following definition.

Definition 6: Given an applicationA and a guarantee test
T , we say that an interfaceI is maximalwhen:

T (A, I),

(T (A, I ′) ∧ ΠΠΠ(I) ⊆ ΠΠΠ(I ′))⇒ I = I ′.
(20)

Hence the interface selection should be performed onto
maximal interfaces. For real-time applications, the schedu-
lability test of Theorem 1 can be used to readily derive the
maximal BDM interfacesI = (m,∆, [β1, . . . , βm]) that can
guarantee the real-time requirement of the application.

From Theorem 1 and the PSF of an interfaceI (reported
in (13)), it immediately follows that the application is
guaranteed when

∧

i=1,...,n

∨

k=1...,m

kCi +Wi ≤ βk(Di −∆)0

or, by writing the constraint on the bandwidthsαk, equiva-
lently

∧

i=1,...,n

∨

k=1...,m

k∑

j=1

αj(Di −∆)0 ≥ kCi +Wi (21)

keeping in mind that theαk are sorted decreasingly.
To provide a deeper understanding of the space of possible

selections for the interfaceI, we illustrate (21) by an exam-
ple. Suppose we have the real-time applicationA whose
parameters are reported in Table I. Let us schedule this
application by local fixed priority. In this case the interfering

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

i = 1 i = 2 i = 3

∀i ∈ {1, 2, 3}

α1

α1α1α1

α2

α2α2α2

Figure 5: The space ofα1 andα2.

workload Wi of each taskτi can be computed according
to (6).

i Ci Ti Di Wi

1 1 6 6 0
2 15 27 27 5
3 9 52 52 39

Table I: An example of application.

First of all, we setm = 2 and∆ = 2. By writing explicitly
(21), we find the following relationships onα1 andα2

i = 1 k = 1 α1 ≥
1
4

k = 2 α1 + α2 ≥
1
2

i = 2 k = 1 α1 ≥
4
5

k = 2 α1 + α2 ≥
7
5

i = 3 k = 1 α1 ≥
48
50

k = 2 α1 + α2 ≥
57
50

Moreover we assume that allαk ’s are sorted decreasingly.
Henceα1 ≥ α2. In Figure 5 we draw in gray the space of
all feasible selections of the array[α1, α2] of an interface
with m = 2 and∆ = 2.

β1 = α1 β2 α2 = β2 − β1 c(Π)
0.7 1.4 0.7 0
0.8 1.14 0.34 0.46
0.96 0.96 0 0.96

Table II: Candidate interfaces of the application.

In this case there are three maximal candidate interfaces
to represent the application requirement whose parameters
are reported in Table II. In Figure 5 the maximal interfaces
are graphically represented as the left corners of the bottom
figure. The first choice consumes the maximum bandwidth,
although it leaves to the allocation phase the maximum
degree of freedom. On the other hand, the last one consumes
indeed the minimum amount of bandwidth, however it may
be harder to allocate, since it requires a bandwidth of0.96
on a single processor.

We highlight that (21) defines the design space of the
bandwidths of virtual processors belonging to the platform.
Instead we let the designer to freely choose the value of∆
to balance between schedulability and overhead cost. In the
future we plan to solve analytically this step as well as it
was done in the uniprocessor case [8].

VI. FROM INTERFACE TO ALLOCATION

In this section, we present an on-line algorithm called
FLUID BESTFIT that, given an interface specificationI,
selects one platformΠ ∈ ΠΠΠ(I) and allocates it on the
physical platform.

The algorithm is described in Figure 6. In short, the
algorithm performs a Best-Fit Decreasing partitioning of the
Πwc platform of the interfaceI. Then, it tries to find a more
compact platformΠ ∈ ΠΠΠ(I), by moving bandwidth from
virtual processors with higher index to the ones with lower
index (thanks to Theorem 2 this move always preserves the
schedulability of the application).

We assume that the real platform consists ofM identical
processors, and we denote byUk the amount of bandwidth
allocated on thephysical processork. Initially the physical
multiprocessor is empty, so allUk = 0. The procedure
takes as parameters the interface specificationI and a
boolean variableALLOCATED. The procedure is called with
ALLOCATED set to FALSE when the application joins the
system, and it setsALLOCATED to TRUE if the application
has been successfully allocated onto the available physical
platform. The array[cpuID1, . . . , cpuIDm] contains the pro-
cessor index whereπi has been allocated.

Initially, the procedure makes a local copy of allUk (line
2). Then, if the application is joining the system for the first
time, it computes the worst-case platformΠwc and sets all
elements of the arraycpuIDi to −1 (lines 3–7). We assume
that all πi are ordered in non-decreasing order ofαi.

Then, for each virtual processorπh, it first tries to allocate
it on one of the physical processors, using the best-fit
strategy (line 11). If the bandwidthαh does not fit in any
of the physical processors, the allocation fails, and sets
ALLOCATED to FALSE (lines 12–15). Otherwise, letk be
the physical processor on which the virtual processor has
been allocated.

It may happen that after the allocation, some free space
is left on processork. At this point we try to modify the
virtual platform by increasing theαh and decreasing the
bandwidth of successive virtual processors, until we fill
processork (while cycle in lines 20–30). This transformation
preserves the platformΠ ∈ ΠΠΠ(I): in fact, if the condition
∀j,

∑j

i=1 αi ≥ βj is respected before the transformation, it
is still respected after the transformation (see Corollary1).

The bandwidth of which virtual processors can we de-
crease? In our algorithm, we choose to decrease the band-
widths [αh+1, . . . , αl], with l > h, taking care of preserving
the decreasing order (lines 21–28). While it would be

1: procedure FLUID BESTFIT(I, ALLOCATED)
2: ∀k U ′

k ← Uk ⊲ make a copy
3: if ALLOCATED is FALSE then
4: computeΠwc = {αi} from I ⊲ Eq. (15)
5: ∀i cpuIDi ← −1 ⊲ all πi are unallocated
6: ALLOCATED ← TRUE

7: end if
8: l← −∞ ⊲ initialization
9: for h ∈ {1, . . . ,m} do ⊲ πh to be allocated

10: if cpuIDh = −1 then
11: cpuIDh = BESTFIT({U ′

k}, αh)
12: if cpuIDh = −1 then
13: ALLOCATED ← FALSE

14: return
15: end if
16: end if
17: k ← cpuIDh

18: U ′
k ← U ′

k + αh

19: l ← max(l, h+ 1)
20: while 1− U ′

k > 0 and l ≤ m do
21: δ ← min(1 − U ′

k, (l − h)(αl − αl+1))
22: U ′

h ← U ′
h + δ

23: for j ∈ {h+ 1, . . . , l} do
24: αj ← αj −

δ
l−h

25: if cpuIDj 6= −1 then
26: U ′

cpuIDj
← U ′

cpuIDj
− δ

l−h

27: end if
28: end for
29: l← l + 1
30: end while
31: end for
32: ∀k Uk = U ′

k

33: end procedure

Figure 6: The FLUID BESTFIT algorithm

possible to select differently the indexes of virtual proces-
sors from which we steal bandwidth, our choice has the
advantage of reducing the maximum bandwidth across all
following virtual processors, thus favoring their allocation
with the best-fit strategy.

When an application leaves the system, it is possible
to further compact the existing applications enabling them
to fill the available bandwidth caused by the departure of
applications. This can be made by invoking the algorithm
with ALLOCATED set to TRUE. In this case the algorithm
does not perform the initial allocation anymore, but just tries
to fill the available bandwidth.

In the case of a new application entering the system, the
complexity of the algorithm isO(mM), wherem is the
number of virtual processors (due to the for cycle at line
9), andM is the number of physical processors (due to the
BESTFIT algorithm invoked at line 11). In the latter case

c)

b)

a)

Application 1

Application 2

Application 3

Figure 7: Different strategies for allocating interfaces.

(allocated set to true), the complexity reduces toO(m).

A. Example of allocation

We now present a very simple example. Consider three
interfaces, each one presents a total bandwidth of1.53
equally distributed on3 different virtual processors:I1 =
I2 = I3 = (3,∆, [0.51, 1.02, 1.53]). If we apply a simple
best-fit strategy to the3 interfaces, we end up with requiring
9 processors (see Figure 7a, where each rectangle represent
a processor, and the filled part represent the percentage of
allocated bandwidth).

Inspired by the work by Leontyev and Anderson [11], for
any interfaceI with an overall bandwidth requirement of
βm, we could use a platform with bandwidths

[1, . . . , 1
︸ ︷︷ ︸

⌊βm⌋

, βm − ⌊βm⌋].

This chosenΠ is always, by construction, inΠΠΠ(I). In
this example, for each interfaceI we must prepare a
virtual platformΠi = [1, 0.53]. However, it is easy to see
that a partitioned scheme cannot use less than6 physical
processors (see Figure 7b).

Finally, we apply our algorithm to the same example.
For all the three interfaces the worst-case platformΠwc is
[0.51, 0.51, 0.51]. The algorithm is first called onI1. After
the first iteration of the loop of lines 9–31 withh = 1,
it allocatesα1

1 = 1, leaving α1
2 = α1

3 = 0.265. Then, it
compactsthe third virtual processor on the second, obtaining
α1
2 = 0.53 and α1

3 = 0. Now, the algorithm is called
on the second interfaceI2: 1) it allocatesα2

1 = 1 on
the third physical processor, leavingα2

2 = α2
3 = 0.265,

and U = [1, 0.53, 1]; 2) sinceU2 = 0.53, it allocates the
second virtual processor on the second physical processor,
and compacts it, obtainingα2

2 = 0.47, α2
3 = 0.06 and

U = [1, 1, 1, 0.06]; 3) Finally, α2
3 = 0.06 is allocated on

the fourth processor. It is easy to see that the last interface
is allocated on physical processor4 and5, with α3

1 = 0.94
andα3

2 = 0.59 andU = [1, 1, 1, 1, 0.59]. The final situation
is depicted in Figure 7c. In total, our algorithm uses only5
processors (which is the minimal possible), against9 of the
best-fit and6 of the strategy inspired by [11].

VII. S IMULATIONS

In this section, we compare our proposed algorithm FLU-
IDBESTFIT with BESTFIT and FIRSTFIT.

In the experiments, we assumed a physical processor with
an unlimited amount of processors. The goal of the three
algorithms is simply to use the least number of processors.
We have performed two sets of simulations, one with “light”
interfaces, the other one with “heavy” interfaces.

Every interface was randomly generated as follows. We
first extracted the maximum interface parallelismm as an
random number uniformly distributed in[2, 5]. We also set
the overall bandwidth requirement of the interfaceβm =
r · m, wherer is a random number uniformly distributed
between[0.2, 0.5] in the “light” experiment, and[0.3, 0.7] in
the “heavy” experiment. The other interface parametersβi

were calculated so that the interface had a certain concavity
index1. We defined theConcavity ratio, a parameter of the
random generation algorithm, as the ratio between the actual
concavity and the maximum possible concavity.

For each value of the concavity ratio in[0, 1], with steps of
0.1, we generated500 interfaces, that were submitted to each
of the three algorithms. A maximum of5 applications were
allowed in the system at any time. This means that, after the
first 5 interfaces, whenever an interface was submitted one
application was removed from the system. After the removal,
algorithm FLUID BESTFIT was run again withALLOCATED

set toTRUE, in order to compact existing applications.
After each allocation, we computed theCompaction Index

for each algorithm, defined as the ratio between the number
of processors used by the algorithm and the (theoretical)
minimal number of processors⌈Utot⌉.

In Figures 8 and 9 we show the averageCompaction Index
for the “light” and the “heavy” experiments, respectively.As
expected, for small values of the concavity index Algorithm
FLUID BESTFIT (lines labeled with ABF in the figures)
performs much better than BESTFIT and FIRSTFIT (labeled
with BF and FF, respectively), because the extra flexibility
allowed by the interface model can be used to obtain a more
compact allocation. As the concavity ratio increases, the
performance of ABF becomes similar to that of BF and
FF, because when there is little or no flexibility, ABF is
basically coincident with BF.

Notice that allocating interfaces according to the band-
width distribution of [11] (and explained in the example of
Section VI-A) consists simply in applying the best-fit algo-
rithm to a platformΠ′ ∈ ΠΠΠ(I) with maximum concavity.
Hence its performance is similar to the performance of BF
at maximum concavity.

1For space constraints, we do not report here the algorithm for generating
an interface with the desired concavity index. The interested reader can
download the source code of the simulator from http://retis.sssup.it/∼lipari/
abf.tgz

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

C
om

pa
ct

io
n

in
de

x

Concavity ratio

FF
BF

FBF

Figure 8: Compaction index for light interfaces

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

C
om

pa
ct

io
n

in
de

x

Concavity ratio

FF
BF

FBF

Figure 9: Compaction index for heavy interfaces

VIII. C ONCLUSIONS ANDFUTURE WORKS

In this paper we presented a framework for the hierar-
chical scheduling of real-time applications onto multipro-
cessors. In particular, we addressed the problem of trading-
off resource utilization versus flexibility in specifying the
interface parameters.

Due to the generality of the methodology, we foresee sig-
nificant space for improvements. First, we want to account
for more realistic application model, including, for example,
task dependencies. Also, we want to further explore the allo-
cation problem, by devising an algorithm with a guaranteed
approximation ratio w.r.t. an optimal algorithm.

Acknowledgements:We gratefully thank the anony-
mous reviewers for having contributed to greatly improve
the paper with their keen and precise comments.

REFERENCES

[1] “Automotive market overview,” ARM website, http://www.
arm.com/markets/automotive/index.html, Sep. 2004.

[2] Freescale semiconductors, “A smarter approach to multi-
core: Freescales next-generation communications platform,”
Freescale, http://www.freescale.com/files/32bit/doc/white
paper/MULTICOREFTFWP.pdf, Tech. Rep., 2008.

[3] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity
reserves: Operating system support for multimedia applica-
tions,” in Proceedings of IEEE International Conference on
Multimedia Computing and Systems, Boston, MA, U.S.A.,
May 1994, pp. 90–99.

[4] Z. Deng, J. w.-s. Liu, and J. Sun, “A scheme for scheduling
hard real-time applications in open system environment,” in
Proceedings of the9th Euromicro Workshop on Real-Time
Systems, Toledo, Spain, Jun. 1997, pp. 191–199.

[5] G. Lipari and E. Bini, “Resource partitioning among real-
time applications,” inProceedings of the15th Euromicro
Conference on Real-Time Systems, Porto, Portugal, Jul. 2003,
pp. 151–158.

[6] I. Shin and I. Lee, “Periodic resource model for compositional
real-time guarantees,” inProceedings of the24th Real-Time
Systems Symposium, Cancun, Mexico, Dec. 2003, pp. 2–13.

[7] G. Lipari and E. Bini, “A methodology for designing hier-
archical scheduling systems,”Journal Embedded Computing,
vol. 1, no. 2, pp. 257–269, 2005.

[8] E. Bini, G. Buttazzo, and Y. Wu, “Selecting the minimum
consumed bandwidth of an EDF task set,” in2nd Workshop on
Compositional Real-Time Systems, Washington (DC), USA,
Dec. 2009, available at http://retis.sssup.it/∼bini/publications/.

[9] A. K. Mok, X. Feng, and D. Chen, “Resource partition for
real-time systems,” inProceedings of the7th IEEE Real-Time
Technology and Applications Symposium, Taipei, Taiwan,
May 2001, pp. 75–84.

[10] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis
framework using EDP resource models,” inProceedings of
the 28th IEEE International Real-Time Systems Symposium,
Tucson, AZ, USA, 2007, pp. 129–138.

[11] H. Leontyev and J. H. Anderson, “A hierarchical multiproces-
sor bandwidth reservation scheme with timing guarantees,”in
Proceedings of the20th Euromicro Conference on Real-Time
Systems, Prague, Czech Republic, Jul. 2008, pp. 191–200.

[12] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling
framework for virtual clustering multiprocessors,” inProceed-
ings of the20th Euromicro Conference on Real-Time Systems,
Prague, Czech Republic, Jul. 2008, pp. 181–190.

[13] Y. Chang, R. Davis, and A. Wellings, “Schedulability anal-
ysis for a real-time multiprocessor system based on service
contracts and resource partitioning,” University of York,Tech.
Rep. YCS 432, 2008, available at http://www.cs.york.ac.uk/
ftpdir/reports/2008/YCS/432/YCS-2008-432.pdf.

[14] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiprocessor
platforms: Specification and use,” inProceedings of the
30th IEEE Real-Time Systems Symposium, Washinghton, DC,
USA, Dec. 2009, pp. 437–446.

[15] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and
S. Stiller, “Implementation of a speedup-optimal global EDF
schedulability test,” inProceedings of the EuroMicro Confer-
ence on Real-Time Systems. Dublin: IEEE Computer Society
Press, July 2009.

[16] E. Bini, G. C. Buttazzo, and M. Bertogna, “The multy supply
function abstraction for multiprocessors,” inProceedings of
the 15th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, Beijing,
China, Aug. 2009, pp. 294–302.

[17] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on
uniform multiprocessors,” inProceedings of the22nd IEEE
Real-Time Systems Symposium, London, United Kingdom,
Dec. 2001, pp. 183–192.

[18] S. K. Baruah, N. K. Cohen, G. Plaxton, and D. A. Varvel,
“Proportionate progress: a notion of fairness in resource
allocation,” Algorithmica, vol. 15, no. 6, pp. 600–625, Jun.
1996.

