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Cardiac endocrine function is an essential component of the homeostatic regulation
network: physiological and clinical implications. Am J Physiol Heart Circ Physiol
290: H17–H29, 2006; doi:10.1152/ajpheart.00684.2005.—The discovery of cardiac
natriuretic hormones required a profound revision of the concept of heart function.
The heart should no longer be considered only as a pump but rather as a
multifunctional and interactive organ that is part of a complex network and active
component of the integrated systems of the body. In this review, we first consider
the cross-talk between endocrine and contractile function of the heart. Then, based
on the existing literature, we propose the hypothesis that cardiac endocrine function
is an essential component of the integrated systems of the body and thus plays a
pivotal role in fluid, electrolyte, and hemodynamic homeostasis. We highlight those
studies indicating how alterations in cardiac endocrine function can better explain
the pathophysiology of cardiovascular diseases and, in particular of heart failure, in
which several target organs develop a resistance to the biological action of cardiac
natriuretic peptides. Finally, we emphasize the concept that a complete knowledge
of the cardiac endocrine function and of its relation with other neurohormonal
regulatory systems of the body is crucial to correctly interpret changes in circulat-
ing natriuretic hormones, especially the brain natriuretic peptide.

atrial natriuretic peptide; brain natriuretic peptide; cardiac natriuretic hormones;
cardiac function; heart failure; cardiovascular diseases

THE PRESENCE OF SECRETORY GRANULES in mammalian (including
human) atrial cells has been known since 1965 (66, 77), but
only in 1976 did Marie et al. (102) find that the formation of
these granules could be influenced by changes in the hydro-
electrolytic balance. From those original observations, De Bold
et al. (29) demonstrated in 1981 that intravenous injection of
atrial extracts provoked a rapid and massive diuresis and
natriuresis in rats.

This seminal study paved the way for the isolation, purifi-
cation, and identification of a family of natriuretic and vaso-
dilator peptides named atrial natriuretic peptides or factors and
more commonly known as ANP or ANF (20, 30, 33, 105, 136).
Furthermore, it was demonstrated that not only atrial, but also
ventricular, cardiomyocytes can secrete peptides with natri-
uretic activity, in particular, the brain natriuretic peptide
(BNP), so called because first isolated from porcine brain (20,
30, 33, 105, 136). More recently, C-type natriuretic peptide
(CNP), mainly produced and secreted by endothelial cells and
by central nervous system neurons, and urodilatin, synthesized
and secreted by renal cells (and present in urine, but not in
plasma), were added to this peptide family (20, 30, 33, 105,
136). Finally, a new peptide, named dendroaspis natriuretic
peptide (DNP), was identified in mammalian plasma, but
itsorigin and pathophysiological relevance are still unclear
(132).

The scientific impact of these studies was of paramount
importance. The discovery of cardiac natriuretic hormones
(CNH) by De Bold et al. (29) made it necessary, 25 years later,
to completely revise the concept of heart function. Indeed, we
should no longer consider the heart only as a pump but rather
as a multifunctional and interactive organ, a nodal point in a
complex network, and an active component of the integrated
systems of the body (including nervous, endocrine, and im-
mune system). It is now clear that the heart exerts also an
endocrine function, plays a key role in the regulation of
circulation, and hydroelectrolytic homeostasis, and can ex-
change physiologically relevant information with other organs
and systems, which include central and autonomic nervous
system, kidney, adrenal glands, vascular endothelium, adipose
tissue, and immune system (30, 105). This previously unsus-
pected cardiac function explains the great pathophysiological
and clinical significance that a rapidly growing number of
studies is attributing to natriuretic peptides (20). Indeed, car-
diac endocrine function should be considered closely related
and integrated with other cardiomyocyte properties, such as
excitability and contractility. Moreover, this function can be
evaluated and measured with methodological approaches and
laboratory techniques commonly used for studying and mea-
suring the activity of endocrine glands. Finally, the results of
these investigations need to be interpreted in light of classic
endocrinological concepts, such as hormone production, me-
tabolism, peripheral action, and specific receptors.

In the this review, we will consider a number of studies
supporting the hypothesis that an important exchange of infor-
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mation exists between endocrine and contractile function of the
heart. In our opinion, understanding this integration may lead
to a more accurate and complete comprehension of cardiac
physiology and of the pathophysiology of heart failure. Fur-
thermore, we will discuss a second intriguing hypothesis, i.e.,
that cardiac endocrine function is an essential component of the
integrated systems of the body and thus plays a pivotal role in
fluid, electrolyte, and hemodynamic homeostasis. Whereas
previous reviews have extensively covered the topic of cardiac
hormones, they have not sufficiently emphasized the cross-talk
between cardiac endocrine and contractile function and be-
tween cardiac endocrine function and other integrated systems
of the body. Moreover, the pathophysiological and clinical
relevance of these interactions currently have not been dis-
cussed in detail. On the basis of such premises, we will first
discuss those studies supporting the hypothesis that cardiac
endocrine function can better explain some pathophysiological
mechanisms acting in myocardial dysfunction, heart failure,
and other cardiovascular diseases. Emphasis will be put on the
strong and pathophysiologically relevant effects of cardiac
natriuretic peptides on peripheral resistance in heart failure.
Finally, we will try to provide arguments to support the idea
that a complete knowledge of the cardiac endocrine system and
of its relations with other neurohormonal regulatory systems of
the organism is crucial to interpret correctly measurements of
CNH and in particular of BNP.

CHEMICAL STRUCTURE AND SYNTHESIS OF CNH

All CNH share a similar structural conformation, character-
ized by a peptide ring with a cysteine bridge. This ring
remained well preserved throughout the phylogenetic evolu-

tion, because it constitutes the site of the peptidic hormone that
binds to its specific receptor. Conversely, the two-terminal
amino acid chains (i.e., NH2 and COOH terminus) show a high
degree of variability among the natriuretic peptides in terms of
both length and composition (Fig. 1).

The natriuretic peptide genes encode for the precursor se-
quences of these hormones, named preprohormones, which are
then splitted into prohormones by proteolytic cleavage of a
NH2-terminal hydrophobic signal peptide. This cleavage oc-
curs cotranslationally during protein synthesis in the rough
endoplasmic reticulum before the synthesis of the COOH-
terminal part of the prohormone sequence is completed (49). In
particular, the human BNP gene encodes for a preproBNP
molecule of 134 amino acid residues, including a signal pep-
tide of 26 amino acids (Fig. 2). BNP is cleaved out of a
prohormone molecule of 108 amino acids, the proBNP1–108,
usually indicated as proBNP. Before secretion, proBNP is split
by proteolytic enzymes into two peptides: the proBNP1–76

(NH2-terminal peptide fragment), usually indicated as NT-
proBNP and biologically inactive, and the proBNP77–108

(COOH-terminal peptide fragment), which is the active hor-
mone (BNP).

It is important to note that the preproBNP precursor is not
detectable, and its existence is only theoretically deduced from
the BNP cDNA sequence of human (or other mammalian)
gene. On the other hand, intact proBNP, NT-proBNP, and BNP
are identifiable in plasma by chromatography and immunoas-
say (8, 49, 146, 147). Moreover, ANP and BNP can be
produced and costored in the same granule in different stages
of peptide maturation (30, 105).

REGULATION OF PRODUCTION/SECRETION OF ANP AND
BNP IN CARDIAC TISSUE

ANP and BNP are synthesized and secreted mainly by
cardiomyocytes. However, it is believed that ANP is preferen-
tially produced in the atria, whereas BNP is preferentially
synthesized in the ventricles and particularly in patients with
chronic cardiac diseases. Synthesis and secretion of those two
peptides may be differently regulated in atrial versus ventric-

Fig. 1. Peptide chains of the atrial natriuretic peptide (ANP), brain natriuretic
peptide (BNP), C-type natriuretic peptide (CNP), and dendroaspis natriuretic
peptide (DNP).

Fig. 2. Schematic representation of production/secretion pathways of BNP and
of its precursor peptides.
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ular myocytes and, probably, during neonatal versus adult life
(30, 31, 105). As a consequence, it is conceivable that two
separate cardiac endocrine systems exist, i.e., one in the atrium,
where ANP and its related peptides are preferentially pro-
duced, and the other in the ventricle, prevalently secreting BNP
and its related peptides. Therefore, the acronym CNH will be
used in this review only when it is clear that all natriuretic
peptides share the same features and actions in a given context.
Otherwise, ANP and BNP will be discussed as separate hor-
mones.

It is important to note that more information is available
about the mechanisms responsible for the regulation of pro-
duction/secretion of ANP in atrial cardiomyocytes rather than
BNP in ventricular cardiomyocytes. Furthermore, these data
were obtained from experimental animals, especially rodents
and, to a lesser extent, pigs and sheep. However, some evi-
dence suggests prudence in their use for the interpretation of
specific pathophysiological conditions in humans. On the other
hand, BNP and its related peptides have been preferentially
used for diagnosis, stratification, and monitoring of patients
with cardiac and noncardiac diseases during the most recent
years, thus more clinical data are available on these peptides
than on ANP and its related peptides.

It is likely that most of the circulating ANP and BNP derive
from the atria in healthy subjects (105). Some recent data
suggested that not only cardiomyocites, but also fibroblasts,
may produce CNH in the human heart (169). It has also been
proposed that the endocrine response of the heart to pressure or
volume load varies depending on whether the stimulus is acute,
subacute, or chronic (30, 105).

Atrial cardiomyocytes store prohormones (proANP and
proBNP) in secretory granules and split them into ANP and
BNP before secretion. Consequently, cardiac natriuretic hor-
mones seem predominantly secreted throughout a regulated
pathway (30, 31, 105). However, there is also the possibility
that some ANP is constitutively released by passive diffusion
(30, 31, 105). BNP gene is expressed in both atrial and
ventricular myocytes of normal and diseased hearts (30, 31,
105, 136).

Ventricular myocytes do not usually display any evident
secretory granules at electron microscopy in the normal heart
of adult mammals (105). However, some authors identified
secretory granules, similar to the atrial ones, in samples of
ventricular myocardium collected during surgery or in endo-
cardial biopsies studied by electron microscopy and immuno-
histocytochemistry (57, 115). These observations suggest that
normal ventricular myocardium may produce only a limited
amount of BNP in response to an acute and efficacious stim-
ulation, probably via a constitutive secretory pathway, whereas

the amount of hormone produced and secreted after chronic
stimulation could be greatly increased via a secretory pathway
that is upregulated in patients with cardiac disease (105).

From a clinical point of view, it is important to note that
chronic cardiac dysfunction induces the secretion of a greater
amount of BNP rather than ANP, probably because the former
is produced mainly by ventricular myocardium, of which its
mass is predominant. Moreover, ventricular BNP gene expres-
sion can be selectively upregulated during the evolution of
diseases affecting the ventricles, as demonstrated experimen-
tally in dogs with pacing-induced congestive heart failure (94).
Consistent with these experimental findings, the molar ratio of
circulating BNP over ANP increases progressively with the
severity of heart failure from a mean value of 0.5 in healthy
subjects up to 3 in patients with New York Heart Association
(NYHA) functional class IV (Table 1) (20). These data explain
why circulating BNP is a better diagnostic index in patients
with cardiac disease compared with ANP (20, 22).

MECHANICAL AND CHEMICAL STIMULI

Wall stretch is the most important stimulus for synthesis and
secretion of ANP in the atrial walls (30, 31, 105, 136, 145,
152). For this reason, any physiological condition associated
with an acute increase in venous return (preload), such as
physical exercise, rapid changes from standing to supine posi-
tion, and head-out water immersion, causes a more rapid
augmentation in ANP than in BNP plasma concentration in an
adult healthy subject. For instance, changes in ANP and BNP
secretion have been well characterized during and after tachy-
arrhythmia induced in pigs by rapid atrial pacing (225 impulses/
min). In this model, ANP plasma concentration shows a sharp
initial peak followed by a decline but remains significantly
elevated throughout the 24-h postpacing, whereas BNP in-
creases significantly after an 8-h pacing period and even more
after a 24-h pacing (129). Also acute changes in the effective
plasma circulating volume, for instance, during a dialysis
session in patients with chronic renal failure, cause greater
variations in circulating levels of ANP than BNP (20).

Wall distension is generally considered the main mechanical
stimulus also for BNP production by ventricular tissue. This
occurs in conditions characterized by electrolyte and fluid
retention, and therefore expansion of effective plasma volume,
such as primary or secondary hyperaldosteronism accompany-
ing cardiac, renal, and liver failure (20, 30, 105). However,
several studies indicate that BNP production/secretion may be
differently regulated in normal compared with diseased ven-
tricular myocardium. Indeed, ventricular hypertrophy and es-
pecially the concomitant presence of fibrosis can stimulate

Table 1. BNP and ANP and molar ratio (BNP/ANP) value in normal subjects and patients with heart failure
divided according to NYHA functional class

Normal
Subjects NYHA I NYHA II NYHA III NYHA IV

n 52 35 141 97 39
BNP 4.1 � 6.1 22.5 � 34.0 66.6 � 88.4 131.6 � 126.3 185.7 � 169.2
ANP 8.3 � 5.1 18.6 � 15.1 37.5 � 40.6 65.8 � 65.8 62.0 � 46.8
Molar ratio 0.5 1.2 1.8 2.0 3.0

Values are means � SD in pmol/l; n, number of subjects. BNP, brain natriuretic peptide; ANP atrial natriuretic peptide; NYHA, New York Heart Association.
Unpublished data from the authors’ laboratory.
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BNP production (30, 31, 105, 141, 156, 181). Furthermore,
more recently, experimental and clinical studies indicated that
also myocardial ischemia, and perhaps hypoxia, per se, could
induce the synthesis/secretion of BNP and its related peptides
by ventricular cells, even if isolated and cultured (7, 32, 49, 52,
68, 165). Plasma levels of CNH, especially BNP and its related
peptides, were found closely related to aerobic exercise capac-
ity in patients with heart failure (76, 186, 189). In particular,
plasma NT-proBNP correlates better with peak oxygen con-
sumption and exercise duration compared with other indexes of
left ventricular systolic function, such as ejection fraction
(186). These results may explain the elevated levels of BNP
found in patients with acute coronary syndrome or during
exercise-induced ischemia (43, 138), in the absence of a
significant dilatation of ventricular chambers (7, 32), suggest-
ing a neurohormonal activation secondary to both reversible
myocardial ischemia or necrosis (68).

HUMORAL STIMULI

Mounting evidence from in vivo and ex vivo studies is
providing support to the hypothesis that the production/secre-
tion of ANP and BNP is regulated by complex interactions
with the neurohormonal and immune systems, especially in the
ventricular myocardium (105). A summary list of some neu-
rohormones, cytokines, and growth factors, which can affect
the production/secretion of ANP and BNP, is reported in
Table 2.

Endothelin-1 and angiotensin II are considered the most
powerful stimulators of production/secretion of both ANP and
BNP (30, 31, 105); similarly, glucocorticoids, sex steroid
hormones, thyroid hormones, some growth factors, and cyto-
kines (especially TNF-�, interleukin-1, and interleukin-6)
share stimulating effects on the CNH system (30, 31, 35, 54,
61, 85, 95, 97, 105, 156, 160, 187, 188). The finding that CNH
production is stimulated by cytokines and growth factors sug-
gests a link between cardiac endocrine activity and remodeling
or inflammatory processes in myocardial and smooth muscle
cells. A large number of studies have recently contributed to
support this hypothesis (35, 48, 55, 59, 61, 76, 78, 95, 141, 151,
156, 160, 181, 187, 188).

More complex, and still in part unknown, is the effect of
adrenergic stimulation on CNH production. The �1-adrenergic
agonist phenylephrine enhances the expression of some tran-
scription factors, such as Egr-1 and c-myc, which regulate
(usually increasing) natriuretic peptide gene expression in
cultured neonatal rat cardiomyocytes (30, 31, 74, 78, 105, 151,

162). In isolated adult mouse cardiomyocytes, the �-agonist
isoproterenol reduced the expression of BNP mRNA but not of
ANP, an effect that was prevented by the �1-antagonist CGP-
20712A (4). Clinical studies performed in hypertensive pa-
tients have shown that monotherapy with �-blockers, either
�1-selective or not, is associated with an increase in the plasma
concentration of ANP and/or BNP and their related peptides
(53, 114, 123, 171). In contrast, the CNH response can be
heterogeneous during �-blocker therapy in congestive heart
failure (22, 192) probably due to the various additive effects of
other coadministered drugs. Nevertheless, a chronic treatment
with �-blockers, resulting in improvement of cardiac function
and exercise capacity and reduction in filling pressure and
cardiac volumes, is usually associated with a significant fall in
BNP and its related peptides in patients with heart failure (22,
44, 157).

As far as hormones more specifically acting on intermediate
metabolism are concerned, insulin, but not hyperglycemia
alone, increased ANP expression and secretion in cultured rat
cardiac myocytes (163). Moreover, in a model of genetic
murine dilated cardiomyopathy, short-term treatment with the
growth hormone releasing factor improved left ventricular
function and significantly limited ANP and BNP gene overex-
pression in left ventricular tissue (63).

In summary, a conspicuous number of experimental and
clinical studies demonstrated that production and secretion of
CNH are closely and subtly regulated by mechanical, chemical,
neurohormonal, and immunological factors. Thereafter, plasma
concentration of CNH can be considered as a sensitive index of
the perturbation of the homeostatic systems. It is becoming
progressively more evident that ANP and BNP can be di-
versely regulated under certain pathophysiological conditions.
Given the important roles of the BNP in both cardiovascular
physiology and pathology, the mechanisms that control expres-
sion of this hormone merit further investigation.

BIOLOGICAL ACTION OF CNH

CNH have powerful physiological effects on hemodynamic,
body fluids, and electrolyte homeostasis (20, 33, 105, 136).
CNH share a direct diuretic, natriuretic, and vasodilator effect
and an inhibitory action on inflammatory processes of myo-
cardium and smooth muscle cells (20, 33, 56, 58, 98, 111, 136).
Moreover, CNH exert a protective effect on endothelial dys-
function by decreasing shear stress, modulating coagulation
and fibrinolysis pathways, and inhibiting platelet activation.
According to their anti-inflammatory and antihypertrophic ac-
tions, CNH (especially CNP) can also specifically counteract
vascular remodeling as well as coronary restenosis postangio-
plasty processes (19, 108, 130, 156, 159, 190).

CNH share an inhibitory action on neurohormonal and
immunological systems and on some growth factors (14, 31,
41, 70, 72, 105, 130, 167, 173, 175, 185). The above-men-
tioned effects on hemodynamics, body fluid, and electrolyte
homeostasis can be explained at least in part by the inhibition
of control systems, namely, the sympathetic activation, the
renin-angiotensin-aldosterone and/or vasopressin/antidiuretic
hormone response, and the endothelins, cytokines, and growth
factors release (14, 31, 41, 70, 72, 105, 130, 167, 173, 175, 185).

The hormonal action, shared by plasma ANP and BNP, can
be enhanced by natriuretic peptides produced locally in target

Table 2. Summary list of some neurohormones, cytokines,
and growth factors affecting the production/secretion of CNH

Angiotensin II
Endothelin-1
Adrenergic agents
Cytokines (IL-1, IL-6, TNF)
Growth and coagulation factors
Insulin
GH
Thyroid hormones
Corticosteroids
Estrogens

CNH, cardiac natriuretic hormone; GH, growth hormone.
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tissues. Indeed, endothelial cells synthesize CNP, which in turn
exerts a paracrine action on smooth muscle (19, 108, 130, 156,
159, 190).

Moreover, renal tubular cells produce urodilatin, another
member of the natriuretic peptide family with powerful diuretic
and natriuretic properties (176). ANP, BNP, and CNP genes
are also expressed in the central nervous system, where they
likely function as neurotransmitters and/or neuromodulators
(14, 19, 41, 65, 86, 173, 174). This hypothesis is supported, for
instance, by the observation that intranasal ANP acts as central
nervous inhibitor of the hypothalamus-pituitary-adrenal stress
system in humans (126). Finally, coexpression of CNH and of
their receptors was observed in rat thymus cells and macrophages
(178, 179), suggesting that CNH may have immunomodulatory
and anti-inflammatory functions in mammals (180).

Finally, several studies suggested a major role for CNH in
the development of certain systems, including skeleton, brain,
and vessels (51, 92, 137, 149, 154, 183). In particular, severe
skeletal defects and impaired recovery after vascular and renal
injury were observed in CNH transgenic and knockout mice
(183). In addition, CNH may play a role in the regulation of
proliferation, survival, and neurite outgrowth of cultured neu-
ronal and/or glial cells (183).

RESISTANCE TO BIOLOGICAL ACTION OF CNH

A deficient CNH response was proposed to explain altered
electrolyte and fluid homeostasis occurring in chronic heart
failure (23). However, this interpretation was challenged when
the CNH system was more carefully investigated in experi-
mental animals and in humans (23). Patients with chronic heart
failure show increased CNH plasma levels compared with
healthy subjects (Table 1). This phenomenon has been recently
defined as the “endocrine paradox” of the heart (49), charac-
terized by extremely high circulating levels of hormones with
powerful natriuretic activity in patients with congestive heart
failure who show physical signs of fluid retention and vaso-
constriction due to a relatively poor biological activity of the
CNH system.

A blunted natriuretic response after pharmacological doses
of ANP and BNP has been observed in experimental models
and in patients with chronic heart failure, suggesting a resis-
tance to the biological effects of CNH, principally to natriure-
sis (18, 25, 80, 140, 193). This resistance syndrome was also
demonstrated by measuring ANP turnover rate with radioactive
tracers in patients with heart failure (23, 24).

A large number of clinical studies demonstrated that the
activation of the neurohormonal system accelerates the left
ventricular functional impairment in patients with heart failure
(9, 20, 22, 118). Furthermore, drugs that contrast the detrimen-
tal effects of the neurohormonal system activation have a key
role for the current pharmacological treatment of heart failure.
Some of these, such as angiotensin-converting enzyme (ACE)
inhibitors, angiotensin-II blockers, �-blockers, and spironolac-
tone decrease the circulating levels of CNH (11, 22, 88, 133),
“normalize” their kinetics, and increase their biological activity
(23, 24). In other words, the treatment with this type of
pharmacological agent decreases the systemic resistance to the
biological effects of CNH (23, 24). Indeed, patients with heart
failure show a progressive and parallel increase in CNH levels
and in some neurohormones and cytokines, which correlates

with the severity of the disease. The maximum increase in
plasma BNP values (about 45-fold compared with the average
value found in healthy subjects) is significantly higher than that
observed for neurohormones, cytokines, and even ANP, in
heart failure patients (Table 1 and Fig. 3) (39). However, the
response of CNH to increasing levels of disease severity is not
linear; it shows a sharp increase in CNH plasma concentration
in the early phase of heart failure (NYHA class I–II patients),
followed, with the clinical progression of the disease, by a
blunted increase (NYHA class III), and finally by a plateau
(NYHA class IV). This time course is more evident, especially
the blunted and plateau phases, in the response of ANP com-
pared with BNP (Table 1 and Fig. 3). These data confirm that
production and secretion of ANP and BNP are differently
regulated and that these two peptide hormones may act as
components of two separate systems.

Resistance to the biological action of CNH can be attributed
at least to three different causes. First, circulating CNH might
be, at least in part, inactive. Furthermore, a great fraction of
CNH might be inactivated by plasma and tissue proteases
before they bind to specific receptors. These two conditions
account for all possible mechanisms acting at the prereceptor
level. Second, CNH-specific receptors might be downregulated

Fig. 3. Mean increases in ANP, BNP, cortisol (COR), IL-6, PRA, and
norepinephrin (NE) found in patients with heart failure, divided according to
New York Heart Association (NYHA) class. Data obtained from patients were
normalized by the mean value found in healthy subjects (controls). Mean (SD)
values measured in healthy subjects were the following: ANP, 25.4 � 15.8
ng/l; BNP, 14.3 � 20.8 ng/l; PRA, 0.34 � 0.53 ng �ml�1 �h�1; NE, 344.4 �
134.0 pg/ml; and cortisol, 165.8 � 48.0 ng/ml. For IL-6, the assay detection
limit (i.e., 5 pg/ml) was taken into account to calculate the increases, because
all of the normal subjects studied had values below the sensitivity of the assay.
Number of subjects/patients studied for each group is reported in parentheses
(data modified from Ref. 39).
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or desensitized. Finally, some mechanisms might act at pos-
treceptor level by counteracting the biological effects of CNH
(Table 3).

Mechanisms acting at prereceptor level. Some peptides,
derived in vivo or in vitro from degradation of intact proBNP,
are biologically inactive, although they can be measured by
immunoassays (20–22, 49). Because the circulating levels of
intact proBNP and of its derived peptides increase progres-
sively with the severity of heart failure, immunoassays can
greatly overestimate the true biological activity of CNH in
patients with severe heart failure (49). Unfortunately, at
present, it is not possible to estimate the inaccuracy of CNH
immunoassays because these methods use different, not stan-
dardized, antibodies and calibrators leading to very variable
results (20–22, 49).

CNH are degraded in vivo and in vitro by several types of
proteolytic enzymes, including serine-proteases, peptidyl argi-
nine aldehyde proteases, kallikrein-like proteases, and neutral
endopeptidases (NEP) (8, 49, 146, 147). Individual differences
in the ability of heart tissue to produce their precursors, or of
peripheral tissues to degrade CNH, may help to explain some
differences in clinical manifestations among heart failure pa-
tients with similar severity of ventricular dysfunction (49).

The pathophysiological relevance of mechanisms acting at
the prereceptor level is supported by the clinical effects of
drugs sharing an inhibitory action on both NEP and ACE (so
called vasopeptidase inhibitors), which may share some bene-
ficial effects in patients with arterial hypertension, heart failure,
and/or angina pectoris (17, 28, 42, 139, 166). These beneficial
effects are mediated by the synergic inhibitory action on ACE
and NEP, resulting, respectively, in decreased angiotensin II
production and increased circulating levels of CNH due to a
reduction in peptide degradation (17, 28, 42, 139, 166). How-
ever, a large clinical trial that compared the effects of the
vasopeptidase inhibitors omapatrilat to the ACE inhibitor drug
enalapril indicated how omapatrilat reduces the risk of death
and hospitalization in chronic heart failure but is not more
effective than ACE inhibition alone in reducing the risk of a
primary clinical event (119).

CNH are small peptides and therefore are freely filtrated by
the kidney. Luminal perfusion with ANP has been shown to
reduce sodium efflux from the inner medullar collecting duct,
suggesting that this hormone has also luminal sites of action

(18, 150). As a consequence, a reduction in the filtration can
potentially induce renal hyporesponsiveness to CNH. To date,
however, ANP has been detected only on tubular basolateral
membranes (18). Thus the mechanisms of CNH luminal action
need to be elucidated before conclusions are drawn about the
functional significance of reduced natriuretic peptide filtrations
in the renal hyporesponsiveness to ANP and other natriuretic
peptides.

Mechanisms acting at receptor level. Several studies suggest
that the resistance to biological effects of CNH in heart failure
may be due, in part, to variations in the relative amount of the
three different types of natriuretic peptide-specific receptors. In
particular, there could be an upregulation of type C-receptors
(NPR-C) with a parallel downregulation of type A- and B-
receptors (NPR-A and NPR-B) (6, 83, 110, 168, 170). NPR-A
and NPR-B mediate all known hormonal actions of CNH;
therefore, their downregulation should induce a deactivation of
the CNH system (121, 122). The upregulation of NPR-C
receptors that strongly contribute to the clearance of biologi-
cally active peptides could further increase the resistance to
CNH in patients with heart failure (8). These findings are well
in accordance with kinetic studies in patients with heart failure
(24, 64). Moreover, a recent report confirmed that the expres-
sion of ANP, BNP, and NPR-C receptor were all markedly
increased in failing hearts of humans (83). Reversal of cardio-
myocyte hypertrophy during left ventricular assist device sup-
port was accompanied by normalization of ANP, BNP, and
NPR-C mRNA levels and by a significant recovery of respon-
siveness to ANP (83).

A recent study (40) found that neither NPR-A nor NPR-B
were internalized or degraded in response to natriuretic peptide
binding in 293T cultured cells, thus suggesting that a down-
regulation of NRP-A and NPR-B is not the only mechanism for
the “inactivation” of CNH action at the receptor level and that
other mechanisms may affect the transduction of CNH re-
sponse at the receptor level in some target tissues. Indeed,
another well-characterized deactivation mechanism is the pro-
cess by which an activated receptor is turned off, commonly
referred to as “desensitization” (127). Phosphorylation of the
intracellular kinase homology domain of NRP-A and NPR-B is
required for hormone-dependent activation of the receptor,
whereas dephosphorylation at this site causes desensitization
(127). Deactivation of CNH system via desensitization of
NRP-A and NPR-B can occur in response to various patho-
physiological stimuli (127). Further studies are necessary to
clarify what is the most important mechanism of deactivation
of the CNH system acting in vivo at the receptor level in
patients with heart failure, whether the downregulation (of
NPR-A and NPR-B) or the upregulation (of NPR-C) or the
desensitization (of NPR-A and NPR-B).

The peripheral resistance to the biological effects of CNH
may play an important role in other clinical conditions besides
heart failure. For example, NPR-C is also present on cellular
membranes of adipocytes. It was suggested that the increase in
NPR-C receptors observed in obese subjects can in turn in-
crease the peripheral degradation of CNH and consequently
blunt the action of the CNH system (34, 143). Indeed, recent
studies have documented decreased circulating levels of CNH
in obese subjects compared with age and gender-matched
controls (34, 106, 143, 182). In these studies, obesity was
assessed only based on body mass index. This reduced activity

Table 3. Classification of possibile mechanisms of resistance
to biological effects of CNH

Prereceptor level
Presence of inactive peptides in plasma
Increase in inactivation/degradation of active peptides

Upregulation of NPR-C
Increased activity of proteases

Decreased renal filtration
Receptor level

Down-regulation of NPR-A and NPR-B in target tissues
Altered CNH receptor binding or desensitization

Postreceptor level (activated counterregulatory mechanisms)
Altered intracellular signaling

Decreased cGMP cellular accumulation (decreased production or
increased degradation)

Altered intracellular pathways downstream cGMP

NPR-A, B, C, natriuretic peptide receptors A, B, C.
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of the CNH system may increase the risk of developing arterial
hypertension and other cardiovascular diseases due to the
noncontrasted and therefore prevailing effects of the sodium-
retentive and vasoconstrictive-opposing mechanisms (34, 106,
143, 182). However, this hypothesis needs to be confirmed by
studies based on accurate and direct measurements of changes
in body fat, rather than total, mass.

Finally, recent studies found that NPR-C receptors could be
coupled to a G protein that inhibits cAMP synthesis. These
receptors, which are present in great amount especially on the
endothelial cell membrane, may mediate some paracrine ef-
fects of CNP on vascular tissue (2, 3, 38, 135). Therefore,
further studies will be necessary to elucidate the possible role
of NPR-C receptors as modulators of CNH action and/or
degradation in peripheral tissues.

Mechanisms acting at postreceptor level. There is evidence
to support the hypothesis that the activation of the neuroendo-
crine system can counteract the biological effects of CNH even
at postreceptor level. However, at present time, the mecha-
nisms responsible for this resistance at postreceptor level are
poorly understood. In particular, little is known about potential
alterations of the CNH intracellular signaling pathways in heart
failure, and the few published studies have all focused on the
second messenger cGMP (18). cGMP levels have been mea-
sured and compared with ANP levels. In an early human study,
plasma cGMP concentrations increased in proportion to plasma
ANP concentrations, suggesting a defect in the signaling path-
way downstream cGMP (101). However, renal cGMP produc-
tion reaches a plateau in more advanced chronic heart failure,
despite progressive increase in ANP (101). Similarly, ANP
extraction by peripheral vascular bed does not correlate with
cGMP production in severe compared with mild chronic heart
failure (170). In this pathological condition, renal or peripheral
cGMP production may reach a plateau probably because of
decreased cGMP generation. However, other mechanisms, such
as altered intracellular cGMP turnover, may play a role (18).

Of course, the neuroendocrine system may also indirectly
counteract the action of the CNH system on renal function by
exerting antinatriuretic properties. This in turn causes reduced
Na� delivery to the collecting tubules, where CNH exerts its
main effects. In fact, the activation of renin-angiotensin-aldo-
sterone axis and of sympathetic nervous and endothelin sys-
tems may lead to lower glomerular filtration rate, so limiting
CNH tubular effects with sodium and water retention (184).

Because CNH and angiotensin II have renal actions at
similar vascular and tubular sites, it has been hypothesized that
the renin-angiotensin-aldosterone system could counteract the
renal CNH effects, limiting the CNH-induced natriuresis.
Moreover, it has been demonstrated in healthy dogs that, at a
normal renal perfusion pressure, intrarenal angiotensin II infu-
sion can antagonize ANP-evoked natriuresis (148). Finally, in
rats (1) and dogs (177) with aortocaval fistula, 1 wk of ACE
inhibition reverses renal unresponsiveness to ANP. On the
other hand, sympathetic nerve stimulation provokes afferent
and efferent renal arteriolar vasoconstriction and direct Na�

reabsorption throughout the tubule segments, with a predomi-
nant action on the ascending limb of the loop of Henle and, to
a lesser degree, on the proximal tubule (18). Also arginine
vasopressin peptides, which display antidiuretic actions, and
endothelins, powerful vasoconstrictor peptides exerting a wide
range of effects in the kidney, may both contribute to renal

hyporesponsiveness to CNH in heart failure patients (18).
However, further studies are necessary to better clarify the
cellular mechanisms responsible for this action.

In summary, several mechanisms occurring at prerecepto-
rial, receptorial, and postreceptorial levels may play a role in
the peripheral resistance to the biological effects of CNH
during heart failure. The increased natriuresis and the other
beneficial effects induced by drugs inhibiting the action of
counterregulatory systems (such as ACE inhibitors, angioten-
sin II-receptor antagonists, and �-blocker agents) in patients
with heart failure suggest that the overwhelming activation of
these systems may be considered the predominant pathophys-
iological mechanism of CNH resistance, probably at postre-
ceptorial level. Unfortunately, the effects of the counterregu-
latory system on downregulation and/or desensitization of
natriuretic peptide receptors are presently not well understood.

From a clinical point of view, it is important to underline
that the marked resistance to CNH action may also explain why
the administration of CNH analogues (such as nesiritide) did
not seem to have more efficacy than the conventional treatment
in patients with decompensated congestive heart failure (146).
Indeed, according to the hypothesis of CNH resistance, an
increase in circulating levels of biologically active hormones
(obtained by the inhibition of NEP or by nesiritide infusion)
can be useful only if there is a significant decrease in the
activation of counterregulatory system, as occurs, for example,
during concomitant administration of ACE inhibitors, angio-
tensin II-receptor antagonists, and/or �-blocker agents. The net
effect is a reduced resistance at postreceptor level or an
enhanced stimulation of NP-A and NP-B receptors, which
induces a reduced resistance at receptor level. A combination
of these two beneficial effects is also possible. Finally, the data
so far discussed also suggest that monitoring the degree of
systemic resistance to the biological effects of CNH could be
clinically useful in the follow-up of patients with heart failure.

Fig. 4. Close linear relationship between the logarithmic transformation of
plasma BNP concentration (y-axis), measured by an immunoradiometric assay
method, and left ventricular ejection fraction (x-axis), assessed by nuclear
angiography, in patients with cardiovascular diseases (unpublished data from
authors’ laboratory).
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PATHOPHYSIOLOGICAL AND CLINICAL IMPLICATIONS

The literature reviewed so far strongly supports the hypoth-
esis that CNH are active components of the integrated network
that includes nervous, endocrine, and immune system. Accord-
ing to this hypothesis, the heart should no longer be considered
only as a passive automaton driven by nervous, endocrine, or
hemodynamic inputs but as a leading actor on the stage.
Therefore, CNH, together with other neurohormonal factors,
regulate cardiovascular hemodynamics as well as fluid and
electrolyte homeostasis and probably modulate the inflamma-
tory response in some districts, including the cardiovascular.
This hypothesis implies that there are two opposing systems in
the body: one has sodium-retaining, vasoconstrictive, throm-
bophylic, proinflammatory, and prohypertrophic actions, whereas
the second one promotes natriuresis and vasodilatation and
inhibits thrombosis, inflammation, and hypertrophy. CNH are
the main effectors of the latter system and work in concert with
NO, some prostaglandins, and other vasodilator peptides. Un-
der physiological conditions, the effects of these two systems
are well balanced via feedback mechanisms and result in a
beat-to-beat regulation of cardiac output and blood pressure in
response to endogenous and exogenous stimuli. In patients
with cardiovascular diseases, the action of the first system
predominates and constitutes initially a compensatory mecha-
nism that progressively leads to detrimental effects.

The knowledge so far accumulated regarding CNH suggests
that a continuous and intense information exchange flows from
the endocrine heart system to nervous and immunological
systems and to other organs, including kidney, endocrine
glands, liver, adipose tissue, immunocompetent cells, and vice
versa. From a pathophysiological point of view, the close link
between CNH system and counterregulatory systems could
explain the increase in circulating levels of CNH in some
noncardiac-related clinical conditions. Increased or decreased
BNP levels were frequently reported in acute and chronic
respiratory diseases (5, 82, 90, 91, 96, 112, 128, 161), some
endocrine and metabolic diseases (10, 12, 15, 45, 67, 79, 87,
117, 125, 144, 153, 155), liver cirrhosis (60, 89, 142), renal
failure (103, 176), acute (septic shock) and chronic inflamma-
tory diseases (13, 16, 62, 120, 158, 187, 191), subarachnoid
hemorrhage (46, 84, 104), and some paraneoplastic syndromes
(69, 100, 107). Furthermore, elevated BNP levels reveal an
endocrine cardiac response to “stress” that does not necessarily
originate from the heart itself. In fact, recent studies reported
that plasma BNP concentration is an independent risk factor for
mortality (cardiac and/or total) in pulmonary embolism (81, 82,
161) and hypertension (112), renal failure (103, 176), severe
sepsis (13, 16), amyloidosis (120), sarcoidosis (191), and
diabetes mellitus (12). Increased BNP levels in these noncar-
diac diseases are a useful indication for the clinician that the
heart is under stress.

The interrelationships between CNH system and proinflam-
matory cytokines suggest that cardiac hormones play an im-
portant role in mechanisms responsible for cardiac and vascu-
lar adaptation, maladaptation, and remodeling in response to
various physiological and pathological stimuli (48, 99, 141,
181).

Very small changes in some neurohormones and cytokines
can produce wider variations in BNP circulating levels (39)
(Fig. 3). On the other hand, changes in hemodynamic param-

eters and plasma CNH levels are closely related in patients
with cardiovascular diseases (Fig. 4) (20, 22, 27, 36, 93, 109,
116, 124). However, correlations between plasma CNH levels
and parameters such as left ventricular ejection fraction, myo-
cardial mass, and chamber volumes are usually less tight in the
general population (large community-based sample, including
healthy subjects with or without individuals with asymptomatic
myocardial dysfunction) (71, 113, 131, 172). For example, in
our laboratory the coefficient of correlation R between left
ventricular ejection fraction and BNP in 38 healthy adult
subjects without any clinical and echocardiographic evidence
of heart failure (mean age 57.3 yr, range 35–78 yr) was only
0.068. Furthermore, a recent meta-analysis demonstrated that the
diagnostic significance of BNP levels was higher when clinical
criteria were used as reference (gold) standard rather than the
echocardiographic examination alone (including the criterion
of left ventricular ejection fraction of 40% or less) (37).

These data strongly indicate that the circulating BNP should
be better considered as an index of activation of the neuroen-
docrine system rather than a marker of myocardial dysfunction.
The activation or deactivation of the CNH system is almost
always the resultant of one or more physiological or patholog-
ical changes. For this reason, the results of CNH assays must
be interpreted by taking into account clinical history and
examination, as well as laboratory and instrumental tests. Of
course, the great number of pathophysiological mechanisms
that can affect the CNH system renders it sometimes difficult
for clinicians to recognize the cause(s) of variations in its
activity. On the other hand, CNH measurements add a com-
plementary information to other instrumental and investigative
tests. We believe that CNH assays should be considered as an
intellectual spur for the search of pathophysiological mecha-
nisms that can satisfactorily explain the measured variations in
hormone concentrations.
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