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a b s t r a c t

The presence of excess covariance in financial price returns is an accepted empirical fact:

the price dynamics of financial assets tend to be more correlated than their funda-

mentals would justify. We advance an explanation of this fact based on an inter-

temporal equilibrium multi-assets model of financial markets with an explicit and

endogenous price dynamics. The market is driven by an exogenous stochastic process of

dividend yields paid by the assets that we identify as market fundamentals. The model is

rather flexible and allows for the coexistence of different trading strategies. The

evolution of assets price and traders’ wealth is described by a high-dimensional

stochastic dynamical system. We identify the equilibria of the model consistent with

a baseline assumption of procedural rationality. We show that these equilibria are

characterized by excess covariance in prices with respect to the dividend process.

Moreover, we show that in equilibrium there is a positive expected marginal profit in

choosing more risky portfolios. As a consequence, the evolutionary pressure generates a

trend towards more remunerative strategies, which, in turn, increase the variance of

prices and the dynamic instability of the system.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

A huge econometric literature, started in the first part of the ’80, suggests that price returns in financial markets are
characterized by volatility levels too high to be explained by corresponding movements in the fundamental value of assets
or by macroeconomic variability in terms of aggregate consumption or money supply (LeRoy, 2008). The high
‘‘unexplained’’ volatility of prices of financial securities has been taken by many as suggestive of a intrinsic instability
in the functioning of speculative markets. Along similar lines, several recent studies investigate whether the observed high
degree of covariance in price returns can be explained by a similar degree of correlation among the economic values of the
traded assets (Bouchaud and Potters, 2003). As discussed in Marsili et al. (2011), a remarkable finding is that this
covariance exhibits different behaviors at different timescales. In practice, however, the phenomenon of excess covariance

is difficult to measure, because of the vagueness of what can be identified as fundamentals in the real world: what is the
original covariance above which we find an additional excess covariance? There are attempts in the literature to identify
proxies of these fundamentals. Shiller (1989), Froot and Dabora (1999) and Brealey et al. (2010), each for a different
historical period, have shown that the same asset traded in different markets tend to behave differently, following in each
location the trend of the local market. The appropriate way of disentangling this empirical fact from arbitrage
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opportunities and from differences due to the spread of information is still an open question. Kallberg and Pasquariello
(2008) propose a purely empirical approach. They analyze the assets’ prices of 82 firms, from different sectors, traded on
the NYSE: filtering the 1976–2001 data from aggregate shocks they obtain idiosyncratic data that, they show, are much
less correlated than the global financial ones. Regardless of any possible objection that could be made towards the choice
of the fundamentals, all these papers confirm the evidence of an excess of covariance in the financial markets, compared to
what is normally observed in the real economy.

Several models have been proposed to explain the appearance of excess covariance. Most of them focus on the
behavior of agents: traders tend to be correlated in their activity and consequently induce an analogous correlation in
assets’ prices. Kyle and Xiong (2001) propose a model in which the different wealth effects of traders induce some
homogeneity in portfolio choices. Kodres and Pritsker (2002) assume that the correlation is instead due to the re-balancing
activity of risk averse agents. Yuan (2005) assumes that it is the effect of financial constraints, while Veldkamp (2006)
imagines that information is costly and introduces a herding behavior. Finally, Marsili and Raffaelli (2006) describe a
stochastic behavioral model in which a single type of agents adjusts dynamically a single portfolio with a mean–variance
strategy.

In this paper we show that it is possible to obtain the same result in a very general setting as a direct effect of trading,
independently on any collinearity in the strategies of different traders. We do it by formalizing a stylized model of financial
markets with a multiplicity of coexisting trading strategies, and a multiplicity of traded assets. We assume an exogenous
underlying real economy, that we simply identify with a stream of random dividends paid by every asset. The dividend
process is governed by a multivariate stationary distribution which is described by a constant variance–covariance matrix.
This matrix represents the covariance structure of the fundamental value of the traded assets. The model assumes a
Walrasian endogenous asset pricing for all risky assets through market clearing and an inelastic supply of a riskless
security which acts as the numeraire of the economy.

The model we propose fits in the rich literature of Heterogeneous Agents Model (HAM) (see Hommes, 2006 for a fairly
recent survey) but is much less restrictive in terms of agents trading behavior and does not constraint the analysis to a
subset of boundedly rational trading strategies. There are only a few attempts that deal with multiple-assets framework
within the HAM literature (see for instance Westerhoff, 2004; Chiarella et al., 2005, 2010) but none of them, to the best of
our knowledge, analyze the emergence of excess covariance.

The dynamics of our model is described by a high-dimensional stochastic dynamical system. In the HAM literature
these systems are typically analyzed by ‘‘switching the noise off’’, i.e., by replacing the driving stochastic process with its
expected values and considering the corresponding deterministic skeleton (see for instance the analysis in Anufriev et al.,
2006 and Anufriev and Bottazzi, 2010). The argument supporting the use of the deterministic skeleton for the analysis of
the stochastic dynamics runs typically as follows. If the deterministic skeleton converges to an asymptotically stable fixed
point, the stochastic processes are also ‘‘close’’ to the corresponding fixed values, provided that the noise is reasonably
small (e.g., when the dividend yields are i.i.d. and their support belong to the basins of attraction of the fixed point). On the
other hand, if the deterministic skeleton exhibits a bifurcation in which the fixed point loses its stability, the associated
random system is analogously perturbed away from the fixed point. In a model with multiple assets, however, the
previous deterministic skeleton approach has the important drawback of not allowing for the analysis of higher moments
of the fluctuation around equilibria. Indeed the correlations between the price returns of different assets are always zero in
the deterministic approximation. Clearly, an alternative approach is needed. One possible solution is to directly
characterize the stochastic or deterministic fixed points of the complete random dynamical system and study their
stability using stochastic version of the Hartman–Grobman theorem. This is the approach followed by the evolutionary
finance literature, recently surveyed in Blume and Easley (2009) and Evstigneev et al. (2009). These methods become
however very complicated if one wants to adopt more realistic dividend processes and abandon the assumption of a finite
number of states of the world. Indeed we are not aware of any study of markets with long-lived multiple assets,
continuous support of the dividend structure, and investment strategies with a feedback from the past returns. Bottazzi
and Dindo (2010) partially fill the gap introducing direct price feedback in agents’ strategy, but only discuss the case of
short-lived assets. In this paper we try to follow an intermediate approach between the full-fledged analysis of the
stochastic system, which is unfeasible, and the study of the deterministic skeleton, which is too crude. We exploit the
notion of Procedurally Consistent Equilibria (PCE) already introduced in Anufriev et al. (2006) Anufriev and Bottazzi (2010)
and Anufriev and Dindo (2010) for single-asset markets. In PCE the unique requirement is that in equilibrium the
investment shares of agents are constant. The model is then closed by the rationality assumption that realized prices are
consistent with the assumption on which the investment shares were chosen.

The structure of the paper is as follows. In Section 2 we present the model, introducing the exogenous dividend process, the
market clearing mechanism and discussing the range of admissible strategies. We look at price dynamics and growth wealth in
the more general setting, without specializing to any particular behavioral rule. In Section 3 we study the PCE of the model and
we derive a system describing the co-evolution of the agent’s wealth and the assets’ returns. We show that the returns’
correlation matrix can be decomposed into two terms: the first is the correlation matrix of the dividend process, while the second
accounts for the excess correlation. This excess correlation is endogenously created and depends, in general, on the agents’
investment strategies. Analogously, we show that there exists endogenous excess return for different assets, which implies that
the equity premium can simply be the result of endogenous investment process. In Section 3.3 we study the evolutionary stability
of PCE equilibria with respect to an invasion by a different strategy. We show that, under the most general conditions, in this
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model the evolutionary pressure goes in the direction of increasing the dynamic instability of the system. In Section 4 we
investigate more in depth the aggregate market dynamics generated by the adoption of a specific investment rule, based on
mean–variance expected utility and exponential-weighted moving average estimators. Section 5 concludes.

2. The model

Consider a market populated by N traders where the shares of I long-lived financial assets paying risky dividends are
traded. Moreover a riskless security exists paying a constant and exogenous interest rate rf 40 per period. Traders have
the opportunity to lend the wealth not invested in the risky assets at that rate, or borrowing at the same rate if they want
to invest more in the assets. The riskless bond serves as the numéraire of the economy (prices are fixed with respect to it)
and is inelastically supplied. For every risky asset the amount of shares is fixed.

Time is discrete. The economy is evolving through a sequence of ‘‘temporary equilibria’’ (Grandmont, 1985), where
prices of the risky assets are fixed through Walrasian clearing equating demand and supply. In the rest of this section we
present all the features of the model and derive general results for its solvability. The assumptions about traders’ demand
at each time step are presented first. Then in Section 2.2 the price and wealth dynamics are derived. Section 2.3 completes
our formalization of the traders’ behavior by showing how the individual demands are changing in time. In Section 2.4 the
model is summarized as a high-dimensional stochastic dynamical system. Finally, in Section 2.5 we introduce a simple
example which will be used for illustrative purposes throughout Section 3.

2.1. Traders’ demand

At each time step each trader decides the fraction of individual wealth to be invested in each risky asset and in the
riskless bond. The fraction of wealth invested by agent n at time t in the risky asset i is denoted by xi

t,n. The residual fraction
x0

t,n ¼ 1�
PI

i ¼ 1 xi
t,n is invested in the riskless security. Throughout the paper the vector notation is used. The (column)

vector of individual wealth fractions invested in the risky assets is denoted by xt,n.
In a dynamical context the individual investment fractions are, in general, changing as new information becomes

available. In this sense, we think of agent’s behavior as a mapping from available past data to the present wealth fractions
xt,n. We postpone the formalization of this idea to Section 2.3.

Notice that at time t the investment decision of agent n is completely described by the vector of investment fractions,
xt,n. It is assumed that this vector is independent of the agents’ contemporary wealth and prices. Thus the individual
demand function for the risky asset i is given by

Zi
t,nðp

i
tÞ ¼

xi
t,nwt,n

pi
t

, ð2:1Þ

where pt
i

denote the price of asset i at time t and wt,n denote the wealth of agent n at time t. A demand function like the one in
(2.1) with xi

t,n independent of wt,n and pi
t implies a specific dependence of agent’s demand on wealth and prices and is

equivalent to assuming constant relative risk aversion (CRRA) preferences over final wealth.1 It has been often used in models
with heterogeneous agents and in the evolutionary finance literature.2 Moreover, it mimics the financial decisions taken in real
world, where portfolio are often designed as fractions of wealth to be split across different categories of assets.

Notice that the model is laid down without including consumption in agent’s behavior. In this way we have a pure
exchange economy, where traders decision are plausibly driven by expectations about their future wealth. While the
inclusion of consumption in the model is rather straightforward,3 we believe that the simpler ‘‘pure-exchange’’ framework
we present is more suitable to study the issues we are interested here. Our next step is to derive the prices and individual
wealth at time t using intertemporal budget constraints and market clearing conditions.

2.2. Pricing of risky assets

Every asset i pays a non-negative random dividend dt
i

at the beginning of period t. The dividend yield of asset i,
ei

t ¼ di
t=pi

t�1, is defined as the ratio of the dividend paid by the asset over the last price before the payment. With usual
vector notation, the column vectors of dividends, prices, and yields are written as dt , pt and et respectively.
Table 1 summarizes the notation used in this paper.

1 Alternatively, it characterizes an investor who maximizes mean–variance utility of returns, see Section 4.
2 See the models in Levy et al. (2000), Chiarella and He (2001), Anufriev et al. (2006), Evstigneev et al. (2009) and Subbotin and Chauveau (2011),

among others. It is worth to notice that many HAMs are built in an alternative framework, where demand does not depend on current wealth, see, e.g.,

Brock and Hommes (1998).
3 One can think about the trading activity on the market as a notionally infinite repeated game, where at every time step there is a positive

probability 1�s that the market ends and all agents consume their wealth, so enjoying the associated utility. In this case we would introduce a

homogeneous discount factor s for the individual wealth of each agent, as in Gale (1987), which after appropriate rescaling of prices would leave the

dynamics of the economy invariant.
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The inter-temporal relationship of the wealth of agent n reads

wt,n ¼wt�1,n

XI

i ¼ 1

xi
t�1,n

pi
t�1

ðdi
tþpi

tÞþx0
t�1,nð1þrf Þ

 !
: ð2:2Þ

This simple accounting relation introduces two sources of change in individual wealth given the investment decision at
time t�1. First, investment in risky assets returns random dividend yield and capital gain. Second, investment in the
riskless security pays a constant exogenous rate.

The price of asset i at time t is determined via an equilibrium relation between the endogenous demand of traders and a
fixed supply, normalized to 1. Using (2.1), the market-clearing condition

P
nZi

t,n ¼ 1 allows to derive the price as

pi
t ¼

XN

n ¼ 1

wt,nxi
t,n: ð2:3Þ

The system of equations given by (2.2) and (2.3) provides only an implicit definition of the assets prices pt in terms of
the past and present portfolio decisions xt,n. Indeed present prevailing prices appear both on the left and right hand sides
of these equations. Our next step is to derive price evolution explicitly by solving this system. Theorem 2.1 shows that this
is possible under reasonable restriction on traders’ portfolio choices.

To present this result, however, some more notation is useful. Let wt ¼
P

nwt,n denote the total wealth at time t and
jt,n ¼wt,n=wt the wealth share of trader n. We also define the market portfolio as the wealth-weighted sum of individual
portfolios of the risky assets

xt ¼
XN

n ¼ 1

xt,njt,n: ð2:4Þ

The components of this vector are denoted as xt
i
. The market portfolio can be considered as the portfolio of the

‘‘representative investor’’ describing the overall impact on the market of the collective decision of all traders.4 In terms of
the market portfolio the pricing equation (2.3) can be written simply as pt ¼wtxt . Introducing a similar definition for the
market investment in the riskless asset,

x0
t ¼

XN

n ¼ 1

x0
t,njt,n,

the evolution of total wealth is given by

wt ¼wt�1x0
t�1ð1þrf Þþ

XI

i ¼ 1

ðdi
tþpi

tÞ: ð2:5Þ

Table 1
Notation.

i 2 f1, . . . ,Ig Risky assets

dt I � 1 vector of dividends, dt ¼ ðd
1
t d2

t . . . dI
tÞ

T

pt I � 1 vector of prices, pt ¼ ðp
1
t p2

t . . . pI
tÞ

T

rt

I � 1 vector of ex-dividend returns, rt ¼
p1

t

p1
t�1

p2
t

p2
t�1

. . .
pI

t

pI
t�1

 !T

et I � 1 vector of dividend yields, et ¼ ðe1
t e2

t . . . eI
tÞ

T

e I � 1 vector of means of the yields, e ¼ ðe1 e2 . . . eIÞ
T

Rt I � 1 vector of total returns, Rt ¼ rtþet

D I � I variance–covariance matrix of the yield process et

n 2 f1, . . . ,Ng Agents

wt,n Wealth of agent n

xi
t,n

Fraction of wealth of agent n invested in asset i

xt,n I � 1 vector of investment fractions, xt,n ¼ ðx1
t,n x2

t,n . . . xI
t,nÞ

T

x0
t,n

Fraction of wealth of agent n invested in the riskless asset

wt Total wealth at time t

jt,n Agent n fraction of the total wealth

xt Market portfolio xt ¼ ðx1
t x2

t . . . xI
tÞ

T

x0
t

Market investment in the riskless asset

4 In particular, when the agents’ investment decisions are homogeneous, the market portfolio coincides with the portfolio of each investor.
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Now we are ready to present the main result of this section, the endogenous price dynamics in a multi-asset market
with arbitrary number of agents.

Theorem 2.1. Consider the matrix

Ht ¼ II�
XN

n ¼ 1

wt�1,nxt,n � zt�1,n, ð2:6Þ

where II is the identity matrix of size I, zt�1,n stands for the vector of size I with components xi
t�1,n=pi

t�1 and � denotes the tensor

product.5

If the investment shares of every agent in every asset are strictly positive, i.e., xi
t,n40 and xi

t�1,n40 for i 2 f0, . . . ,Ig, then the

matrix Ht is invertible and the prevailing prices are given by

pt ¼H�1
t

XN

n ¼ 1

wt�1,nxt,nðxt�1,n � etþx0
t�1,nð1þrf ÞÞ: ð2:7Þ

With these prices, the contemporary market portfolio is given by

xt ¼ wt�1x0
t�1ð1þrf Þþ

XI

i ¼ 1

di
tþ
XI

i ¼ 1

pi
t

 !�1

pt

and

x0
t ¼ wt�1x0

t�1ð1þrf Þþ
XI

i ¼ 1

di
tþ
XI

i ¼ 1

pi
t

 !�1

wt�1x0
t�1ð1þrf Þþ

XI

i ¼ 1

di
t

 !
: ð2:8Þ

The total wealth evolves as

wt

wt�1
¼ ðxt�1 � etþx0

t�1ð1þrf ÞÞ
1

x0
t

, ð2:9Þ

and the evolution of the individual wealth fractions reads

jt,n

jt�1,n

¼ x0
t

xt�1,n � etþx0
t�1,nð1þrf Þ

xt�1 � etþx0
t�1ð1þrf Þ

þ
XI

i ¼ 1

xi
t�1,n

xi
t

xi
t�1

: ð2:10Þ

Proof. See Appendix A.

This theorem shows that when the investment fractions are positive in every asset, the economy will be maintained in
a regime of positive total wealth and strictly positive prices.6

Further, if the investment fractions described by vector xt,n do not depend on contemporaneous prices and wealth, as
we assume in this paper (see Section 2.1 for a discussion), this theorem provides an explicit law of evolution of the
economy. From (2.7), we can obtain the dynamics of price returns and total returns of asset i, defined, respectively, as
follows:

ri
t ¼

pi
t

pi
t�1

�1 and Ri
t ¼ ri

tþei
t :

The interrelation of returns between different assets will be our main focus in Sections 3 and 4.
The evolution of wealth shares in (2.10) shows that the individual wealth share is driven by the relative return with

respect to the average return earned in the market. This feature is common for many models in evolutionary game theory.
In fact, the structure of (2.10) is similar to a discrete replicator dynamics (Weibull, 1997), with wealth shares playing the
role of sub-population size. The relative fitness of a trader is made up of two terms. The first term on the right-hand side of
(2.10) represents the relative ‘‘fundamental’’ earning of the trader with respect to market average, coming from the
dividend payments and riskless return. This term is proportional to the investment in the riskless asset. The second term
represents a ‘‘speculative’’ earning and is proportional to the correlation of trader’s risky investment decisions with the
market portfolio. This term is higher when the trader’s risky portfolio is more aligned with the average re-balancing
decisions of the population of traders.

5 Tensor product of two vectors a and b of size I is the I� I matrix defined as a� b¼ abT .
6 If one allows for zero prices, that is, zero aggregate net demand for a given asset, this constraint can be relaxed but at a cost of a more cumbersome

notation and with little advantage in terms of model flexibility. That is why we require, in the assumptions of Theorem 2.1, that the fractions xi
t,n and

xi
t�1,n are bounded away from zero. This assumption is standard in this kind of models, see for instance Evstigneev et al. (2009).
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2.3. Intertemporal traders’ behavior

To close the model we need only to describe how the agents choose their portfolio, i.e., their investment
fractions xt,n and x0

t,n, and to specify a dividend process. In a speculative framework, portfolio choices are essentially
based on the traders’ forecasts of future returns. We do not assume that our agents are able to predict future
dividend realizations, or are endowed with some a priori knowledge of the stochastic process driving market dynamics.
Conversely, we consider procedurally rational agents who dynamically build their expectations from the observed
past prices.

The behavior of a procedurally rational trader can be modeled as a mapping from past available information to the
current investment fractions. Because of differences in preferences, beliefs or ways to process information, different agents
can have different investment functions. Formally, we have the following:

Assumption 1. The investment behavior (or, investment strategy) of agent n is a vector-function fn, called investment

function, that maps deterministically the information set available prior to time t into portfolio choices

xt,n ¼ fnðfpt,etg : totÞ: ð2:11Þ

The components of investment function fn are denoted by fi
n.

In compliance with CRRA framework, neither the present prices pt nor wealth levels wt,n appear among the arguments of
xt,n in (2.11). In this way one can use the result of Theorem 2.1 to study the dynamics of returns. For the same purpose we
will forbid short positions, both in the risky assets and in the riskless security, by adopting the following:

Assumption 2. The investment function fn is such that, for any market history fpt,etgto t , it is

f i
n40 and

XI

i ¼ 1

f i
no1:

For a given stochastic dividend process, the market dynamics can now be fully described.7 The dividend process would
represent a link between the financial market modeled in the paper and the real economy, which is supposed to act in the
background of it. In this paper, we consider a particularly simple dividend structure, under which the yield process is
exogenous and stationary.

Assumption 3. Dividend yields are randomly drawn at each time steps from a joint I-dimensional distribution with mean
e¼ ðe1 e2 . . . eIÞ

T and variance–covariance matrix D.

The lack of time correlation and the constant expected dividend-price ratio will simplify the law of motion of the
system. Similar assumption was used in several previous one-asset models (e.g., Chiarella and He, 2001 and Anufriev et al.,
2006), and it is in line with empirical observation of stationarity of time series of yield.

Assuming that dividend payments follow the past asset prices has two major advantages. First, considered as a binding
mechanism between the fundamentals of the economy and the financial market, this assumption is plausible especially
when the time scale is relatively large (of the order of several months). Under the assumption of competitive final and
capital markets and constant return to scale in production techniques, the availability of internal and external financial
resources for the firm is proportional to its current capitalization. Indeed, when a firm asks a loan to expand its physical
capital, it is reasonable to assume that the loan is granted in proportion to the financial capitalization of the borrower, and
lenders rely on assets’ prices as a measure of solvency of the firm or, simply, as collateral. At the same time, the cash flow
generated by the activities inside the firm are a fraction of its scale of operation, measured by the firm equity. This would
imply that the expected profit of firms at time tþ1 and their expected dividends are proportional to the capitalization of
the firms at time t. In this simple scenario, the expected dividend yields are constant in accordance with Assumption 3.
Second, by imposing a very strong link between real and financial economic dynamics, we make our argument about their
possible divergence at equilibrium even stronger.

7 Notice that past prices, which aggregate the previous investment decisions of all traders, generally will affect the current investment fractions. We

model interaction among traders through prices, which link past traders decisions to current individual choices. There are many models based on direct

interactions of traders, see for instance Lux (1995) or Follmer et al. (2005), among others. On the other hand, Michael Lewis in Liar’s Poker reminds us of

the ancient Chinese proverb: ‘‘Those who know don’t tell and those who tell don’t know.’’
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Author's personal copy

2.4. The law of motion of the economy

Under the above assumptions and given exogenous process for dividend yield fetg, the evolution of the economy is
formally described by the following dynamical system:

xt,n ¼ fnðfpt,etgto tÞ, n 2 f1, . . . ,Ng,

pt ¼H�1
t

XN

n ¼ 1

wt�1,nxt,nðxt�1,n � etþx0
t�1,nð1þrf ÞÞ,

x0
t ¼ wt�1x0

t�1ð1þrf Þþpt�1 � etþ
XI

i ¼ 1

pi
t

 !�1

ðwt�1x0
t�1ð1þrf Þþpt�1 � etÞ,

wt ¼wt�1
1

x0
t

ðxt�1 � etþx0
t�1ð1þrf ÞÞ,

jt,n ¼jt�1,n x0
t

xt�1,n � etþx0
t�1,nð1þrf Þ

xt�1 � etþx0
t�1ð1þrf Þ

þ
P

i

xi
t�1,n

xi
t

xi
t�1

 !
, n 2 f1, . . . ,N�1g:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð2:12Þ

The order of equations in (2.12) corresponds to the timing of our model. The first N � I equations, one for each fraction xi
t,n

of wealth invested by each agent n in each asset i, fully represent the investment decisions of the N agents. As we model an
economy without consumption, the residual fraction of wealth, x0

t,n, is invested into the riskless security. Then the trading
session takes place, in which agent n demands xi

t,nwt,n=pi
t of shares of asset i. Of course, wt,n and pt

i
enter the demand

functions as parameters, whose actual values should be determined during the trading session, as in a standard Walrasian
equilibrium framework. Theorem 2.1 guarantees that unique positive prices exist. They are defined in the next I equations
for pt with matrix Ht defined in (2.6) depending on the contemporaneous investment decisions of agents, xt,n. When the
prices are found, the next equation (which is (2.8) rewritten in terms of dividend yields) provides the wealth-weighted
investment x0

t into the riskless asset. Finally, the last N equations express the present value of total wealth and individual
wealth shares as given in (2.9) and (2.10).

The market position of each agent at time t is given by demand (2.1) evaluated at equilibrium prices. The trading
volume of each asset depends on how these demanded quantities vary in time. The number of shares of asset i traded at
time t is

Vi,t ¼
1

2

XN

n ¼ 1

wtþ1,nxi
tþ1,n

pi
tþ1

�
wt,nxi

t,n

pi
t

�����
�����, ð2:13Þ

where the factor 1=2 reflects the double counting of shares in each transaction. Because of the randomness of the dividend
yield, in general the traders would have to adjust their portfolios along the trajectories of (2.12), generating positive
volumes.

System (2.12) is a random dynamical system whose properties will be investigated in Section 3. In order to facilitate a
discussion and illustrate different concepts, it will be useful to have a simple example, which we start to develop now and
to which we will return several times later.

2.5. Example with two risky assets

For an illustrative purposes we consider a simple economy with one agent and two risky assets.8 In the single agent
case the dynamical system (2.12) simplifies. In fact, it is even simpler to derive the return dynamics directly from (2.3)
than to use Theorem 2.1. When N¼1 we have pi

t ¼wtxi
t , where the components of market portfolio, xt

i
, are simply the

agent’s wealth share invested into asset i and do not depend on wealth. Recall that the price returns are defined as
ri

t ¼ pi
t=pi

t�1�1. Then from (2.9) one obtains

ri
t ¼

xi
t

xi
t�1

wt

wt�1
�1¼

xi
t

xi
t�1

x1
t�1e1

t þx2
t�1e2

t þx0
t�1ð1þrf Þ

x0
t

�1, i¼ 1;2: ð2:14Þ

Various agent’s behaviors can now be modeled by specifying an appropriate investment function.
Consider an investor who uses the following rule of thumb. A fixed share of wealth, 0ox0o1, is invested in the riskless

security, and the remaining wealth is divided between the two risky assets depending on their past return differences.
Specifically, let yt ¼ Et�1½r

1
t�r2

t � denote the expectation about the return differential between the two assets at time t

formed at the end of period t�1, and let assume that these expectations are formed in an adaptive9 way

yt ¼ m ðr1
t�1�r2

t�1Þþ ð1�mÞyt�1, ð2:15Þ

8 In order to exclude a possibility of strategic behavior, one can think of a large but homogeneous population. Because wealth evolution does not

affect prices, it is sufficient to assume homogeneity only with respect to the investment behavior, i.e., identical investment functions.
9 Adaptive expectations are known in the economic literature at least from Irving Fisher (see Fisher, 1930). Under adaptive expectations all past

observations are averaged but the weights are geometrically declining into the past.
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with parameter m 2 ½0;1� describing the relative weight of past observation, and impose the following investment
behavior:

x1
t ¼ að1�x0Þþyt ,

x2
t ¼ ð1�aÞð1�x0Þ�yt , ð2:16Þ

where a 2 ½0;1� is an exogenous preference parameter showing a predisposed division of wealth between the two risky
assets in the absence of the expected return differential.10 Notice that (2.16) is nothing else than the investment
function.11 The stochastic system governing the dynamics becomes

r1
t ¼

1

x0

að1�x0Þþyt

að1�x0Þþyt�1
ðð1�x0Þðae1

t þð1�aÞe2
t Þþyt�1ðe

1
t�e2

t Þþx0ð1þrf ÞÞ�1,

r2
t ¼

1

x0

ð1�aÞð1�x0Þ�yt

ð1�aÞð1�x0Þ�yt�1
ðð1�x0Þðae1

t þð1�aÞe2
t Þþyt�1ðe

1
t�e2

t Þþx0ð1þrf ÞÞ�1,

yt ¼ mðr1
t�1�r2

t�1Þþð1�mÞyt�1,

8>>>>>><
>>>>>>:

ð2:17Þ

where the first two equations are obtained by plugging the investment function (2.16) inside Eq. (2.14), whereas the last
equation is simply (2.15). This dynamics will be simulated and further studied in the next section.

3. Economic equilibria

The dynamics of the multi-asset model is formally given by stochastic dynamical system (2.12) driven by the
exogenous process on yields, et . It is well known that the analytical study of such systems is a challenging task. In
particular, several proposed bifurcations theories (Zeeman, 1988; Arnold, 1998) have many limitations, see a discussion in
Diks and Wagener (2008). For this reason, a popular approach in the literature of HAMs consists in analysis
of the deterministic skeleton of the system. To obtain the skeleton in our model, one should replace the yield realizations
by their expected values making the dynamics deterministic. The fixed points of the system are then characterized by
constant returns and constant investment shares. Even if this approach often delivers important insights about the
determinants of stability in the system, it has an important drawback. Since the returns of the risky assets are constant in
any fixed point of the deterministic skeleton, the skeleton cannot capture possible time- and cross-correlations in the
returns.

This drawback is the main motivation to explore an alternative approach. We focus on specific stochastic processes
which are relatively easy to study and which often approximate the dynamics of system (2.12) quite well. We call these
processes Procedurally Consistent Equilibria (PCE).

The idea leading to the PCE is simple. The high dimensional, non-linear random dynamical system (2.12) can in general
display complex dynamics, along, e.g., some (noisy) chaotic or quasi-periodic attractor. Given a set of N investment
functions reflecting both the preferences and the forecasting rules of agents, the circular causation behind these dynamics
is clear. Agents make portfolio decisions according to the investment functions. Given these decisions, prevailing prices
and returns are determined. Because of the updating of returns, the investment functions will in general dictate to revise
the portfolios. This revision leads in turn to new market prices and returns. If the dynamics ultimately settle on a cyclical,
i.e. periodic, quasi-periodic or chaotic attractor, the need of such revisions will never disappear. Since one can safely
assume that no traders are happy to be persistently wrong in their predictions, the appearance of cycles in that kind of
trading model should lead, in the long run, to the adoption, by the part of agents, of new investment functions. This could
be the result of a revision of individual preferences or beliefs, which are somehow adapted to the perceived dynamics of
the market. In general, thus, cyclical attractors of (2.12) can represent an equilibrium from the purely mathematical point
of view, but do not correspond to economic equilibria in the common sense. Conversely, we consider the states of the
system associated with economic equilibria in which agents do not have incentives to change their preferences or/and
expectation rules, i.e., their investment functions. For this conditions to be realized we require that: first, the realized
dynamics are consistent with agents’ investment behavior and, second, given the dynamics, traders are satisfied with their
market positions and the implied realized wealth levels. These requirements lead to the notion of Procedural Consistent
Equilibria (PCE).

Definition 3.1. Procedurally Consistent Equilibria (PCE) are the trajectories of the system defined in (2.12) with fixed
investment shares xi

t,n ¼ x
� i

n and stationary wealth distribution jt,n ¼j
�

n for all n,i and t.

10 For instance if x0¼0.2 and a¼0.6, this investor always keeps 20% of wealth on the riskless account, then divide the remaining wealth in the

proportion 6 : 4 between the two risky assets, increasing (resp. decreasing) this proportion with the expectation of higher (resp. lower) return of the first

risky asset with respect to the second risky asset.
11 In order to comply with Assumption 2, we should impose upper and lower bounds on given investment fractions, or, equivalently consider ‘‘cut-

off’’ versions of yt. For small e40 the following should hold eox1
t o1�x0�e, from where the bounds on yt can be found. We simplify our notation in the

text and do not provide bounds explicitly, but we do use these bounds in the simulations.
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Equilibria of this kind have been analyzed in Anufriev and Bottazzi (2010) and Anufriev and Dindo (2010), but only within
the single asset framework.12 In PCE the portfolio choices of agent are constant. When the investment fractions are
assumed a priori to be constant over time,13 the PCE coincides with the dynamics of the original system. When the
investment fractions depend on past behavior of prices and dividends, PCE provide a stochastic approximation to (2.12).
This approximation is expected to be good when this dynamics is stationary, i.e., when the expected behavior of each
variable is fixed.14

From (2.4) it follows that in the PCE the market portfolio is constant over time. Let us denote the PCE market portfolio
as x
�

. This notation should not be confused with x
�

n, which is the vector of investment fractions in the risky assets by agent n

in PCE. It turns out, however, that, in some sense these are the same quantities, as we will show below.
We define agent n with strictly positive wealth share at equilibrium, j

�

n40, as surviving in the PCE. In this terminology,
the market portfolio does depend only on the investment fractions of surviving agents. The existence of multiple survivors
is not ruled out in the PCE. However, all survivors must have the same investment portfolio. Indeed, from the last equation
of (2.12) setting jt,n ¼jt�1,n and assuming constant investment shares for each agent xt�1,n ¼ xn, with a little algebra one
obtains that

xn � et

x0
n

¼
x
�

� et

x
�0

for each surviving agent n. Since the right-hand side of this equation does not depend on the index n, the left-hand side
must be equal for each surviving trader. Because of the random nature of et , this is possible only if the investment share xn

is the same for any survivor n. Moreover, only surviving agents affect the market portfolio, so that for any survivor n it is
x
�

n � x
�

. This equivalence does not mean that all survivors have the same investment function, indeed the investment
behavior of agents out of equilibrium is not restricted,15 nor that their demand functions are the same, as the surviving
investors may have different wealth levels.

Finally, notice that whereas under the actual dynamics of (2.12) the volume as given by (2.13) is in general strictly
positive, it is always zero along the PCE trajectories. Indeed, setting constant the values for investment and wealth shares
of different agents in (2.13), we obtain that at every period and for every survivor, the demanded amount of assets is the
same as the initial endowment kept after the previous period.

Example with two risky assets (continued). Before proceeding further it will be useful to illustrate the notion of PCE
within the example introduced in Section 2.5. Recall that in case of a single investor described by investment function
(2.16), the dynamics of the returns of two risky assets is given by (2.17).

First of all, notice that the deterministic skeleton approach leads us to study the fixed point of (2.17). It is easy to see
that the returns in this fixed point16 are given by

r1 ¼ r2 ¼
1�x0

x0
ðae1
þð1�aÞe2

Þþrf : ð3:1Þ

However, as argued above, the absence of fluctuations in the fixed point prevents us from studying the impact of the
investment functions on correlation structure.

Consider now the PCE. Requirement of constant investment shares implies that yt ¼ yt�1, see (2.16). Plugging this
relationship to the dynamics equations (2.17) we find that r1

t ¼ r2
t for every t, and conclude that yt � 0. This implies that, in

the PCE, the returns follow the process

r1
t ¼ r2

t ¼ rf þ
1�x0

x0
ðae1

t þð1�aÞe2
t Þ: ð3:2Þ

An important difference with (3.1) is that now the returns are random processes, and, in particular, the correlations
between the returns of different assets can be computed.

Now let us contrast the PCE dynamics (3.2) with the actual dynamics given by (2.17). Obviously, the PCE is a stochastic
approximation of the actual dynamics. The quality of this approximation depends on whether the assumptions underlying
the PCE are satisfied, i.e., whether the PCE return dynamics is consistent with the assumption of constant investment
share. In our example the investment shares are given by (2.16), where yt is time-varying. Hence, the PCE would be a good
approximation only if variation of yt were negligible along the PCE dynamics. Intuitively, it might be the case when m is
sufficiently small, because then the effect of new returns on the expectations disappears with time. To test this intuition
we turn to simulations.

12 Bottazzi and Dindo (2010) extend the analysis of PCE to a multi-asset general equilibrium framework with a finite number of states.
13 This case of constant investment functions is often analyzed in the evolutionary finance literature, see, e.g., Blume and Easley (1992).
14 Considering an auto-correlation structure in the yields process would not change the definition nor the nature of the PCE as long as the generating

process remains stationary.
15 Thus, the investment functions should not be functionally identical on their entire domain of definition. If the investment functions are different,

then their identity at equilibrium implies a non-generic restriction on traders’ behavior. The situation is similar to the requirement that several curves

intersect in one specific point. Clearly any infinitesimal perturbation of one curve breaks the requirement.
16 A local stability of this unique fixed point will depend on the behavioral parameter m. A typical and intuitive result is that the smaller the value m

is, the larger the stability region of parameter space is, see Anufriev et al. (2006) for instance.
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We compare the actual dynamics generated by model (2.17) and the PCE dynamics of (3.2) in Fig. 1 for two values of m,
relatively low in the left panel and relatively large in the right panel. The PCE, which is portrayed as a line for better
visibility, depends only on the two exogenous yield processes e1

t and e2
t and does not depend on m. The realizations of the

yield processes are the same in these two pictures. These are drawn independently from two normal distributions with
means e1 ¼ 0:01 and e2 ¼ 0:02 and standard deviation se ¼ 0:01. The returns of the two assets are shown by dots and
squares. We can see that for both values of m the dynamics of PCE approximates the actual return dynamics quite nicely
already after 50 periods. However, it takes much longer to reach the same goodness of approximation when m is relatively
large. In fact, for larger values of m the dynamics of returns become non-stationary and then the PCE does not approximate
it at all. Finally, notice that the deterministic skeleton approach would predict both returns to be constant in time and
given by the right-hand side of (3.1), which is 0.11 for the considered values of the parameters.

The rest of this section is devoted to the analysis of the equilibria defined in Definition 3.1. We will characterize their
locus in the high-dimensional space of system variables and investigate some interesting emerging properties.

3.1. Equilibria market surface

We are now back to the general case with N agents and I assets. The notion of PCE from Definition 3.1 requires us to
look at the trajectories of (2.12) with constant investment and wealth shares. We start by deriving the implications of this
assumption concerning the structure of price returns. Using (2.9) the asset price return ri

t ¼ pi
t=pi

t�1�1 reads

ri
t ¼

xi
t

xi
t�1 x0

t

ðxt�1 � etþx0
t�1ð1þrf ÞÞ�1: ð3:3Þ

Substituting for fixed investment shares one obtains the expression of price return r
�i

in PCE

r
�i
¼ rf þ

X
i

x
� i

ei
t

x
�0
¼ rf þ

x
�

� et

x
�0

,
ð3:4Þ

where x
�

is the market portfolio at the PCE.
First notice that at equilibrium all prices grow with the same growth rate. This fact is not derived from some peculiar

structure in agents’ preferences, but is simply a direct consequence of Definition 3.1. The growth rate of assets, however, is
not constant but depends on the actual realization of the dividend yield process. Because of Assumption 3 the market
growth rates follow a stationary process and are uncorrelated in time. Applying expectation operator to both sides of (3.4),
one obtains

r
�

E ¼ rf þ
x
�

� e

x
�0

,
ð3:5Þ

where the subscript E stands for ‘‘expected’’. This last equation is an algebraic relation between the expected market return
at equilibrium, r

�

E, and the equilibrium market portfolio, x
�

. Notice however that the return is not really a function of all the I

coordinates of the market portfolio. Indeed, it only depends on the projection of the market portfolio along the vector of
expected yield x

�

� e and on the total investment in riskless security x
�0
¼ 1�

P
ix
� i

at equilibrium. Let e ¼ JeJ be the norm of
the vector of expected dividends and x

�
¼
P

ix
� i

be the total fraction of wealth invested in the risky market. Let us define

Cx ¼
x
�

� e

ex
�

,
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Fig. 1. Return dynamics and its approximation by the PCE dynamics in the example of a single agent—two assets example. When m¼ 0:1 (left panel) the

PCE approximates the return dynamics reasonably well already after 20 periods. When m¼ 0:15 (right panel) the PCE also approximates the dynamics but

after longer transitory period. Simulations performed with rf¼0.05, x0 ¼ 0:2, a¼0.6, e1 ¼ 0:01, e2 ¼ 0:02 and se ¼ 0:01.
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as a coefficient proportional to the inner product of the equilibrium market portfolio and the vector of expected dividends.
Then (3.5) can be rewritten as follows

r
�

E ¼ rf þeCx
x
�

1�x
�
: ð3:6Þ

For exogenously given parameters rf and e, the right-hand side of this equation defines a surface in coordinates Cx and x
�
.

This surface is shown in the left panel of Fig. 2. Since two parameters are sufficient to identify the expected return in every
possible PCE, we will call the locus of these points the ‘‘equilibrium market surface’’.

Eq. (3.6) shows that the effect of aggregate investment decision on the resulting market returns depends on two factors:
how much is invested in the risky market (as given by x

�
) and to what extent the invested portfolio is aligned with the

endogenously given expected yields (as given by coefficient Cx). Under Assumptions 1- 3 the factor Cx is positive. If eH and
eL denote the highest and the lowest expected yields, respectively, it is immediate to see that Cx 2 ðe

L=e,eH=eÞ. Notice that
Cx is defined in such a way as to be insensitive to a rescaling of the overall risky investment. The latter, on the other hand,
can have a dramatic effect of the return of the assets. Indeed when x

�
-1 the price return diverges and the market displays

extremely high return rates. The behavior of the equilibrium return in the PCE, r
�

E, as a function of x
�

is shown in the right
panel of Fig. 2.

Example with two risky assets (continued). We return to the example with two risky assets introduced in Section 2.5.
Above we have derived the PCE for that example, which is a stochastic process for equilibrium returns of the two assets
given by (3.2). We observe that this process is a special case of the general formula (3.4), for the specific investment
behavior considered in the example.

The expected return in the PCE, r
�

E, coincides with the return in the fixed point of the deterministic skeleton given by
(3.1). The equilibrium market surface gives this return as a function of two quantities, which for the investment behavior
in (2.16) are given by

x
�
¼ 1�x0 and Cx ¼

ae1
þð1�aÞe2

JeJ
:

The equilibrium market surface allows us to see how the expected return in the PCE changes with the parameters of the
investment behavior and the dividend yield process. For instance, the mean yield and the behavioral parameter a are
enough to fix one of the curves shown in the right panel of Fig. 2. This curve tells the effect of the wealth fraction invested
in the riskless security on the expected return in the PCE. In particular, when this fraction goes to zero, i.e., when x

�
-1, the

equilibrium return diverges.

3.2. Properties of PCE

Using Definition 3.1, in the previous section we identified a locus of feasible equilibria and derived the implied relations
between traders’ collective investment choices and price dynamics. This section presents some interesting properties of
PCE’s. These are, so to speak, generic properties, which do not require any further assumption about the actual form of the
agents’ investment functions f. The aggregate effect of specific behavioral assumptions will be explored in the next section.
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Fig. 2. Left panel: the equilibrium market surface as a function of x and Cx. Right panel: the equilibrium market return r
�

as a function of the aggregate total

investment in risky markets x
�

for different values of the correlation-like coefficient between expected dividends and shares of risky portfolio Cx.
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We have specified the total return of asset i, defined as the sum of price return and dividend yield, in Eq. (2.2). Using the
algebraic relation in (3.4) and the parametrization in (3.6) it is immediate to compute its expected value at equilibrium

E½R
� i

t� ¼ rf þeCx
x
�

1�x
�
þei: ð3:7Þ

As long as aggregate short positions are avoided (0ox
�
o1), the total return of any risky asset is always greater than the

riskless interest rate rf. Moreover, the ‘‘equity premium’’ is proportional to the amount of wealth invested in the risky
market. Consider now the variance–covariance matrix

C ¼ E½ðRt�E½Rt�Þ � ðRt�E½Rt�Þ�, ð3:8Þ

where Rt is the vector with components Ri
t. Substituting the expression above, at equilibrium one has

C
�

¼ E
x
�

� ðet�eÞ

x
�0

þe�e

 !
�

x
�

� ðet�eÞ

x
�0

þe�e

 !" #
:

Recall from Assumption 3 that D denotes the variance–covariance matrix of the dividend yields and let a generic
element of this matrix be Dij. Using Assumption 3, we have that a generic element C

�

ij reduces to

C
�

ij ¼
1

ðx
�0
Þ
2

XI

k,l ¼ 1

x
�k

x
� l

Dkl

 !
þ

1

x
�0

XI

k ¼ 1

x
�k
ðDkiþDkjÞ

 !
þDij,

and in matrix notation

C
�

¼
1

ð1�x
�
Þ
2

x
� 0

Dx
�

1� 1þ
1

1�x
�
ðDx
�

� 1þ1� Dx
�

ÞþD, ð3:9Þ

where 1 is a vector of ones, so that ðDx
�

� 1Þi,j ¼
P

hDi,hx
�h

. In (3.9) the original variance–covariance matrix of yields, D, is
augmented by two new terms. These terms are the result of the traders’ activity when re-balancing their portfolios, and
reflect their preferences and expectations through the representative portfolio x

�

. The more the market is exposed toward
risky security, that is the nearer x

�
is to 1, the larger the generated extra terms.

Example with two risky assets (continued). Let us again illustrate the previous result by means of the special example of
investment behavior introduced in Section 2.5. Let us assume that the dividend yield are generated from the process with
the var–covar matrix given by

D¼
s2

1 rs1s2

rs1s2 s2
2

 !
:

For this general yield structure we can use (3.9) and write the excess covariance as follows

C
�

�D¼
1�x0

x0

� �2

ða 1�aÞD
a

1�a

� �
1� 1þ

1�x0

x0
D

a

1�a

� �
� 1þ1� D

a

1�a

� �� �
¼

1�x0

x0

� �2

ða2s2
1

þ2að1�aÞrs1s2þð1�aÞ2s2
2Þ

1 1

1 1

� �
þ

1�x0

x0

2as2
1þ2ð1�aÞrs1s2 as2

1þrs1s2þð1�aÞs2
2

as2
1þrs1s2þð1�aÞs2

2 2ð1�aÞs2
2þ2ars1s2

 !
:

In this example the excess variance–covariance becomes especially high when the investment to the riskfree security, x0,
is low.

In order to better understand the effect of the representative portfolio at equilibrium, consider the case in which
dividend yields are independent and equal, that is Di,j ¼ s2

i di,j. Notice that this situation can be always obtained through an
orthogonal transformation of the dividend distribution.17 The diagonal element in (3.9) becomes

Ci,i ¼ s2
i

9x
�

92

ð1�x
�
Þ
2
þ2

x
� i

1�x
�
þ1

0
@

1
A, ð3:10Þ

17 This transformation amounts to a change of basis that is to the definition of a new set of assets. Since the var–covar matrix is symmetric and

positive definite, the budget constraint imposed on the original portfolios is preserved when expressed in terms of the new assets.
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where the presence of excess variance is apparent. The fluctuation of returns at equilibrium is amplified and is larger
(possibly much larger) than the fluctuations associated to fundamentals. Consider now the off-diagonal term with iaj

Ci,j ¼ sisj
9x
�

92

ð1�x
�
Þ
2
þ

x
� i
þx
�

j

1�x
�

0
B@

1
CA: ð3:11Þ

This expression clearly shows another properties of PCEs: even if the original fundamental process where independent and
uncorrelated, the price returns at equilibrium display a strong auto-correlation, that becomes stronger the larger the share
of wealth invested in risky assets. The cross correlation, introduced by the fluctuation of prices at equilibrium, is strong
enough to generate a ‘‘market mode’’ in the variance–covariance matrix. To see it, consider the special case in which the
dividends have all the same variance. In this case the following applies:

Theorem 3.1. If D¼ s2I then the matrix C has eigenvalues s2,lþ ,l�, where

l7 ¼
s2

1�x
þ

Is29x
�

92

2ð1�xÞ2
17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4

1�x

I9x
�

92

s0
@

1
A: ð3:12Þ

Proof. See Appendix B.

The eigenvalue lþ is associated with the principal component of the matrix and is proportional to I, the number of risky
assets traded in the market. Also in the case of a generic matrix D, the structure 1� 1 in the first term of C in (3.9) is
responsible for a large eigenvalue, proportional to I.

According to (3.7) and (3.9), a greater exposition to risky markets implies increased capital gains but also increased
volatility. To see how these things combine, it is instructive to look at the average behavior of the aggregate portfolio.
Consider the excess return of market portfolio

rt ¼
X

i,t

xiðRi
t�rf Þ: ð3:13Þ

Its expected return at equilibrium becomes

E½r
�
� ¼ eCx

x
�

1�x
�

and its variance can be immediately obtained from (3.9)

sr ¼ x
� 0

Cx
� 0

¼
1

ð1�x
�
Þ
2

x
� 0

Dx
�

,

so that, combining the two, the Sharpe ratio of the aggregate investment finally reads

S¼
E½r
�
�

sr
¼

eCxx
�ffiffiffiffiffiffiffiffiffiffi

x
� 0

Dx
�

q ¼

P
ix

i
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i,jx

i
�

xj
�

Di,j

r : ð3:14Þ

The expression of S is equivalent to the Sharpe ratio computed using exclusively the component of portfolio return
associated with dividend yields. In other terms, changing the fraction of total wealth invested in the risky assets does not
modify the Sharpe ratio of aggregate portfolio at equilibrium. As long as the way in which the wealth is distributed across
the different assets is constant, the increase in market expected return and variance neutralize each other, leaving the
value of S unvaried.

3.3. Evolutionary stability

Assume that the market lays in a PCE characterized by a constant aggregate investment function x
�

and price returns
given by (3.4). As discussed above, the aggregate investment function can describe a single strategy, possibly adopted by a
population of traders, or the convex combination of different surviving strategies. In the latter case, however, these
strategies present, at equilibrium, analogous reactions to price fluctuations. Suppose that a new type of investor, with a
new strategy, enters the market with initially negligible wealth or that, equivalently, a small fraction of traders decide to
deviate from the original equilibrium strategy and invest according to a modified rule. We want to asses the stability of the
equilibrium strategy x

�

under this external ‘‘invasion’’. Let z represents the investment function of the new agents (or of the
deviating sub-population). Since we are interested in studying the local dynamics around the PCE we can assume the new
investment function to be constant too. If the new strategy enters the market with an infinitesimally small wealth share,
does it progressively disappear or does it instead gain a finite amount of wealth and, consequently, modify the dynamics of
the market? The answer is provided by the following:
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Theorem 3.2. The PCE associated with the investment function x
�

cannot be invaded by a strategy z provided that

x
�

� e

x
�

0
4

z � e

z0
: ð3:15Þ

Proof. See Appendix C.

If the condition (3.15) is violated, the new strategy gains, on average, a finite amount of wealth and, consequently, the long
term dynamics and equilibria of the system are perturbed away from the PCE. The previous theorem establishes a
dominance relation between strategies. Consider two strategies x1 and x2. If

x1 � e

x0
1

4
x2 � e

x0
2

,

then the first strategy is resilient to the second, while the second can be effectively invaded by the first. If one considers an
open economy in which new strategies can develop and start to trade in the market, the previous condition generates an
evolutionary pressure toward strategies x that maximize the ratio x � e=x0. Using the notation of Section 3.1, if x¼

P
ix

i, the
fitness measure of the constant strategy x is proportional to Cxx=ð1�xÞ. In Fig. 3 fitness isolines are reported in the ðCx,xÞ
plane. The introduction of new strategies, irrespectively of the fact that they are developed toward a given goal or tried at
random, naturally drives the system toward higher fitness levels. Notice, however, that the fitness of a constant strategy is
proportional to the expected price return r

�

E in the associated PCE equilibrium, that is the equilibrium in which the said
strategy is the only survivor. One one hand, this can be understood as an efficient behavior, because the market seems to
reward the strategy that produces higher returns, and, consequently, the higher nominal increase in the global wealth. On
the other hand, however, the evolutionary pressure pushes the population of agents toward riskier behavior and the
system toward the point x-1 where a larger share of wealth is invested in the risky portfolio. In this limit the system
becomes unstable: it moves toward PCE in which the prices’ fluctuations generated by the realized dividends are
progressively increased to infinity, as the multiplicative factor 1=ð1�x

�
Þ, in Eqs. (3.10) and (3.11) for the variance–

covariance matrix C
�

, grows unbounded.

4. The case of mean–variance investor

The analysis performed in the previous section is related to the notion of Procedurally Consistent Equilibria, and hence
to the statics of a very general class of models. There we studied equilibria where the strategies adopted by agents result in
the investment of constant fraction of individual wealth in the different securities. This notion of equilibrium is valid for a
wide class of investment rules. However, to study the dynamics of the system we need more specific assumptions about
the strategies of agents. In this section we will focus on the case of a single representative agent who revise her
expectations with a learning process and chooses her portfolio consequently with a simple mean–variance investment
strategy. We will first analyze the PCE of this economy, and then discuss its dynamic stability under a specific learning
framework.
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Fig. 3. Isolines of equivalent fitness in the ðCx ,xÞ plane. The evolutionary pressure pushes the market toward lighter colored areas.
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4.1. PCE in the mean–variance case

Consider an agent adopting a myopic mean–variance investment strategy: if rtþ1 ¼wtþ1=wt�rf is the portfolio excess
return between time t and tþ1, the shares of wealth xt invested at time t are chosen so as to maximize the utility

UðxtÞ ¼ E½rtþ1��gV ½rtþ1�,

where g is the risk aversion parameter and V ½rtþ1� is the expected variance of the portfolio. Here the dependence of the
utility on xt is due to the fact that rtþ1 depends on wtþ1, which in turn depends on xt through the law derived in equation
(2.2). Under this strategy, assuming perfect knowledge about the riskless interest rate rf, the agent computes at each time
step the total expected return and the variance covariance matrix

R̂
i
¼ E

t�1
½Ri

t�,

Ĉ t ¼ E
t�1
½ðRt�R̂ tÞ � ðRt�R̂t Þ�: ð4:1Þ

The difference from Eq. (3.8) lies in the fact that now expectations are updated at every time step. The notation Et�1 stands
for an expectation based on the information revealed until time t�1 included. For the present discussion it is not relevant
to specify which estimator the agent uses to compute the statistics above. In any case, by direct substitution of (2.2), we
obtain that the maximization of the mean–variance utility dictates her investment function to be of the form

xt ¼
1

g Ĉ
�1

t ðR̂ t�rf 1Þ: ð4:2Þ

If this strategy represents the aggregate behavior of the market, (4.2) implies that at each time step the following relation

gĈ txt ¼ R̂ t�rf 1 ð4:3Þ

between expectations and prevailing prices is satisfied. If the dividend stochastic process is stationary and the estimators
adopted to compute the expected values of returns and their variance are consistent, one can assume that after sufficient
statistics, they converge to an equilibrium condition so that the investment shares converge to constants, xt-x. We are in
a PCE. From (3.7) in Section 3 we know that in this case the right-hand side of equation (4.3) becomes

x
�

� e

x
�0

1þe

while the left-hand side, by direct substitution of (3.9), reduces to

g x
� 0

Dx
�

ðx
�0
Þ
2

1þgDx
�

x
�0
:

Equating the product of the two previous expressions with x
�

one gets

x
� 0

Dx
�

¼
x
�0

g
x
�

� e,

which substituted back in the equation gives

x
�

¼
x
�0

g
D�1e:

The investment shares of the mean variance investor at equilibrium are proportional to the variance-corrected expected

dividend D�1e. In order to determine the investment share in the riskless asset, one can exploit the fact that x
�0
¼ 1�1 � x

�

,
finally obtaining

x
�

¼
1

gþ10D�1e
D�1e,

x
�0
¼

g
gþ10D�1e

: ð4:4Þ

The previous expressions provide the PCE version of the two-found separation theorem. They prove that in the case of a

mean–variance investor, the optimal investment is split between a market portfolio, proportional to D�1e, and the risk-less
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security. The risk aversion parameter g only affects the total share of wealth invested in the risky portfolio, but not the
composition of the portfolio itself.18

In the case of mean–variance investor, the expressions of price return and variance covariance matrix, obtained by
direct substitution of (4.4) in (3.4), (3.5), and (3.9), read

r
�

E ¼ rf þ
1

g e0tD
�1e, ð4:5Þ

r
�

E ¼ rf þ
1

g e 0D�1e ð4:6Þ

and

C
�

¼
1

g2
e 0D�1 e1� 1þ

1

g ðx
�

� 1þ1� x
�

ÞþD: ð4:7Þ

4.2. Dynamic stability of mean–variance investor

In this section we analyze the market dynamics generated by the presence of a representative mean–variance investor.
In particular, we are interested to establish some results about the local stability of the equilibria derived in the previous
Section. Analogously to what done in Section 2.5 we assume that the agent forecasts future price movements using EWMA
estimators. The investor updates her expectations about the returns of the risky assets and the variance covariance matrix
with a learning process governed by an updating parameter m 2 ð0;1Þ. In this way the predicted returns and their variance–
covariance matrix is computed as a weighted average of past realizations. Specifically, we have

R̂ t ¼ m
Xþ1
t ¼ 0

ð1�mÞtðrt�1�tþet�1�tÞ ð4:8Þ

and19

Ĉ t ¼ m
Xþ1
t ¼ 0

ð1�mÞtðRt�1�t�R̂ t�1�tÞ � ðRt�1�t�R̂ t�1�tÞ: ð4:9Þ

By using these estimators we assume that the agent does not know that the process is stationary and implements a
strategy which can adapt to cross-sectional variation of the underlying process.20 Using their recursive expression and the
investment rule of the mean–variance investor in (4.2) the evolution of the market is described by the following system of
vector equations:

R̂ tt¼ ð1�mÞR̂ t�1þmðrt�1þet�1Þ,

Ĉ t ¼ ð1�mÞĈ t�1þmðrt�1þet�1�R̂ t�1Þ � ðrt�1þet�1�R̂ t�1Þ,

xt ¼
1

gĈ
�1

t�1ðR̂ t�1�rf 1Þ,

ri
t ¼

xi
t

xi
t�1

xt�1 � et�1þð1þrf Þð1�xt�1 � 1Þ

ð1�xt � 1Þ
�1:

8>>>>>>>>><
>>>>>>>>>:

: ð4:10Þ

First of all, we want to assess in which sense the PCE discussed in the previous section represents an equilibrium of the
stochastic dynamics. For this purpose we need a preliminary result about the exponential-weighted moving average
estimator EWMA.

Theorem 4.1. Let zt be an i.i.d. stochastic process with mean z and variance s2
z . Then the finite sample EWMA estimator

ẑT ¼ m
XT

t ¼ 0

ð1�mÞtzT�t

is a stationary random variable with unconditional mean zð1�ð1�mÞTþ1
Þ and unconditional variance s2

z ð1�ð1�mÞ
Tþ1
Þ.

Proof. The proof simply follows from the sum of the geometric series, given that all the zt come from the same i.i.d.
process. &

18 Since the original investigation by Harry Markowitz in the ’50 s, this kind of result has been repeatedly obtained in several frameworks. For a

recent extension to the case of dynamically complete markets and perfect foresight see Schmedders (2007). Notice that in our model this property is the

consequence of specific assumptions about the trader investment function and does not possess a general character.
19 Note that Ĉ t is computed as the covariance matrix of the prediction error Rt0 �R̂ t0 .
20 The expressions in (4.8) and (4.9) are good estimators for quasi-stationary, i.e. slowly moving, vector processes. They are widely adopted among

practitioners, see for instance the RiskMetrics (MSCI group) methodology.
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Now assume that the agent invests according to (4.4) at each time step so that the price return at each time step t

becomes

ri
t ¼

etD
�1e

g
þrf :

It follows that after T time steps the agent’s estimate of future return is

R̂T ¼ m
XT

t ¼ 0

ð1�mÞt etD
�1e

g þrf þet

 !
þð1�mÞT R̂0,

where R̂0 is agent’s initial estimate. So, irrespectively of the initial agent’s estimate of the total return, the convergence
property of the EWMA estimator guarantees that with the passing of time her estimates tend toward a value of R̂ which is,
on average, the value implied by the PCE market return (4.6). The same thing happens for the estimate of the covariance
matrix Ĉ . Notice however that because of Theorem 4.1, the agent’s estimates remain asymptotically noisy. Because the
realized dividend yields are in general not equal to their expected values, the system is persistently perturbed away from
the PCE. The question arises if these perturbations are sufficient to drive the system away from the PCE or if, conversely,
the PCE equilibrium is stable and the dynamics fluctuate around it.

These equations can be analyzed by direct numerical simulation, which shows that for long times and small m the
system hovers around the PCE fixed point discussed above. In Fig. 4 we report the price returns obtained by simulating
(4.10) in the case of a single asset. In this case the PCE investment share in the risk asset is

x
�

¼
e

gþe
,

which, substituted in (4.5), gives the equilibrium price return

r
�

E ¼ rf þ
x
�

1�x
�

et : ð4:11Þ

As shown in Fig. 4, for sufficiently small values of m the expression in (4.11) provides a good approximation to the observed
dynamics. Similar patterns are observed in the case of multiple assets.

An alternative approach is considered in Appendix D of the online version of this paper. There we study the limit of the
dynamics as m-0. In this limit, updates to dynamical variables from t to tþ1 are very small and of order m. This implies
that one can look at solutions of the dynamical equations in terms of quantities expressed in a continuum time variable
t¼ mt. With some additional assumptions, we show that the resulting dynamical equations have the PCE equilibrium as
the unique stationary state and that equilibrium is stable under the dynamics.

5. Conclusion

We discuss a dynamic multi-asset model in an endogenous Walrasian price formation setting. The model rests on two
main assumptions: that the demand of traders is consistent with CRRA, i.e., that their invested wealth shares do not
depend on their wealth level, and that the process of dividend yields is governed by a stationary distribution.

In this system we analyze a set of equilibria defined by the consistency of agents’ expectations and market realizations,
named Procedurally Consistent Equilibria. We show that in the PCE the actions of investors leads to two interesting results.
Firstly, the market develops price volatility which is much higher than the volatility of dividends and increases the degree
of covariance across assets. As such, the model explains the phenomenon of excess covariance, that is the tendency of price
fluctuations of different financial assets to be more correlated than their fundamentals, here identified with the exogenous
dividend process. The excess covariance occurs for a wide range of trading strategies adopted by the investors. The
example with mean–variance investors suggests that this result can be extended to allow for short positions, even if
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Fig. 4. Return dynamics (small circles) and its approximation by the PCE dynamics (continuous line) in the case of a single mean–variance investor.

When m¼ 0:05 (left panel) the PCE approximates the return dynamics reasonably well. When m¼ 0:15 (right panel) the dynamics of price returns is more

noisy and the PCE provides a poor approximation. Simulations performed with g¼ 2000, rf¼0.003, e ¼ 0:05 and se ¼ 0:005.
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further research is needed to generalize this claim for other behaviors. Secondly, we show that the evolutionary pressure
due to the introduction of new strategies pushes the system toward an instability that is due to the explosion of the return
variance–covariance matrix in the stochastic equilibrium. In order to study the convergence to PCE equilibria we restrict
the analysis to a specify trading behavior. We analyze the case of a single representative agent whose investment decisions
are based on the maximization of an expected mean–variance CRRA utility. The agent forecasts future assets movements
based on past market realizations adopting a specific recursive estimator.

Using simple and natural assumptions we show that there exists a strong trading-induced dependence in assets
returns. This endogenously generated dependence is a key ingredient of the so called systemic risk (see the discussion
about asset price contagion in Battiston et al., 2010 and references therein). We show that its roots are simple and rest in
the selection mechanism induced by speculative trading.
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Appendix A. Proof of Theorem 2.1

First, we substitute the intertemporal constraint (2.2) into the pricing equation (2.3) to obtain

pt ¼
XN

n ¼ 1

wt�1,nxt,nðxt�1,n � etþx0
t�1,nð1þrf ÞÞþ

XN

n ¼ 1

wt�1,nxt,n � zt�1,npt :

This leads to (2.7) as long as matrix Ht in (2.6) is invertible.
In order to show that Ht is invertible we will, first, prove that Ht is column strictly diagonally dominant, i.e.,

9Hi,i
t 94

X
jai

9Hj,i
t 9 for all i, ðA:1Þ

where Hi,j
t denotes the entry in the ith row and jth column of the matrix Ht. Under the assumption of the theorem, the

off-diagonal terms of H given by

Hi,j
t ¼�

XN

n ¼ 1

wt�1,nxi
t,n

xj
t�1,n

pj
t�1

where iaj

are strictly negative. In contrast, the diagonal elements are positive as the following inequality shows

Hi,i
t ¼ 1�

XN

n ¼ 1

wt�1,nxi
t,n

xi
t�1,n

pi
t�1

41�max
n

xi
t,n

P
nwt�1,nxi

t�1,n

pi
t�1

¼ 1�max
n

xi
t,n40:

Given these signs of the elements of Ht, the following inequality immediately implies (A.1):

Hi,i
t þ

X
jai

Hj,i
t ¼ 1�

XI

j ¼ 1

XN

n ¼ 1

wt�1,nxj
t,n

xi
t�1,n

pi
t�1

¼ 1�
XN

n ¼ 1

wt�1,nð1�x0
t,nÞ

xi
t�1,n

pi
t�1

41�max
n
ð1�x0

t,nÞ40:

Since Ht is strictly diagonally dominant, the Levy–Desplanques theorem (Taussky, 1949) implies that Ht is invertible.
From the definition of the market portfolio, Eq. (2.4), and the pricing equation given by (2.3), it follows that the

investment share in the market portfolio satisfies to xi
t ¼ pi

t=wt . Plugging here the evolution of the aggregate wealth (2.5),
the expressions for the investment shares in the market portfolio are obtained. Using this result, analogous expressions for
the investment shares in the riskless asset are obvious, since

x0
t ¼ 1�

XI

i ¼ 1

xi
t ¼ 1�

XI

i ¼ 1

pi
t

wt�1x0
t�1ð1þrf Þþ

P
jd

j
tþ
P

jp
j
t

¼
wt�1x0

t�1ð1þrf Þþ
P

id
i
t

wt�1x0
t�1ð1þrf Þþ

P
id

i
tþ
P

ip
i
t

:

In order to derive (2.9) we, firstly, notice that the previous result implies

x0
t wt�1x0

t�1ð1þrf Þþ
X

i

di
tþ
X

i

pi
t

 !
¼wt�1x0

t�1ð1þrf Þþ
X

i

di
t ,

which gives

XI

i ¼ 1

pi
t ¼

1�x0
t

x0
t

wt�1x0
t�1ð1þrf Þþ

X
i

di
t

 !
:
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Secondly,

XI

i ¼ 1

di
t ¼

XI

i ¼ 1

pi
t�1

di
t

pi
t�1

¼ pt�1 � et�1:

Summing it up, we obtain from (2.5) that

wt ¼wt�1x0
t�1ð1þrf Þþpt�1 � et�1þ

1�x0
t

x0
t

ðwt�1x0
t�1ð1þrf Þþpt�1 � et�1Þ,

which leads to (2.9) after simplifications.
Finally, dividing both sides of (2.2) by wt one has

jt,n ¼
wt�1

wt
�jt�1,n xt�1 � etþ

XI

i ¼ 1

xi
t�1,n

pi
t

pi
t�1

þx0
t�1,nð1þrf Þ

 !

¼
wt�1

wt
�jt�1,n xt�1 � etþx0

t�1,nð1þrf Þ
� �

þjt�1,n

XI

i ¼ 1

xi
t�1,n

xi
t

xi
t�1

,

where we used the following equality:

XI

i ¼ 1

xi
t�1,n

pi
t

pi
t�1

¼
XI

i ¼ 1

xi
t�1,n

xi
t

xi
t�1

wt

wt�1
:

Applying the total wealth dynamics (2.9), we derive (2.10).

Appendix B. Proof of Theorem 3.1

Under the hypothesis of the theorem, the expression in (3.9) reduces to

C
�

¼
s29x

�

92

ð1�x
�
Þ
2

1� 1þ
s2

1�x
�
ðx
�

� 1þ1� x
�

Þþs2I:

Assume that 1 and x
�

are not collinear. For any vector v consider the decomposition v¼ a1þbx
�

þv?, where v? is the
component orthogonal to Spanf1,x

�

g. First notice that all vectors with a¼ b¼ 0 are eigenvectors of C
�

with eigenvalue s2.
There are I�2 orthogonal vectors of this type. The other two eigenvectors belong to Spanf1,x

�

g. The representation of the
matrix C

�

on this sub-space is

s2

9x
�

92
I

ð1�x
�
Þ
2
þ

1

1�x
�

N

1�x
�

9x
�

92

ð1�x
�
Þ
2

1

1�x
�

0
BBBBBB@

1
CCCCCCA

and the computation of eigenvalues immediately follows.

Appendix C. Proof of Theorem 3.2

Let j denote the initial wealth share associated to the new strategy. The last equation in (2.12) can be used to
determine the growth rate of j which reads

jt

jt�1

¼ y0
t

z � etþz0ð1þrf Þ

yt � etþy0
t ð1þrf Þ

þ
X

i

zi yi

yi
,

where yt ¼ ð1�jtÞx
�

þjtz and, with usual notation, y0
t ¼ 1�

P
iy

i
t . Assuming a small initial wealth share for the new

strategy, j51, one can approximate the previous expression keeping only the leading term to obtain

jt

jt�1

¼ x
�0 z � etþz0ð1þrf Þ

x
�

� etþx
�0
ð1þrf Þ

þ1�z0þoðjÞ:

Imagine to iterate the previous equation several times. If for small values of j it holds that E½jt=jt�1�o1 for any t, then
the new strategy will progressively disappear from the market, and its impact will vanish. Conversely, if for small value of
j it holds that E½jt=jt�1�41 for any t, the strategy will grow to a finite size. The proposition follows directly from the
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previous equation by imposing

lim
j-0

E
jt

jt�1

� 	
o1:

Appendix D. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org.10.1016/j.jedc.
2012.03.015.
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