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Abstract

Structural vector-autoregressive models are potentially very useful tools for guiding both
macro- and microeconomic policy. In this study, we present a recently developed method
for estimating such models, which uses non-normality to recover the causal structure under-
lying the observations. We show how the method can be applied to both microeconomic
data (to study the processes of firm growth and firm performance) and macroeconomic
data (to analyse the effects of monetary policy).

I. Introduction

Structural vector autoregressions (SVAR models) are among the most prevalent tools in
empirical economics to analyse dynamic phenomena. Their basic model is the vector auto-
regression (VAR model), in which a system of variables is formalized as driven by their past
values and a vector of random disturbances. This reduced form representation is typically
used for the sake of estimation and forecasting. The VAR form, however, is not sufficient
to perform economic policy analysis: it does not provide enough information to study the
causal influence of various shocks on the key economic variables, nor to use the estimated
parameters to predict the effect of an intervention. Thus, SVAR models are meant to furnish
the VAR with structural information so that one can recover the causal relationships exist-
ing among the variables under investigation, and trace out how economically interpreted
random shocks affect the system.
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Where does this structural information come from? The common approach is that it
must be derived from economic theory or from institutional knowledge related to the data
generating mechanism (Stock and Watson, 2001). In other words, external restrictions
(not derived from the data) are used to constrain the SVAR model sufficiently to yield
identifiability of the remaining parameters from the data. Such an approach is extremely
useful when applicable, but depends on the availability of reliable prior economic theory.
The problem is that often competing restrictions, imposing alternative causal orderings,
are equally reconcilable with background knowledge. As Demiralp and Hoover (2003)
pointed out, this is quite ironic, because the main idea of the VAR approach was to let the
data speak and to eschew incredible a priori restrictions (Sims, 1980), but if the SVAR
method relies on preconceived stories about simultaneous causal relationships it is at risk
of losing empirical plausibility.

Alternatively, one can take a more data-driven approach. Under certain general sta-
tistical assumptions (not related to economic theory), it is possible to infer aspects of the
SVAR model on the basis of the statistical distribution of the estimated VAR residuals. This
approach builds on techniques developed in the graphical causal model literature (Pearl,
2000; Spirtes et al., 2000), which are mostly based on conditional independence tests on the
residuals (Swanson and Granger, 1997; Bessler and Lee, 2002; Bessler and Yang, 2003; De-
miralp and Hoover, 2003; Moneta, 2004, 2008; Demiralp et al., 2008). Unfortunately, the
information obtained from this approach is generally not sufficient to provide full identifica-
tion of the SVAR model, so typically some additional background knowledge is still needed.

Fortunately, if the data are non-Gaussian, which is not uncommon in many econo-
metric studies (Lanne and Saikkonen, 2009; Lanne and Liitkepohl, 2010), one can exploit
higher-order statistics of the VAR residuals to get stronger identification results (Shimizu
et al., 2006; Hyvérinen et al., 2008). Under further reasonable assumptions (independence
of shocks, and causal acyclicity), full identification of the SVAR model can be obtained
by applying Independent Component Analysis. In this contribution, we present this novel
family of methods to the econometrics community and discuss its relationship to other
methods for estimating SVAR models. Furthermore, we give two extended examples of
applications to micro- and macroeconomic datasets; these examples demonstrate both the
power and some limitations of the procedure. Our hope is that this will further the adoption
of these novel methods within the field of econometrics.

The rest of the paper is structured as follows. In section II we describe the SVAR model
and the problem of identification we propose to solve. In section III we present our identifi-
cation algorithm and discuss its assumptions. In section I'V we illustrate how the proposed
method performs in a microeconomic application aimed at studying the coevolution of firm
growth, firm performance, and R&D expenditure. In section V we present an application
to a macroeconomic dataset to analyze the effects of monetary policy. Conclusions are
provided in section VI.

II. VAR and SVAR models
The basic model

We consider data in the form of a set of K scalar variables y, ..., yx measured at regular
time intervals, and denote by the vector y,= (v, ..., V)" the values of these variables
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Causal inference by independent component analysis 3

at time ¢. The data are modelled by expressing the value of each variable y;, at each time
instant ¢, as a linear combination of the earlier values (up to lag p) of all variables as well
as the contemporaneous values of the other variables. In vector form we thus have

Y, =By +Iy,_ +---+Ly,_,+& (1)

where B and the I'; (j=1, ... ,p) are K x K matrices denoting the contemporaneous and
lagged coefficients (respectively), B has a zero diagonal (by definition), and ¢, is a K x 1
vector of error terms. This model can equivalently be expressed in the standard SVAR
form

Loy, =Ly, +--+ rpytfp +¢& 2)

with the notation I'y =1 — B. In the standard SVAR model it is assumed that the covari-
ance matrix X, = E{¢e! } is diagonal (Levtchenkova et al., 1998). We make the stronger
assumption that the structural error terms ¢y, ... , ¢ are mutually statistically independent
(a sufficient but not a necessary condition for uncorrelatedness). We discuss this assump-
tion in more detail in section I1I. The error terms also have the property of being zero-mean
white noise processes (i.e. no correlations across time).

A simple illustration of such a model is given in Figure 1. In this two-variable (K =2)
and one-lag (p = 1) example, we have

0 05 01 0 1o
Bz(o o) F1=< 0.2 o.3> E8=<0 1) )

Note that the error terms are not explicitly drawn in the figure.

The identification problem

Since variables yy,, ..., vk are endogenous in equations (1) and (2), these models cannot
be directly estimated without biases. However, from a SVAR model one can derive the
reduced form VAR model

Yt:r(;lrlyz—l + - +ra]rpyt—p+r618t

_ 4
_Alyt—l T+ +Apyt—p +u

where u, is a vector of zero-mean white noise processes with covariance matrix X, =
E{uu’}, which in general will not be diagonal. For our example in Figure 1, the
reduced form VAR parameters would be

Yi(t—2) =2, yl(t—l)ﬂ Yi(e) =, Y1(t+1)

N

Y2(t—2) ? Ya(t—1) 7 Ya(t) ? Ya(t+1)

Figure 1. Example of a causal structure underlying a structural vector autoregression model
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While the VAR parameters of equation (4) can easily be directly estimated from the
observed data y,(t=1,...,T) (see e.g. Canova, 1995), this is not sufficient to recover
the parameters of equation (2), whose number is larger than the number of parameters
of equation (4). This is a problem since the reduced-form VAR model is only adequate

for time-series forecasting, and not sufficient for policy analysis. To see this, consider the
Wold Moving Average (MA) representation of the VAR model

0 0 0
Y. = Z (l)ju,,j = Z (I)jFalrou,,j = Z ‘Pjstfj (6)
=0 =0 =0

where the ®; (j=0, 1,2, ...) are the MA coefficient matrices and ¥; (j =0, 1,2, ...) repre-
sent the impulse responses of the elements of'y, to the shocks ¢,_; (j=0,1,2, ...). We have

@y =1I %

;= zi:Aj(Difj ®)
j=1

Yo =T )

v, =Zi:Aj~Pi,j (10)

J=1

where A; =0 for j > p. The impulse responses ¥; can therefore be obtained from the
reduced-form VAR parameters A; only if we know the SVAR coefficients matrix I'y =1—B.
As the impulse responses are crucial for policy analysis, it is clear that we need to recover
the SVAR representation for this purpose. The problem is that any invertible unit-diagonal
matrix I'y, as we see from equation (6), is compatible with the coefficient matrices that
we obtain by estimating the VAR reduced form (4). It is crucial then to find the correct I'y
which produces the right transformation I'qu, = ¢, of the VAR error terms u,.

A common approach is to require the contemporaneous connections to be acyclic,
which implies that I is lower triangular when the variables are arranged in an appropriate
order. For any fixed variable order, this condition is sufficient to uniquely identify I'y (thus
obtainable from a Cholesky factorization of X,). Hence, a standard approach for SVAR
identification is to use economic theory to select an appropriate contemporaneous order-
ing, and then let the data identify the remaining parameters. Unfortunately, there does not
always exist sufficient theory to unambiguously order the observed variables.

To illustrate, for the example in Figure 1, if we could not use economic theory to dictate
whether there should be a contemporaneous connection from y; to y,, or vice versa, we

!The Wold representation is possible under the condition of stability, that is if det(Ix — Ajz —- - - — A,zP) %0 for
all z € R such that |z| <1 (see Liitkepohl, 2006).
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Causal inference by independent component analysis 5

would not (using covariance information alone) be able to distinguish between the model
of Figure 1 and that given by

0 o0 0 0.15 1.25 0
B=<0.4 0> rl:(o.z 0.24) E'f:<0 0.8> b
(In section 111, using the same example, we will show how non-normality of the error terms
can be exploited to fully identify the SVAR model.)

Graphical-model applications to SVAR identification seek to recover the matrix B,
and consequently, Iy, starting from tests on conditional independence relations among the
elements of u,. Conditional independence relations among uy,, .. . , ux, imply, under general
assumptions, the presence of some causal relations and the absence of some others. Search
algorithms, such as those proposed by Pearl (2000) and Spirtes et al. (2000), exploit this
information to find the class of admissible structures among uy,, ..., ug, (see also Bryant
et al. 2009). In most of the cases, there are several structures belonging to this class, so
the outcome of the search procedure is not a unique B. Bessler and Lee (2002), Demiralp
and Hoover (2003) and Moneta (2008) use partial correlation as a measure of conditional
dependence, based on the assumption that error terms are normally distributed.

In this study, we similarly apply a graph-theoretic search algorithm aimed at recovering
the matrix B, but here we do not use conditional independence tests or partial correlations
(and hence the assumptions required for identifiability are different). The (unique) causal
structure among the elements of u, is captured by identifying their independent components
through an analysis which exploits any non-Gaussian structure in the error terms.

The assumption of non-normality

While we present the search algorithm in detail in the next section, we should first ask
whether the assumption of non-normal error terms introduces some specificities in the way
a VAR model is formalized and estimated. Several authors suggest to test for non-normal-
ity after the estimation of the reduced form VAR model, as a model-checking procedure.
For example, Liitkepohl (2006) maintains that ‘[a]lthough normality is not a necessary
condition for the validity of many of the statistical procedures related to VAR models,
deviations from the normality assumption may indicate that model improvements are
possible’ (p. 491). However, economic shocks may well deviate from normality, even
after the inclusion of new variables and the control of the lag structure. While it is true
that one should be prepared to change the model if some basic statistical assumptions are
not satisfied, we suggest that in the case of non-Gaussianity one can alternatively exploit
this characteristic of the data for the sake of identification. Lanne and Saikkonen (2009)
and Lanne and Liitkepohl (2010) have also recently proved that non-Gaussianity can be
useful for the identification of the structural shocks in a SVAR model. In contrast with these
studies, however, we do not make specific distributional assumptions but rather allow any
form of non-Gaussianity (thus, we use an essentially semi-parametric approach).

In terms of VAR estimation, non-normality of the error terms yields a loss in asymp-
totic efficiency in estimation. In particular, least squares estimation is not identical to
maximum likelihood estimation, unlike the Gaussian setting. Dasgupta and Mishra (2004)
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have shown that the least absolute deviation (LAD) estimation method may perform better
than least squares when u, is non-normally distributed.

Under the assumption of non-Gaussianity, the fact that ¢, are white noise does not imply
that they are serially independent. This is a subtle, but important aspect of a non-Gaussian
VAR, because even if corr(e;, & +1)) =0(i=1, ..., k), itis in principle possible that &, 1
is statistically dependent on ¢;. In this latter case ¢, 1, would not be an actual innovation
term, since it can be predicted by y,. This point, as noted by Lanne and Saikkonen (2009),
is closely related to the issue of non-fundamental representations of structural models
formulated in moving average terms. Non-fundamentalness arises if the MA polynomial
has roots lying inside the unit circle (for a survey on this topic see Alessi et al., 2011). In
such cases, VAR modelling is not appropriate. We do not provide solutions to the non-fun-
damentalness problem here, so it must be taken into account as a limitation of our work,
to be addressed in future research.

III. SVAR identification

We obtain full identification of the model given in equations (1) and (2) under the following
conditions: (i) the shocks &y, ... , &, are non-normally distributed; (ii) the shocks ey, . .. , &
are statistically independent; (iii) the contemporaneous causal structure among y;, .. . , Vi
is acyclic, that is there exists an ordering of the variables such that Iy is lower triangular;
the appropriate ordering of the variables, however, is not known to the researcher a priori.
We describe this result, and an appropriate estimation algorithm, in this section. The first
assumption is in general testable, by applying normality tests to the estimated residuals. The
result of such tests, however, may depend on the method used to estimate the model. For
example, it is possible that the normality of residuals is more often rejected when we apply
the LAD estimator instead of OLS, since a least squares estimator tends, by construction,
to make the residuals look normal even when the underlying shocks are not. To control
for this issue, in our macroeconomic applications, in which two of the residuals look close
to normal, we check whether the results are robust across different estimation methods.
Another related issue is that in small samples, the non-normality that our approach exploits
might arise from just a few outlying observations. We suggest to tackle this potential prob-
lem by investigating the robustness of the observed causal order across multiple bootstrap
samples or different subsamples, as shown in sections IV and V, respectively. The third
assumption is a restriction of the causal search to recursive structures, commonly made in
the literature. The implications of this assumption are spelled out at the end of this section.
We turn now to discuss the second assumption.

The assumption of independent shocks

For non-Gaussian random variables statistical independence is a much stronger require-
ment than (linear) uncorrelatedness: while uncorrelatedness of the shocks ¢, only requires
that the covariance matrix E{¢,& } is diagonal, full statistical independence requires that the
joint probability density equals the product of its marginals, thatis P(&y;, &y, - . . , €x) = P(€1;)
P(ey) - - - P(ex;). The assumption of statistically independent ¢, is justified in the case where
the structural error terms represent distinct exogenous economic shocks, corresponding to
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Causal inference by independent component analysis 7

independent sources, affecting the system at each time period. There is no direct method to
statistically test that the underlying shocks are independent, since we observe and estimate
only mixtures of the shocks. Whether this assumption is valid or not has to be decided
on the basis of background knowledge for each case. The choice of the variables plays a
critical role, because there might well be cases in which the assumption that the variables
are ultimately the result of a linear combination of shocks, that are both independent and
economic interpretable, is not valid. Notice that an implicit but important assumption of
the SVAR model that we also use here is that the number of structural shocks is equal to
the number of variables (for a possible way to relax this assumption see Bernanke et al.
2005).

Hlustrative example

Let us consider again the two-variable example introduced in section II (Figure 1). As
already discussed, even if we assume acyclicity of the contemporaneous structure, we can-
not, based on uncorrelatedness alone, distinguish between the true parameterization (3) and
the alternative parameterization (11) without reference to some external prior knowledge.
This identification problem is unavoidable when the shocks g; are normally distributed. To
illustrate, we simulated data from the model in Figure 1 and plot in Figure 2 the corre-
sponding estimated error terms. In panel (a) we show samples of the reduced form VAR
error terms u,, while panels (b) and (c) plot the corresponding samples of g, for parameter-
izations (3) and (11) respectively. Note that for both parameterizations we obtain linearly
uncorrelated g, which in the Gaussian case is equivalent to full statistical independence.

However, if the shocks g exhibit non-Gaussian distributions, the models can be
distinguished. This is illustrated in Figure 3. In this illustrative case, we take the
uniform distribution as an example of a non-Gaussian distribution, although we could
equally well have taken any other non-Gaussian distribution. Again, in panel (a), we
display samples of the u,, with (b) and (¢) showing the corresponding &, for models (3) and
(11). In particular, note that while the estimated shocks in (b) are statistically independent,
this is not the case in (c); for instance, knowing that ¢;, =2 (marked by a vertical line)
allows us to constrain the value of &, (illustrated by the horizontal dashed lines). Thus,
while the g, in (c) are linearly uncorrelated, they are not statistically independent.

(a) (b) 4(c)

4 2 0 2 4 4 2 0 2 4 4 2 0 2 4
Uit €1t €1t
Figure 2. Identification problem for Gaussian error terms. The reduced-form errors u; shown in panel (a) are

linearly correlated, but the estimated shocks &, are uncorrelated both in panels (b) and (c) corresponding to
parameterizations (3) and (11) respectively
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Figure 3. Identification of structural vector autoregressions when the error terms are non-Gaussian (in this
case uniformly distributed). The reduced-form error terms u; are shown in panel (a), the estimated shocks &,
based on the original model (3) in panel (b), and the estimated shocks corresponding to the alternative model
(11) in panel (c)

Hence a simple approach, in the two-variable case, would be to derive both parame-
terizations and infer the appropriate model based on some test for statistical dependence
(utilizing higher-order statistics) between ¢, and &,,. Such an approach could be extended
to an arbitrary number K of variables by deriving parameterizations (using the Cholesky
decomposition as mentioned in section II) for all K! possible contemporaneous variable
orderings and, in each case, testing for dependence among the components of ¢,. In addition
to being computationally expensive due to the factorial number of variable orderings, such
an approach may not be statistically reliable due to the large number of tests involved. In the
remainder of this section we present a procedure which can be seen as a computationally
efficient, and statistically reliable, alternative to exhaustive search.

Independent component analysis

The SVAR identification procedure we describe in the next subsection relies on a statisti-
cal technique termed ‘independent component analysis’ (ICA) (Comon, 1994; Hyvérinen
etal.,2001; Bonhomme and Robin, 2009) both in terms of guarantees of identifiability and
also in terms of the actual algorithm employed. The technique can perhaps best be under-
stood in relation to the well-known method of principal component analysis (PCA): while
PCA gives a transformation of the original space such that the computed latent compo-
nents are (linearly) uncorrelated, ICA goes further and attempts to minimize all statistical
dependencies between the resulting components.

Specifically, in the SVAR context described in section II, the goal is to find a repre-
sentation u, =1I"; '¢, of the VAR error terms u,, such that the g, are mutually statistically
independent. While a matrix I';' which yields uncorrelated ¢, can always be found, for
an arbitrary random vector u, there may exist no linear representation with statistically
independent &;. Nevertheless, one can show that if there exists a representation with non-
Gaussian? statistically independent components &, then the representation is essentially
unique (up to permutation, sign and scaling) (Comon, 1994), and there exist a number of
computationally efficient algorithms for consistent estimation (Hyvérinen et al. 2001).

We illustrate the basic distinction between uncorrelatedness and statistical indepen-
dence in Figure 4. Consider a density for g uniform in the square [—1,1] x [—1,1], as

2Actually, one of the elements of & can in fact be Gaussian, but there can be no more than one such element
(Hyvérinen et al., 2001).
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(b) () (d)
/.
e
(f) €)

Figure 4. Illustration of principal component analysis (PCA) and independent component analysis (ICA) and
the role of non-Gaussianity. (a) The joint density of two statistically independent standardized uniform random
variables is uniform inside a square. (b) The density (uniform inside the parallelogram) after a linear trans-
formation of the space. Note that here the variables are linearly dependent. (c) PCA, by first rotating and
then rescaling the space, yields uncorrelated but statistically dependent samples (uniform inside the rotated
square). The original components are not yet recovered. (d) ICA performs an additional rotation of the space
to minimize statistical dependencies, and is here able to orient the space to obtain statistical independence.
The original components are recovered, although with an arbitrary permutation and arbitrary signs. (¢) When
the original independent random variables are Gaussian (normal), the joint density is spherically symmetric
(for standardized variables). In this case, from the mixed data of panel (f), PCA already yields independent
components but the components are mixtures of the originals (g). Due to spherical symmetry, any rotation
of the space yields independent components, thus there is no further information for ICA to use to find the
original basis. Note that the Gaussian is the only density where independent standardized variables yield a
spherically symmetric density

(a)

(e)

shown in panel (a). This (non-Gaussian) joint density factorizes (trivially) so ¢, and ¢, are
mutually independent. An arbitrary invertible linear transformation I';"' yields a density
foru, =TI, '¢, which is uniform inside a parallelogram, as given in (b). Using PCA to rotate
and re-scale the space yields § which are uncorrelated but statistically dependent, shown
in panel (c). Finally, the original components (up to permutation, sign, and scaling) are
obtained by searching for an orthogonal transformation to obtain statistically independent
&, in (d). Panels (e)—(g) illustrate that the final step to identify the original components is
not possible for Gaussian random variables, because of the spherical symmetry of the joint
distribution.

The main power of ICA algorithms is in determining this final orthogonal transforma-
tion. There exist several approaches for estimating the independent components: among
others maximum likelihood estimation, maximizing the non-Gaussianity of the estimated
components, or minimizing the mutual information among them. The different methods
are intimately related. For instance, non-Gaussianity can be measured by the kurtosis or
negentropy, and maximizing such measures for the estimated components is related to
reducing their mutual dependencies since the densities of additive mixtures of indepen-
dent random variables are typically closer to Gaussian than the densities of the original
variables. The motivation for minimizing mutual information is immediate since mu-
tual information equals zero if and only if the variables are independent. A further dis-
tinction of the methods can be made in how the resulting optimization problems are
solved. Empirically, fixed-point algorithms have proven to be very efficient. One well-
known representative of fixed-point ICA algorithms is the ‘FastICA’ algorithm (Hyvérinen
et al. 2001), based on maximum likelihood estimation. Since usually the densities of the
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underlying independent components are not known, maximum likelihood estimation of
the ICA model is essentially a semi-parametric estimation problem. However, it is known
that to obtain consistent estimates of the ICA mixing matrix it is not necessary to have very
accurate estimates of the component densities. Rather, it is sufficient that the estimation
algorithm can handle both supergaussian and subgaussian components. While some early
ICA algorithms were not sufficiently flexible (Bell and Sejnowski, 1995), more recent
algorithms, such as FastICA, are adaptive in this sense. For the interested reader, a number
of excellent tutorials on ICA are available (see e.g. Cardoso, (1998); Hyvirinen and Oja,
(2000). For a more thorough exposition, the reader is referred to the textbook by Hyvérinen
et al. (2001).

Identification of acyclic linear causal structure

Given that the SVAR identification problem posed in section II consists of finding the
appropriate I'y matrix that relates the independent shocks to the VAR error terms through
u=I, '¢,, it would seem that ICA as described in the previous section provides an imme-
diate solution. However, as already noted, the original components are only found up to
permutation, sign and scaling. In the original SVAR model each shock ¢ is tied to a given
variable y;,, but this connection is lost in the ICA estimation process.

Thus, we use the common assumption of acyclic contemporaneous causal structure
among the variables y,. As discussed in section II, this implies that for some ordering
of the variables the matrix I'; ! (and hence also I'y) is lower triangular, and there is no
contemporaneous feedback. The contemporaneous structure is then equivalently repre-
sented by the matrix B=1—I', where the diagonal elements of B are zero. The restriction
to acyclic systems guarantees that we can avoid the permutation, sign and scaling indeter-
minacies of ICA, for two reasons. First, the lower-triangularity of B (for an appropriate
ordering of the variables®) ensures that there is only one permutation of the columns of
I',' which makes all of the diagonal entries of I',' non-zero (used in step 3 of Algorithm
1 below). Second, the zero diagonal in B fixes the scaling indeterminacy, since this forces
the diagonal entries of I'y ', and hence also I'y, to unity, determining the scaling and signs
uniquely (see step 4 of Algorithm 1 below). In essence, acyclicity allows us to tie the
components of g to the components of u, in a one-to-one relationship. The resulting
method, termed LINGAM (for linear, non-Gaussian, acyclic model) was introduced by
Shimizu et al. (2006). Adapting the procedure to the identification of the SVAR model,
the resulting VAR-LINGAM algorithm is provided in Algorithm 1.* Further details and
discussion can be found in Hyvérinen et al. (2008).

Having identified B and hence Iy, the correct interpretation of the SVAR model is
obtained by studying the I'; (and the ¥;) rather than the A;, forj=1, ...,p. In effect, the
reduced form VAR coefficient matrices A; mix together the causal effects over time (the
I';) with the contemporaneous effects (B). In our application examples we show how this
distinction improves the interpretation of the results.

3This means that there is a permutation matrix Z such that ZBZT is lower triangular, which is used in step 6 of
Algorithm 1 below.

“An implementation of the method written in R, which includes the code for replicating the empirical results, is
available on the web: http://www.cs.helsinki.fi/u/entner/ VARLINGAM/.
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Algorithm 1 VAR-LINGAM

1. Estimate the reduced form VAR model of equation (4), obtaining estimates A, of the matrices A, for T=1
, ..., p. Denote by U the K x T matrix of the corresponding estimated VAR error terms, that is each column
of Uis G, = (G, ... k), (t=1, ..., T). Check whether the u;, (for all rows i) indeed are non-Gaussian,
and proceed only if this is so.

2. Use FastICA or any other suitable ICA algorithm (Hyvérinen ef al., 2001) to obtain a decomposition U=
PE, where P is K x K and E is K x T, such that the rows of E are the estimated independent components
of U. Then validate non-Gaussianity and (at least approximate) statistical independence of the components
before proceeding.

3. Let [y =P~'. Find Iy, the row-permuted version of Iy which minimizes 3", 1/|Ty, | with respect to the
permutation. Note that this is a linear matching problem which can be easily solved even for high K
(Shimizu et al., 2006).

4. Divide each row of f‘o by its diagonal element, to obtain a matrix f‘o with all ones on the diagonal.

.LetB=I-T,.

6. Find the permutation matrix Z which makes ZBZ" as close as possible to strictly lower triangular. This can
be formalized as minimizing the sum of squares of the permuted upper-triangular elements, and minimized
using a heuristic procedure (Shimizu et al., 2006). Set the upper-triangular elements to zero, and permute
back to obtain B which now contains the acyclic contemporaneous structure. (Note that it is useful to check
that ZBZT indeed is close to strictly lower-triangular.)

7. B now contains K(K — 1)/2 non-zero elements, some of which may be very small (and statistically insig-
nificant). For improved interpretation and visualization, it may be desired to prune out (set to zero) small
elements at this stage, for instance using a bootstrap approach. See Shimizu et al. (2006) for details.

8. Finally, calculate estimates of I »T=1,...,p, for lagged effects using r =0- IAS)AT

W

IV. Microeconomic application: firm growth
Background and data

To demonstrate how the VAR-LiINGAM technique might be used in a microeconomic data
application, we here apply it to analyse the dynamics of different aspects of firm growth.
In particular, we are looking at relationships between the rates of growth of employment,
sales, research and development (R&D) expenditure, and operating income.

Previous attempts to investigate the processes of firm growth and R&D investment have
been hampered by difficulties in establishing the causal relations between the statistical
series. Growth rates series are characteristically erratic and idiosyncratic, which discour-
ages the application of those microeconometric techniques usually applied for addressing
causality such as instrumental variables and System GMM (Arellano and Bond, 1991;
Blundell and Bond, 1998). In addition, the use of Gaussian estimators is inappropriate
because growth rates and residuals typically display non-Gaussian, fat-tailed distributions.

We base our analysis on the Compustat database, which essentially covers US firms
listed on the stock exchange. We restrict ourselves to the manufacturing sector (SIC classes
2000-3999) for the years 1973-2004; the reason for starting from 1973 is that the disclo-
sure of R&D expenditure was made compulsory for US firms in 1972. Since most firms
do not report data for each year, we have an unbalanced panel dataset.

The variables of interest are Employees, Total Sales, R&D expenditure, and Oper-
ating Income (sometimes referred to as ‘profits’ in the rest of this article). We replace
operating income and R&D with 0 if the company has declared the relevant amount to be
‘insignificant’. In order to avoid generating missing values whilst taking logarithms and ra-
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tios, we now retain only those firms with strictly positive values for operating income, R&D

expenditure, and employees in each year. This leads to a loss of observations, especially for

our growth of operating income variable (where about 15% of observations are dropped).
Growth rates were calculated as log-differences of size for firm 7 in year ¢, that is:

Ay =log(yi) —log(yii-1) (12)

where y is any one of employment, sales, R&D expenditure, or operating income, and
Ay; is the corresponding growth rate of that variable for that firm and that year. Any
time-invariant firm-specific components have thus been removed in the process of taking
differences (i.e. growth rates) rather than focusing on size levels. While the dynamics of
firm size levels display a high degree of persistence (some authors relate the dynamics of
firm size to a unit root process, see e¢.g. Goddard et al., 2002), growth rates have a low
degree of persistence, with the within-firm variance being observed to be higher than the
between-firm variance (Geroski and Gugler, 2004). In our regressions, firms are pooled
together under the standard panel-data assumption that different firms undergo similar
structural patterns in their growth process.

All growth rate series are positively correlated with each other, although the correlation
is far from perfect. The highest correlation is between sales growth and employment growth
(0.63), while the lowest correlation is between R&D growth and operating income growth
(0.06). Thus, each of the four variables reflects a different facet of firm growth and firm
behavior. Although we do not expect the residuals from the reduced-form VAR (i.e. the u,) to
be independent (in fact, a closer inspection reveals they are highly significantly correlated),
we consider it appropriate to consider that the g, are statistically independent. More details
concerning the dataset, as well as summary statistics, can be found in Coad and Rao (2010).

Results

As outlined in section III, our procedure consists of first estimating a reduced-form VAR
model and subsequently analysing the statistical dependencies between the resulting resid-
uals, to finally obtain corrected estimates of lagged effects.

Table 1a shows the results of LAD estimation of a 2-lag reduced-form VAR. Results
of a 1-lag model are very similar and hence omitted for the remainder of this section.’
Although most of the coefficients are statistically significant (at a significance level of
0.01), the strongest coefficients relate growth of employment and sales at time # to growth
of all variables at time ¢+ 1. Additionally, operating income displays a strong negative
autocorrelation in its annual growth rates. These results are essentially identical to those
obtained by Coad and Rao (2010).

Next, we investigated the statistical structure of the residuals. Figure 5 presents
histograms with overlaid Gaussian distributions and quantile—quantile plots alongside the
Gaussian benchmark of the empirical distributions of the residuals. Both the histograms
and the g-q plots lead us to reject the hypothesis of Gaussian residuals. Furthermore,

SWe follow Coad and Rao (2010) and estimate 1- and 2-lag VARs. However, even in the 2-lag VAR, the VAR
residuals display autocorrelation that is small (of magnitude 0.011 or lower) but nonetheless statistically significant.
This AR structure in the residuals is completely removed when 4 lags are taken. We repeated the analysis with 4 lags,
but the results were qualitatively unchanged.
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TABLE 1

Coefficients of lagged effects from VAR estimates (using LAD) and VAR-LINGAM estimates
with two time lags including standard errors calculated from 100 bootstrap samples

(a) VAR model
A, A,

Empl.gr Sales.gr RnD.gr Oplnc.gr Empl.gr  Sales.gr RnD.gr Oplnc.gr
Empl.gr  0.0404  0.1017 0.0166 0.0122  —0.0029  0.0633 0.0181 0.0053

SE 0.0080 0.0086 0.0032 0.0021 0.0072 0.0072 0.0022 0.0023
Sales.gr  0.3200 0.0060 0.0140 0.0038 0.0259  0.0037 0.0169 —0.0035
SE 0.0110 0.0094 0.0036 0.0024 0.0078 0.0079 0.0042 0.0026
RnD.gr 0.2122 0.0935 —0.0175 0.0460 0.0047  0.0932 —0.0040 0.0229
SE 0.0128 0.0159 0.0080 0.0041 0.0090 0.0112 0.0068 0.0040
Oplnc.gr  0.1893 0.3773 —0.0195 —0.2272 —0.0405 0.0771 0.0156 —0.1164
SE 0.0196 0.0289 0.0076 0.0155 0.0182 0.0216 0.0074 0.0118
(b) VAR-LiINGAM model
fl 1,2‘2

Empl.gr  Sales.gr RnD.gr Oplnc.gr Empl.gr  Sales.gr RnD.gr Oplnc.gr
Emplgr —0.1774 0.0977 0.0071 0.0096 —0.0205 0.0608 0.0066 0.0076

SE 0.0107 0.0097 0.0031 0.0024 0.0068 0.0068 0.0027 0.0019
Sales.gr 0.3200 0.0060 0.0140 0.0038 0.0259 0.0037 0.0169 —0.0035
SE 0.0110 0.0094 0.0036 0.0024 0.0078 0.0079 0.0042 0.0026
RnD.gr 0.0588 0.0636 —0.0282 0.0410 0.0061  0.0746 —0.0164 0.0230
SE 0.0122 0.0144 0.0077 0.0039 0.0086 0.0112 0.0070 0.0039
Oplnc.gr —0.4260 0.4080 —0.0457 —0.2251 —-0.0937 0.1010 —0.0141  —0.1047
SE 0.0212 0.0291 0.0077 0.0141 0.0162 0.0211 0.0078 0.0102

Notes: The number of observations was 28,538. The coefficients in bold are significantly different from zero
using a ¢-test at significance level 0.01. (The table is read column to row so, for instance, the 1-lag VAR coefficient
from sales growth to employment growth is 0.1017.)

Shapiro—Wilk normality tests clearly reject the null hypothesis of Gaussian distributions
(P <10~ for all four residuals).

Contemporaneous causal effects are then estimated using steps 2—7 from Algorithm 1
given in section III. The instantaneous effects returned by VAR-LiNGAM form a fully con-
nected DAG (directed acyclic graph). Using a bootstrap approach (with 100 repetitions)
to test the stability of the results, the variables were in the majority of the cases ordered by
VAR-LiINGAM as sales growth first, then employment growth, R&D growth, and operat-
ing income growth last. The coefficients obtained for this variable ordering are shown in
Table 2. Testing the structural residuals (g, =(I — B)u,) for non-Gaussianity with a Shap-
iro-Wilk test yields P-values smaller than 10~ for all four variables. Histograms and g-q
plots of the structural residuals look similar to the VAR-residuals shown in Figure 5.

Finally, we can obtain the corrected lagged effects as given by step 8 of Algorithm 1.
These are shown for the 2-lag model in Table 1b. Figure 6 shows the final estimated
VAR-LiINGAM models graphically, displaying both contemporaneous effects B and lagged
effects (solid arrows denote positive effects, while dashed arrows indicate negative effects).
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Figure 5. Resulting residuals of a 2-lag VAR model. Top row: histograms of residuals with overlaid Gaussian
distribution with corresponding mean and variance; Bottom row: normal quantile—quantile plots of residuals

TABLE 2

Coefficient matrices B of instantaneous effects from VAR-LINGAM

with 2 time lags including standard errors calculated from

100 bootstrap samples

Empl.gr Sales.gr RnD.gr Oplnc.gr
Empl.gr 0 0.6806 0 0
SE 0 0.0109 0 0
Sales.gr 0 0 0 0
SE 0 0 0 0
RnD.gr 0.2676 0.4456 0 0
SE 0.0191 0.0216 0 0
Oplnc.gr —0.2983 2.0498 —0.1349 0
SE 0.0284 0.0364 0.0115 0

Notes: The number of observations was 28,538. The coefficients in bold
are significantly different from zero using a #-test at significance level 0.01.

Discussion

First, consider the contemporaneous (within period) effects. Growth in sales has a strong
positive effect for growth in all other variables (and profits in particular), while growth in
employment has a positive effect on R&D but a negative effect on profits. These results
make economic sense, as sales are often seen as the driving factor for growth in theoretical
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Figure 6. Plot of results from VAR-LINGAM-estimates with two time lags. Solid arrows indicate positive
effects, dashed arrows negative ones. Thick lines correspond to strong effects, thin ones to weak effects

work, and much of research and development costs are employment costs. Furthermore,
growth of R&D expenditure has a negative instantaneous effect on profits, as under US tax
law R&D expenditure is treated as an operating expense and is deducted from operating
income as a cost (since profit = revenue — cost). One finding of potential policy interest
is that growth of employment and sales are significant determinants of both instantaneous
and subsequent growth of R&D expenditure, but that growth of operating income has no
major effect on R&D growth (although a small positive effect can be detected at the first
lag).

The VAR-LINGAM estimates of lagged effects are generally similar to the reduced-
form VAR estimates, but there are nonetheless some large differences (see Table 1) that
mainly concern the contribution of employment growth to growth in the other variables.
First, the autocorrelation coefficient for employment growth changed from being small
and positive to rather large and negative. Second, the contribution of employment growth
(and also sales growth) to subsequent growth of R&D expenditure decreases considerably
in magnitude, although growth of employment and sales still have a much larger impact
on subsequent R&D growth than does growth of operating income. Third, the VAR esti-
mates suggest that employment growth is positively associated with (subsequent) growth
of profits, while the corresponding VAR-LINGAM coefficient is strongly negative. The
VAR result is rather simplistic, because it does not separate the direct negative effect of
employment on profits (because employment is a cost) from the indirect positive effect
(employment at time ¢ increases profits at  + 1 via increased sales at ¢ 4 1). We therefore
prefer the VAR-LiINGAM estimates because they go further than naive associations to shed
light on the underlying causal relationships.
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V. Macroeconomic application: the effects of monetary policy
Background and data

Asasecond empirical application we show how VAR-LiNGAM might be applied to analyse
the effects of changes in monetary policy on macroeconomic variables. Structural VARs
are often applied to describe the dynamic interaction between monetary policy indicators
and aggregate economic variables such as income (GDP) and the price level. Results are
then used both for policy evaluation and for judging between competing theoretical mod-
els. Unfortunately, modeling causal links between central bank decisions and the status of
the economy has encountered major problems: it is not clear which time series variable
best captures changes in monetary policy, and there is no agreement on the method to
identify the structural VAR. As explained in section 11, the choice of the ‘right rotation’ of
the model relies on the identification of the contemporaneous causal structure. We show
how the VAR-LINGAM method offers one solution to the latter problem. Once the model
is identified, this helps to answer questions about the appropriate indicator of monetary
policy changes and the measurement of its effects on the economy.

Our study is based on Bernanke and Mihov’s (1998) data set, which consists of six
monthly time series US data (1965:1-1996:12), three of which are policy variables: TR,:
total bank reserves (normalized by 36-month moving average of total reserves); NBR;:
non-borrowed reserves and extended credit (same normalization) and FFR;: the federal
funds rate. The other three variables are non-policy macroeconomic variables: GDP;: real
GDP (log); PGDP,: the GDP deflator (log) and PSCCOM ,: the Dow—Jones index of spot
commodity prices (log). An important underlying assumption in the structural VAR model
is that each variable is affected by an independent shock. Since non-borrowed reserves
are part of total reserves, it is likely that a shock affecting NBR, is correlated with a shock
affecting TR,. To render our independence assumption more plausible, we replace TR, with
BR;=(TR, — NBR)).

Phillips—Perron tests do not reject the hypothesis of a unit root for each of the six series
considered. We estimate the model as a system of cointegrated variables (vector error cor-
rection model), using Johansen and Juselius’ (1990) procedure. Although this procedure
1s based on maximum likelihood estimation and it assumes normal errors, it is robust for
non-normality, as demonstrated by Silvapulle and Podivinsky (2000). However, we check
for the robustness of our results across different estimation methods. We select the number
of lags (seven) using Akaike’s information criterion.

Results

The histograms of the six VAR residuals 1, are displayed in Figure 7, together with the
respective g-q plots. These suggest departures from normality for each of the six residuals,
although in a much less evident manner for the GDP and PGDP residuals. The P-values
of the Shapiro—Wilk normality test are 0.0104, 0.0215, 1.8e-05, 2.4e-15, 6.3¢-20, 1.9¢-07,
for the residuals referring to GDP, PGDP, NBR, BR, FFR and PSCCOM respectively.
The Shapiro—Francia test produces similar results, except that normality for the first two

%The data set was downloaded from Tlian Mihov’s webpage: http://www.insead.edu/facultyresearch/faculty/
personal/imihov/documents/mmp.zip.
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residuals is more clearly rejected, with the following P-values (same order): 0.0044,
0.0097, 1.3e-05, 6.8e-14, 9.5¢-18 and 1.9¢-07. The Jarque—Bera tests yield analogous
results. All these numbers support the hypothesis of non-normality for all residuals and
permit us to apply the VAR-LiNGAM procedure described in section III.

Table 3a displays the estimates of the VAR model in levels y,=Ay, ,+---+
Azy, ,+u,. For reasons of space, we report the estimates of A; and A, only. Table 3
b presents the estimates of I'; and I', from the structural equation (identified through the
VAR-LINGAM method): I'yy, =I'1y,_; +--- +1I'7y,_, +¢&. The estimates of the instanta-
neous effects B= (I —I'y) are displayed in Table 4. Figure 8 shows contemporaneous and
lagged (until 2 lags) effects. These results provide useful information both about the mech-
anism operating in the market for bank reserves and about the mutual influences between
policymakers’actions and the state of the economy. As regards the market for bank reserves,
auseful starting point for reviewing the results is to look at the mechanism operating among
the policy variables NBR, BR and FFR. Among these variables the contemporaneous causal
structure is FFR, < BR, — NBR,. BR measures the portion of reserves that banks choose
to borrow at the discount window. This variable is usually assumed to depend on FFR,
which is the rate at which a bank, in turn, can lend the borrowed reserves to another bank.”

Our results suggest that FFR takes more than one month to influence BR, since the (4,5)
entry of matrix B is zero (see Table 4), while the (4,5) entry of matrix I, is positive (see
Table 3). NBR measures all the bank reserves which do not come from the discount window
and is, as expected, correlated with BR, which positively influences NBR with a one-month
lag. FFR is probably the variable which is most representative of the target pursued by the
Fed, as the impulse response functions analysed below suggest and as argued by Bernanke
and Blinder (1992). Ifthis is true, our results indicate that the Fed observes and responds to
changes of demand for (nonborrowed and borrowed) reserves within the period, although

7BR depends (negatively) also on the discount rate, which is an infrequently changed administrative rate and, as
argued by Bernanke and Mihov (1998, p. 877), cannot be modeled as a further variable in the VAR model. In our
framework changes in the discount rate should be seen as entering in the innovation term &g, affecting BR;.
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TABLE 4

Coefficient matrices B of instantaneous effects from VAR-LiINGAM with seven time
lags including standard errors calculated from 100 bootstrap samples

GDP PGDP NBR BR FFR pPSCCoOM

VAR-LINGAM

GDP 0 0.0306 0 0 0 0

SE 0 0.1248 0 0 0 0
PGDP 0 0 0 0 0 0

SE 0 0 0 0 0 0
NBR —0.0669 0.6927 0 —0.8625 0 0

SE 0.0946 0.2221 0 0.0393 0 0

BR 0.0917 —0.1135 0 0 0 0

SE 0.1070 0.2377 0 0 0 0

FFR 10.3780 6.6784 3.8444 27.1121 0 0.0835
SE 4.9632 13.0945 2.1471 4.1606 0 1.1796
PSCCOM 0.1008 1.0627 —0.1408 0.1404 0 0

SE 0.2343 0.5504 0.1041 0.1356 0 0

Notes: The number of observations was 384. The coefficients in bold are significantly different
from zero using a ¢-test at significance level 0.01.

only the coefficient describing the contemporaneous influence of BR, on FFR, (and not of
NBR, on FFR,) is significant. Notice that FF'R responds positively to BR within the period,
but negatively in the subsequent periods, probably in order to compensate for the fact that
if FFR continued to rise, banks would have the incentive to borrow more reserves from
the discount window and to lend them again to other banks.

Concerning the relationships between policy variables (BR, NBR and FFR) and vari-
ables describing the state of the economy (GDP, PGDP and PSCCOM), our results suggest
that within the period the Fed observes and reacts to macroeconomic variables, but that
policy actions have significant effects on the economy only with lags. Regarding signifi-
cant lagged effects, we see that GDP is affected positively by NBR only with a two-month
lag (and also with 4, 6 and 7 month lags, which are not displayed in the table).

Figure 9 displays the impulse response functions of GDP, PGDP and FFR to one-
standard-deviation shocksto NBR, BR and FFR, with 99% confidence bands. The responses
to NBR shocks are shown in the first column of the figure, while the responses to BR and
FFR are displayed in the second and third column, respectively. Qualitatively, the dynamic
responses to BR and FFR are quite similar: in both cases output falls and the federal fund
rate rises, especially in the first months. The price level responds quite slowly, but in the
case of the BR shock the price level rises, while in the case of the F/FR shock the price level
eventually falls. After a NBR shock, output rises, but only between the second and fourth
month after the shock, after which it goes down again. The price level rises quite rapidly
and FFR responds very slowly. As discussed at more length at the end of this section, these
results confirm, to quite some extent, the interpretation of the NBR innovation term as an
expansionary policy shock and the interpretation of BR and FFR as contractionary policy
shocks. However, they suggest that the FFR shock is a better indicator of the monetary
policy shock, since its responses conform better to the ‘stylized facts’ established in the
literature.
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BR(t-1)

""""""

FFR(t-1) )

Figure 8. Plot of results from VAR-LiNGAM-estimates only showing two of the seven time lags. Solid arrows
indicate positive effects, dashed arrows negative ones. Thick lines correspond to strong effects, thin ones to
weak effects

Robustness analysis

We consider several modifications of our estimation method. To allow for possible regime
changes, we estimate our model for selected subperiods, that is 1965:1-1979:9; 1979:10—
1996:12; 1984:2—-1996:12 and 1988:9-1996:12. These are the subperiods already con-
sidered by Bernanke and Mihov (1995) on the basis of both historical evidence about
changes in some operating procedures of the Fed and tests for structural changes. In
particular, September 1979 is the date in which Paul Volcker became chairman of the
Fed and February 1984 reflects the end of the ‘Volcker experiment’, that is a monetary
policy characterized by a greater weighting attached to achieving price stability, which
was accompanied by very high federal funds rates. September 1988 marks the beginning
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Responses of GDP to NBR shock Responses of GDP to BR shock Responses of GDP to FFR shock

1

I
0.004

!
0.002

-0.002 0.000 0.002

<
=

4 S 4
=}
T

-0.004 -0.002 0.000

-0.003-0.002-0.0010.000 0.001 0.002 0.003
!

Responses of PGDP to NBR shock Responses of PGDP to BR shock Responses of PGDP to FFR shock

0.0015

1

!
!

!

0.0005

!

L

-0.0005

L

-0.001 0.000 0.001 0.002 0.003 0.004

-0.001 0.000 0.001 0.002 0.003
!

-0.0015

Responses of FFR to NBR shock Responses of FFR to BR shock Responses of FFR to FFR shock

02 03
! I
1.0
I

0.8
!

!

!
!
06 08 10 12

!

-0.1 00 0.1
0.4

!

0.2

-0.2
!

L

-02 00 02 04 06
!

-0.3
L

Figure 9. Responses of Output, Price Levels, and the Federal Funds Rate to NBR, BR and FFR shocks with
99% confidence bands

of the Greenspan era. Figure 10 displays the impulse response functions obtained for the
different subsamples. Responses differ quite remarkably across subsamples. In the sub-
sample 1965:1-1979:9, the responses of GDP and PGDP to the NBR shock are both
positive, as should be expected after an expansionary policy shock. This evidence is con-
sistent with the hypothesis that the NBR shock is a good measure of the (expansionary)
monetary policy shock in that period. In the sample 1979:10—1996:12, after shocks to BR
and FFR, income falls, while the interest rate rises, at least in the first months (the price
levels remain quite stable). This is consistent with the fact that both BR and FFR shocks are
indicators of contractionary monetary policy shocks in that period. Similar considerations
can be made for the sample 1984:2—-1996:12, in which the price level falls more clearly
after the BR and FFR shocks. In the last sample taken into consideration (1988:9-1996:12)
the evidence is also consistent with BR and FFR shocks as indicators of contractionary
monetary policy shocks: in both cases output falls, the price level remains quite stable, and
FFR rises, although only slightly after the BR shock.
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Figure 10. Responses of Output, Price Levels, and the Federal Funds Rate to NBR, BR and FFR shocks for
four different subsamples and the whole period

The contemporaneous causal order < PGDP,GDP,BR,NBR,PSCCOM , FFR > turns
out to be stable across subsamples, except for the period 1984:2-1996:12, in which
the within period causal order is < PGDP,NBR,GDP,BR,PSCCOM,FFR >. Concern-
ing lagged causal relationships, the structure is quite stable across subsamples, but there
are several changes in signs and magnitudes. For instance, PGDP,_; affects FFR; with a
negative coefficient (—2.86) in the full sample, and in all other subsamples except for the
period 1965:1-1979:9, in which GDP,_, affects FFR, through a coefficient equal to 18.58.
Notice that in the same period PGDP responds positively to exogenous shocks to FFR.

We also estimated the model using a series of different estimation methods, namely
OLS, LAD and FM-LAD (Fully Modified Least Absolute Deviation, proposed by Phil-
lips 1995). All these methods deliver the same contemporaneous causal order, and the
coefficients of the respective B matrices of the instantaneous effects have quite similar
magnitudes and the same sign (except for the influence of NBR, on FFR, which turns out
to be negative in the FM-LAD case, but is positive although statistically insignificant in
all the other cases).
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Discussion

Shocks to NBR, BR and FFR represent the sources of variations in central bank policy
instruments which are not due to systematic responses to variations in the state of the
economy. Shocks to policy variables can be interpreted as exogenous shocks to the pref-
erences of the monetary authority (preferences about the weight to be given to growth
and inflation, for example), as variations in monetary policy generated by the influences
that some of the stochastic (and independent of macroeconomic conditions) expecta-
tions of private agents may have on the Fed’s decisions, and, finally, as measurement
errors (see Christiano et al., 1999, pp. 71-72). There is a large debate as to which var-
iable, among NBR, BR and FFR, best reflects policy actions (cfr. Bernanke and Mihov,
1998 and references therein). While there is no consensus about the right measure of the
policy shock, there is a considerable agreement about the qualitative effects of a monetary
policy shock. As argued by Christiano et al. (1999, p. 69), ‘the nature of this agreement
is as follows: after a contractionary monetary policy shock, short term interest rates rise,
aggregate output, employment, profits and various monetary aggregates fall, the aggregate
price level responds very slowly, and various measures of wages fall, albeit by very modest
amounts.’ As regards the full sample 1965-1996, the FF'R shock is the shock which better
conforms to this pattern. However, in the first subsample analysed (1965-1979) the NBR
shock (with the opposite sign) is the shock which is the most consistent with the stylized
facts of Christiano et al. (1999). In the subsequent subsamples both the BR and FFR shocks
are conforming quite well. In sum, this suggests that the Fed may have changed its policy
instrument across years: in previous years NBR was the variable which corresponded more
closely to policy shocks, and in the subsequent years this role has been taken by BR and
FFR.

VI. Conclusion

We have described a new approach to the identification of a structural VAR, applicable
when the reduced-form VAR residuals are non-Gaussian. This approach is based on a
recently developed technique for causal inference (LINGAM) developed in the machine-
learning community. The technique exploits non-Gaussian structure in the residuals to
identify the independent components corresponding to unobserved structural innovation
terms. Assuming a recursive structure among the contemporaneous variables of the VAR,
the technique is able to uncover causal dependencies among the relevant variables. This
permits us to analyse how an innovation term is propagated in the system over time.

We have applied this method to two different databases. In the first application we have
analysed the relationship between firm performance and R&D investment. We find that
sales growth has a relatively strong influence on growth of all other variables: employment,
R&D expenditure and operating income. Employment growth also has a strong influence
on subsequent sales growth. Growth of operating income has little effect on growth of any
of the other variables, however.

In the second application we have examined the mutual effects between monetary policy
and macroeconomic performance and have addressed the issue of the appropriate indicator
of the monetary policy shock. We find that within the period of one month the central bank
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monitors the conditions of the economy, but the economy responds to central bank policy
with lags. In line with the consensus existing in the literature about the qualitative effect of
a monetary policy shock, we find that the shock to the federal funds rate is the shock that
most appropriately reflects innovations in monetary policy. However, taking into account
some sub-samples, we find evidence that in some periods the non-borrowed reserve shock
and the borrowed reserve shock are better indicators of the exogenous policy shock. This
suggests that the Fed has changed the target of its policy several times between 1965 and
1995.

The method proposed has the advantage of being data-driven: identification of the
model is reached without advocating theoretical intuitions about causal dependencies. Our
approach, however, is based on some assumptions, which may be seen as limitations. One
possible drawback is the underlying assumption of recursiveness (acyclicity). Although the
recursiveness assumption is quite common in the literature on structural VARSs, in principle
it is possible that there are causal directed cycles among variables within the measured
period. Lacerda et al. (2008) generalized the ICA-based approach to causal discovery
by relaxing the assumption that the underlying causal structure has to be acyclic. This
method is yet to be applied to the SVAR framework. Other assumptions which might be
alternatively relaxed in future research are causal sufficiency (allowing the possibility of
confounding latent variables) and the related assumption that the number of independent
components is equal to the number of observed variables.

Final manuscript Received: May 2012
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