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Abstract—In this work we present a method to produce a We are interested in solving the problem of motor pro-
model of human_motion based on an expansion in functions se- gramming through the creation of a mathematical model
ries. The model is thought to reproduce the learned movements ¢ nyman behavior. This model should be based on the
generalizing them to different conditions. We will show, with an . ., .
example, how the proposed method is capable to produce the observation of several repetmon_s of a ta;k. The obseamati
model from a reduced set of examples preserving the relevant Should be allowed to consist in different kinds of movements
features of the demonstrations while guaranteeing constraints that are classified as homogeneous by the user. We suppose
at boundaries. that this is possible because movements, that are part of the

behavior pattern characterizing the expression of a pdatic
. INTRODUCTION skill, show strong similarities as shown in several workstsu
A. Aim of the work as [5] and [22].

In this work we present a framework to model human N this work we present a model and a methodology to
trajectories. Some general ideas have been presented, in [gf'n motion patterns from a given (reduced) number of
in this paper we describe in details the steps to apply tHgP€ated examples and leamn the relationships among the
method. The key idea is to produce a model that satisfi¢@riation in the boundary conditions and motion patterns.
dynamic constraints of the performed task while maintajnin 1€ methods we addressed in the previous section are

the likelihood to the provided samples. We assume that an jR2Sed on an implicit description of the trajectory perfodne

ternal, at least simplified, model for motion does exist,abhi -€- 2 set of differential equations. In this method we use an

has been proven for specific selected motions [10]. We wifiXPliCit éxpression of the trajectory. This implies thebsitey
describe the algorithms applied to obtain the behavior tod@f the trajectory.
from observed data and show how the model obtained can be [I. METHOD EXPOSITION
used in real time to interact with a S|mulgted environment.a  problem description

Several system to model human motion have been de-
signed in literature. As an early example we can cite [7
were the purpose was to design multimodal environmen

designed for the transfer of human abilities. Since the hing task th " f th ‘ hand i
several, more advanced systems, have been developed (?éa reaching task the position ot the performer hand in

Avizzano [9], Henmi [11], Esen [12] among others. Learnind% ttSpaiﬁ (t:OUId be cor15|dtere(;j. We_zbassumﬁ that the TO(;[K')n
is often performed, to achieve better performances in grern that we are going fo describe can be segmented In

latent feature space by most common learning modelgeveral phases. This method is based on the production of a

such as Switching Linear Dynamic Models (SLDM) [13],model for each phase, built on the basis of sample trajesori

Gaussian Mixture Regression (GMR) [14], Dynamic MotionYi’ a vector function of time. The samplé should be

Primitives (DMP) [3], Local Weighted Process RegressiongbtamEd r_eco[)dlgs the user :nove;men;ts. The r(l;_(t)_del C%nS'StS
(LWPR) [19], Gaussian Processes [16] [17], Stable Estimatdy @ Mapping between a vector of contour cond ahan

Dynamical Systems (SEDS) [18] and Sequenced Line performed trajectory’. The contour conditions consist in
Dynamical Systems [8] the value of some relevant variables that can be different

from the ones inY. The model for a phase can hence be

We identify a task with the trajectories produced by a
uman while performing it. The trajectories take place in a
pace of variables considered relevant for the task iteef,

B. Design Specifications represented as the application:
The described method is designed to meet the following Y(t) =9(Q,t) 1)
requirements: B. method overview

« stability;

. The performed task can be described as a trajectory,
« robustness to outliers;

lization: traiect tion that function of time and some contour conditions (e.g. in a
* gir;]eratlzahlon. ebnsurg rjec o(;}{['gen.era ion that can r’nleetaching task these could be represented by the initial hand
with not-s .own oundary conditions, . .. positions and the target position). The phases may repeat
» adaptation: replan ongoing trajectories while malntalrIt'hrough the development of the task and hence different
ing continuity and minimal distortion from examples; segments can be instances of the same phase
* error tolerance; We base our model on a function expansion of trajectories.
The authors are with PERCRO laboratory, TECIP instituteyoBc F.unCtion expansic_)n series have proven to be effective Iﬂ pre
Superiore Sant’Anna, Pisa.. | i ppi @ssup. it vious human-motion approximation approaches. Traditiona



TABLE |

NOTATION D(T) 0< <1
= : - - 4

p() {—D(l—T) l<r<2 “)
Y: A motion trajectory (a function of time) )
®  The expansion function set so that P, = argminp, |Pi¢(r) —p(r)|. The first two
P;  The function expansion coefficients (a vector) components of?; are computed explicitly, while the second
Q; The contour conditions .
. time one can be computed performing an FFT. The symmetry of
T;  trajectory duration p(7) assures that just the coefficients associated to the terms
7 Normalized time {; /T:) _ in 2 are different from zero.
F Matrix representing the regression hyperplanes
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polynomial [23] or orthogonal polynomial [25] expansions
were applied in several minimum theories related to hume
arm motions. Several types of orthogonal function are en
ployed, for instance Biess [24] proposed an expansion bas
on Jacobi polynomials and Fourier series.

We proceed transforming each segment into a set of p o™\
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rameters (the coefficients of the function expansion) then w \

perform a linear regression between the contour conditiot o8y \ / i
treated separately. The coupling between different vesab 1 \\ / )
can consist in the fact that one variable’s value can reptese }

the contour condition for another variable. 15, o s >

C. Parameter Fit

In order to explain the method in details we introduc{'g' 1._ A trajectory of d‘uratlon 1 extendied to a peilod of 2isTallow
. -, . . he trajectory to have a different slope for=0 andT =1
some important quantities, listed in table II-C

We assume that the each phase is processed separatel)& minimum square error linear regression between the

; ' th ;
hﬁ;gg Eque It?r?fexils gdadtrtisesise tirr]liin ec))(? ;TE eifari ?évif]hevectorsQi and each component % is then performed. The
phase. . 9 90t p'e. vector @; is augmented with & so that a linear application
coefficients vector”; is not computed directly of¥; but on

; ) ~ can map an affine function fror® to Y. The minimized
a warped version of the trajectoly, = Y;(¢t/T;) = Yi(7). error talfes the form: i
In detail the vector® has the following form: '

1] SQE:fj(Pi—F;Qn(PZ—T— LED )
i=1
sjn?w) where I is the solution produced by the regression:
R e @ P PPy Pl [ @ e - a) g
i sin(.].\f-ﬂ'T) ] where the indexes froml to n address one of the:

trajectories provided as examples. Notice that in general

n >> N, i.e. the examples are more than the components of

the vectorg. the matrix built with theQ), is hence expected

%% have full rank (equal to the number of components in

Q). The pseudoinverse i 6 produces an hyperplane Two
D(t) =Y (r) = (Y(0) + (Y (1) = Y(0))) (3) sample hyperplanes which were obtained by the regression

performed in the example in sectionTll-A are shown in figure

The number of componenf§ can vary to match the require- [2.

ments of precision and compactness of the representation._| - .

is important to note that, althoughranges frono to 1 during D. The Training Algorithm

the development of the example, the period of the first sinus The algorithm performing the parameters adaptation can

(third component of® is 2. This is thought to allow the be summarized into the following steps:

trajectory represented b¥; to have a different slope at the « Choose the variables i and @), characterizing the

beginning and at the end as shown in figure 1. In particular, task that is going to be modeled;

for each demonstration, we compute the coefficieitof « Define segmentation criteria for the sampled data. It is

the extended trajectory important to consider that, in order to use the obtained

The first two components @b represent a linear translation.
The corresponding parameters can be set direct#y(t9 and
Y (1) — Y(0). The other parameters represent a descripti
of the function:



Ymov Sin component 1 representing trajectories with the same shape;

« for each sample chunk; compute the sample param-
eters P; vector. Our particular choice op allows us
to compute the first two components of P analytically
on the basis of the initial and the final position of the
trajectory and then to obtain the series expansion of the
residuals representing the rest of the parameters.

s o Perform a linear regression to obtdih a mapping from

Q to P.
-10 E. Generating the Trajectories
40 After the training phase the model is defined by the vectors
F. To generate the trajectories we compute the parameter
vector at the beginning of each phase:
displacement Y (cm) 20 40 displacement X (cm)
P=F { Q } %)
Xmov Sin component 2 1

then, during the phasg is computed as:
Y(t) = Po(t/T) (8)

The first two components of are set directly to match
the initial and the final value o¥". The trajectory is then
performed until a segmentation criterion is met and the @has
is considered ended. It is important to point out that, ireord
to generate the behavi@); andT; (or directly ) should be
available in real time. The parametgrshould be computed
on the basis of the task and the state of the environment.

The stability of the trajectory is guaranteed by the closed
form in which it is expressed.
displacement Y (cm) 20 40 displacement X (cm) The computation of the trajectory is very fast, consisting

basically in two matrix product to compute respectivély

Fig. 2. two motion interpolation planes. the task is performeda andY’. The system is hence suitable to be used in real time.
two-dimensional space, where the user moves the hand vbrtiaal  An example of generalized trajectories, together with the

horizontally. The 2 graphs represent a componenipfdetermining the
horizontal motion (top) and a component & determining the vertical

sample data is shown in figuré 3.

motion (bottom) as function of);, that, in this case, consists into the . .
horizontal and vertical displacement between the positianshe begin . Imposing Constraints

and at the end of the trajectory. Blue dots represents conmporté the
parameter vectoP; computed on the basis of a single example

It is possible to impose a constraint on the derivative
of the state variables at the end of the phase, the final
velocity veonstrained- We performed this by first computing
the parameters for the reaching task then correcting it, and

hence, in the general case, obtaining a different final joosit

model to generate a behavior, the segmentation Criteligy o, the parameters vectd? representing the trajectory
should be based on data available online. Segmentati

UQkthout the constraint we have a final velocity,... = %P

can be performed on the basis of the variables definm& time T the correction taAP to P can be expressed as:
the trajectory (e.g. a position is reached) or some '

functions of them (e.g. the speed) or some relative to daoT 17

the environment (e.g. catching a given object); AP=F {dF} [Veonstrained — Ufree) 9)
segment data obtaining several chunks, representing T

samples for the task’s phases; This formulation finds the closest point lying on the

scale each chunk in time so that it is warped in a intervakgressed hyperplane (equatidn 7) verifying the condtrain

of time of unitary duration. A number of samples The convenience of this choice can be shown through
to represent it is defined. This emphasizes the shap® example. In figuré]14 we show the difference in the
of the performed trajectory. We preferred an uniforntrajectory produced by the trajectory correction expldiie
scaling (formally expressed by the parameferin the equatiofi]9 and the one produced relaxing the constraint
the previous formulas) over other more complex timef lying on the hyperplane: although closer in the space of
warping systems because it is easily applied in real timgarameters to the reaching task the latter solution pradace

we rely on dataset segmentation to obtain chunks of dateanatural movement, in contrast to the former that preserve
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Fig. 3. Sample movement for a dynamic reaching task in virtudityea 20— —

i.e. catching a falling ball (top) and the generalizationaiied through the
proposed modeling?; consists into the displacement between the position
at the beginning and at the end of the trajectory. Trajeesodre plotted
with different colors to improve readability

y [em]

the characteristic shape of the gesture. Moreover this exan
ple shows that the regressed hyperplane is highly desgipti
about the nature of the movement. The example has bee
produced with data from the task described in the sectiol

[-Al

G. Trajectory Correction

As stated in the introduction we are interested into the
development of an adaptable system. With adaptation we
mean the ability to change and replan the motion strategies i
consequence of the results of the actions on the environment
or |n Consequence Of external Changes Com|ng from t@‘l Reppnstructed ‘trajectories (tOp) Wlththe constraif reaChing

. t Thi bility is tvoicall tured i . a given position and with a forced null vertical speed at tmel ef
environment. IS capability Is typically captured in nootl the trajectory with the constraint thd@ should belong tho the regressed
control system through the use of closed loop controlleng/perplane (middle) and without this constraint, on the dasiminimum
that monitor a tracking error in order to produce correlategauare error(bottom).
changes in the motion. For example suppose, at relative

normalized timer = 0, to have determined a motion vector

P; associated to given conditior@; on the begin and the |n the first case, we assume that, during the execution of a

end of the trajectory. We consider two cases in which thgotion, a displacement among desired and effective pasitio

trajectory should be corrected: is detected; in the latter, we assume that the final point has
« replan due to motion control errors; changed during the execution of the motion. In both cases
« adaptation due to target changes. we request that any replan does not change the past history




of the motion, while it intervenes on the remaining (future
trajectory to compensate for the variations. At timethe
variable is found the state to lfeel’”’"’", that can be different
from Y (), while the desired final state i, that can be
different fromY'(1). The correction in the parameter vecto
P, as following from the definition of? in the equatior]7,
is:

APT = [AY(11) AYf] [®(r1) D(1)]F (10)

where theA indicates a deviation of the variable from the
one associated to the original trajectory. Also in this cas
the correction forced to lie on the hyperplane defined by
the equatio]7.

H. The Importance of Segmentation

It is important to address the importance of the segmeffig- 5. The system used during the experiment.The user starisnt
tati in thi t I ti iqu f Il th of a monitor where a a virtual hand and a virtual ball are sholire user
ation In this system. ompg Ing an uniq °T a € controls the position of the virtual hand moving a Polhe@®usacker.
process we lose several desiderable characteristics:

« the possibility to define different scaling in time for
different part of the process; and the ball detaches with the speed of the hand at the end
« the possibility to manage the transition between phases the toss. This requirement to perform a trajectory stgrti
with a state machine, allowing complex interaction withwith an acceleration an ending in a deceleration fast enough
the environment and the possibility to change the ordao hit the threshold when the speed is the desired one for the

in which the phases are presented, toss. A catch is triggered when the virtual hand touches the
« The possibility to specify different constraints for dif- virtual ball and hence the catch can be considered a dynamic
ferent situations occouring during the task. reaching task. We segmented the task in four phdsssing

It is important to define in advance a segmentation criteriofgaching the bottom of the screecatch and return. The

that is possible to apply in real time. This can be definegihase transition has been based on the toss for the tossing
explicitly on the basis of the knowledge of the task and ophase, the position reached for the going-down and therretur
the contour conditions implied by the breakpoints chosemhases, and the successful ball catch for the catch phase.
Segmentation in a complex task involving a large number dfi this case, the test can not be reduced to a two points
variables can be obtained using machine learning techsiqueeaching problem [10] since in this case complex start/end
such as neural networks to model the transition betwegwint boundary values alter the dynamics of the gesture.
phases as presented in [20]. This would work, again, in caseln this example the condition@; determining the behavior

the user provides explicitly a segmentation of the samplare the initial and the final position of the hand. In the case
to be used to train the neural networks. An optimizedf the catchthe final position should be computed to assure
segmentation for this method is still object of research. that the hand reaches the ball.

We used random targets based on the distribution of user
movements for the reaching tasks (going-down and return),
A. Test Task the catch phase was driven setting as constraint to reach the

In order to test the system we set up a simplified versioball. TheT; times were generated on the basis of a uniform
of ball juggling in virtual reality inspired by [4], involvig distribution covering the range of times observed durirgy th
the catch and the toss of one ball with the right handraining. The toss phase was driven in the same way, but
The examples have been produced recording the verticaplying later a condition of vertical speed equal to zes (a
and horizontal component of the hand position of a usexplained inI[-F) this was performed by the user to invert
interacting with the virtual environment. We used a Polhemuthe motion.
electromagnetic tracker sampled at 200 Hz. The set up of the
system is shown in figurg 5 The user was asked to perforBy Data Regression

IIl. EXPERIMENTAL RESULTS

the following exercise: To regress the parameters of the model we proceed ac-
« toss a ball towards the left portion of the screen;  tually performing two regressions. First we regress a vecto

« reach a given point at the bottom of the screen with the from every trajectory associated to a phase, computing
hand; the coefficients (i.e. the first two) representing the linear
« catch the ball translation analytically to achieve the desired positidn a

« return to the starting point and start again the beginning and at the end of the trajectory, we compute

The task takes place totally in virtual reality. The intdfac the expansion of the residuals minimizing the square error.
is based only on hand tracking: the toss is triggered whefinally we regress the Hyperplanes using the obtaifed
vertical hand acceleration reaches a given negative tbleeshvectors as samples representing the relation between the



conditions ); and the movement”. Since the harmonic
decomposition of the residual can be made arbitrary precise
increasing the number of componeifswe concentrate then
in an estimation of the goodness of the linear regression.
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C. Performace

To train the system described in the previous section we
produced dataset for each phase composed from 40 to e‘ﬁ)]
different examples containing each from 150 to 200 differen
sample points. Assuming that the deviation from the plane
can be represented with a Gaussian noise, a linear regnessiE?]
analysis was carried out on the full dataset. LAliefor
Normality test on the regression residuals confirmed thed3]
hypothesis of ‘Gaussian Like'.

The trained system is capable of performing the exercis%
steadily: this requires to perform reaching tasks between
different points keeping the trajectory shape and to repro-
duce the trajectory dynamics producing the tosses. Besides
reproducing the task we are interest into doing in a stylgs]
that is similar to the oneperformed by the human. To asses
this an analysis of the 95% confidence interval on regressio
parameters was performed by partitioning samples in differ
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