
A Method for Digital Representation of Human Movements

Vittorio Lippi, Carlo Alberto Avizzano, Emanuele Ruffaldi

Abstract— In this work we present a method to produce a
model of human motion based on an expansion in functions se-
ries. The model is thought to reproduce the learned movements
generalizing them to different conditions. We will show, with an
example, how the proposed method is capable to produce the
model from a reduced set of examples preserving the relevant
features of the demonstrations while guaranteeing constraints
at boundaries.

I. INTRODUCTION

A. Aim of the work

In this work we present a framework to model human
trajectories. Some general ideas have been presented in [1],
in this paper we describe in details the steps to apply the
method. The key idea is to produce a model that satisfies
dynamic constraints of the performed task while maintaining
the likelihood to the provided samples. We assume that an in-
ternal, at least simplified, model for motion does exist, which
has been proven for specific selected motions [10]. We will
describe the algorithms applied to obtain the behavior model
from observed data and show how the model obtained can be
used in real time to interact with a simulated environment.

Several system to model human motion have been de-
signed in literature. As an early example we can cite [7]
were the purpose was to design multimodal environments
designed for the transfer of human abilities. Since then
several, more advanced systems, have been developed e.g.
Avizzano [9], Henmi [11], Esen [12] among others. Learning
is often performed, to achieve better performances in a
’latent’ feature space by most common learning models
such as Switching Linear Dynamic Models (SLDM) [13],
Gaussian Mixture Regression (GMR) [14], Dynamic Motion
Primitives (DMP) [3], Local Weighted Process Regressions
(LWPR) [19], Gaussian Processes [16] [17], Stable Estimator
Dynamical Systems (SEDS) [18] and Sequenced Linear
Dynamical Systems [8].

B. Design Specifications

The described method is designed to meet the following
requirements:

• stability;
• robustness to outliers;
• generalization: ensure trajectory generation that can met

with not-shown boundary conditions;
• adaptation: replan ongoing trajectories while maintain-

ing continuity and minimal distortion from examples;
• error tolerance;
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We are interested in solving the problem of motor pro-
gramming through the creation of a mathematical model
of human behavior. This model should be based on the
observation of several repetitions of a task. The observation
should be allowed to consist in different kinds of movements
that are classified as homogeneous by the user. We suppose
that this is possible because movements, that are part of the
behavior pattern characterizing the expression of a particular
skill, show strong similarities as shown in several works such
as [5] and [22].

In this work we present a model and a methodology to
learn motion patterns from a given (reduced) number of
repeated examples and learn the relationships among the
variation in the boundary conditions and motion patterns.

The methods we addressed in the previous section are
based on an implicit description of the trajectory performed,
i.e. a set of differential equations. In this method we use an
explicit expression of the trajectory. This implies the stability
of the trajectory.

II. METHOD EXPOSITION

A. Problem description

We identify a task with the trajectories produced by a
human while performing it. The trajectories take place in a
space of variables considered relevant for the task itself,e.g.
for a reaching task the position of the performer hand in
the space could be considered. We assume that the motion
pattern that we are going to describe can be segmented in
several phases. This method is based on the production of a
model for each phase, built on the basis of sample trajectories
Yi, a vector function of time. The samplesYi should be
obtained recording the user movements. The model consists
in a mapping between a vector of contour conditionsQ and
a performed trajectoryY . The contour conditions consist in
the value of some relevant variables that can be different
from the ones inY . The model for a phase can hence be
represented as the application:

Y (t) = Ψ(Q, t) (1)

B. method overview

The performed task can be described as a trajectory,
function of time and some contour conditions (e.g. in a
reaching task these could be represented by the initial hand
positions and the target position). The phases may repeat
through the development of the task and hence different
segments can be instances of the same phase.

We base our model on a function expansion of trajectories.
Function expansion series have proven to be effective in pre-
vious human-motion approximation approaches. Traditional



TABLE I

NOTATION

Yi A motion trajectory (a function of time)
Φ The expansion function set
Pi The function expansion coefficients (a vector)
Qi The contour conditions
t time
Ti trajectory duration
τ Normalized time (ti/Ti)
F Matrix representing the regression hyperplanes

polynomial [23] or orthogonal polynomial [25] expansions
were applied in several minimum theories related to human
arm motions. Several types of orthogonal function are em-
ployed, for instance Biess [24] proposed an expansion based
on Jacobi polynomials and Fourier series.

We proceed transforming each segment into a set of pa-
rameters (the coefficients of the function expansion) then we
perform a linear regression between the contour conditions
and the parameters. Each variable describing the trajectory is
treated separately. The coupling between different variables
can consist in the fact that one variable’s value can represent
the contour condition for another variable.

C. Parameter Fit

In order to explain the method in details we introduce
some important quantities, listed in table II-C

We assume that the each phase is processed separately,
hence the indexi addresses theith example of a given
phase. The timet is 0 at the beginning of each example. The
coefficients vectorPi is not computed directly onYi but on
a warped version of the trajectorỹYi = Yi(t/Ti) = Yi(τ).
In detail the vectorΦ has the following form:
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The first two components ofΦ represent a linear translation.
The corresponding parameters can be set directly toY (0) and
Y (1) − Y (0). The other parameters represent a description
of the function:

D(τ) = Ỹ (τ)− (Y (0) + τ(Y (1)− Y (0))) (3)

The number of componentsN can vary to match the require-
ments of precision and compactness of the representation. It
is important to note that, althoughτ ranges from0 to 1 during
the development of the example, the period of the first sinus
(third component ofΦ is 2. This is thought to allow the
trajectory represented byPi to have a different slope at the
beginning and at the end as shown in figure 1. In particular,
for each demonstration, we compute the coefficientsPi of
the extended trajectory

p(τ) =

{

D(τ) : 0 ≤ τ ≤ 1
−D(1− τ) : 1 < τ ≤ 2

(4)

so that Pi = argminPi
|Piφ(τ)− p(τ)|. The first two

components ofPi are computed explicitly, while the second
one can be computed performing an FFT. The symmetry of
p(τ) assures that just the coefficients associated to the terms
in 2 are different from zero.
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Fig. 1. A trajectory of duration 1 extended to a period of 2. This allow
the trajectory to have a different slope forτ = 0 andτ = 1

A minimum square error linear regression between the
vectorsQi and each component ofPi is then performed. The
vectorQi is augmented with a1 so that a linear application
can map an affine function fromQ to Y . The minimized
error takes the form:

SQE =

n
∑

i=1

(Pi − F ;Qi)(P
T
i −QT

i ;F
T ) (5)

whereF is the solution produced by the regression:

F = [P1P2 · · ·Pn]

[

Q1 Q2 · · · Qn

1 1 · · · 1

]†

(6)

where the indexes from1 to n address one of then
trajectories provided as examples. Notice that in general
n >> N , i.e. the examples are more than the components of
the vectorφ. the matrix built with theQi is hence expected
to have full rank (equal to the number of components in
Q). The pseudoinverse in 6 produces an hyperplane Two
sample hyperplanes which were obtained by the regression
performed in the example in section III-A are shown in figure
2.

D. The Training Algorithm

The algorithm performing the parameters adaptation can
be summarized into the following steps:

• Choose the variables inY and Q, characterizing the
task that is going to be modeled;

• Define segmentation criteria for the sampled data. It is
important to consider that, in order to use the obtained
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Fig. 2. two motion interpolation planes. the task is performedin a
two-dimensional space, where the user moves the hand vertically and
horizontally. The 2 graphs represent a component ofPi determining the
horizontal motion (top) and a component ofPi determining the vertical
motion (bottom) as function ofQi, that, in this case, consists into the
horizontal and vertical displacement between the positionsat the begin
and at the end of the trajectory. Blue dots represents components of the
parameter vectorPi computed on the basis of a single example

model to generate a behavior, the segmentation criteria
should be based on data available online. Segmentation
can be performed on the basis of the variables defining
the trajectory (e.g. a position is reached) or some
functions of them (e.g. the speed) or some relative to
the environment (e.g. catching a given object);

• segment data obtaining several chunks, representing
samples for the task’s phases;

• scale each chunk in time so that it is warped in a interval
of time of unitary duration. A number of samples
to represent it is defined. This emphasizes the shape
of the performed trajectory. We preferred an uniform
scaling (formally expressed by the parameterTi in
the previous formulas) over other more complex time
warping systems because it is easily applied in real time:
we rely on dataset segmentation to obtain chunks of data

representing trajectories with the same shape;
• for each sample chunkYi compute the sample param-

etersPi vector. Our particular choice ofΦ allows us
to compute the first two components of P analytically
on the basis of the initial and the final position of the
trajectory and then to obtain the series expansion of the
residuals representing the rest of the parameters.

• Perform a linear regression to obtainF , a mapping from
Q to P .

E. Generating the Trajectories

After the training phase the model is defined by the vectors
F . To generate the trajectories we compute the parameter
vector at the beginning of each phase:

P = F

[

Q
1

]

(7)

then, during the phaseY is computed as:

Y (t) = PΦ(t/T ) (8)

The first two components ofP are set directly to match
the initial and the final value ofY . The trajectory is then
performed until a segmentation criterion is met and the phase
is considered ended. It is important to point out that, in order
to generate the behaviorQi andTi (or directly τ ) should be
available in real time. The parameterT should be computed
on the basis of the task and the state of the environment.

The stability of the trajectory is guaranteed by the closed
form in which it is expressed.

The computation of the trajectory is very fast, consisting
basically in two matrix product to compute respectivelyP
andY . The system is hence suitable to be used in real time.
An example of generalized trajectories, together with the
sample data is shown in figure 3.

F. Imposing Constraints

It is possible to impose a constraint on the derivative
of the state variables at the end of the phase, the final
velocity vconstrained. We performed this by first computing
the parameters for the reaching task then correcting it, and
hence, in the general case, obtaining a different final position.
Given the parameters vectorP representing the trajectory
without the constraint we have a final velocityvfree = dΦT

dτ
P

at timeT the correction to∆P to P can be expressed as:

∆P = F

[

dΦT

dτ
F

]†

[vconstrained − vfree] (9)

This formulation finds the closest point lying on the
regressed hyperplane (equation 7) verifying the constraint.

The convenience of this choice can be shown through
an example. In figure 4 we show the difference in the
trajectory produced by the trajectory correction explained in
the equation 9 and the one produced relaxing the constraint
of lying on the hyperplane: although closer in the space of
parameters to the reaching task the latter solution produces an
unnatural movement, in contrast to the former that preserves
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Fig. 3. Sample movement for a dynamic reaching task in virtual reality
i.e. catching a falling ball (top) and the generalization obtained through the
proposed modeling.Qi consists into the displacement between the position
at the beginning and at the end of the trajectory. Trajectories are plotted
with different colors to improve readability

the characteristic shape of the gesture. Moreover this exam-
ple shows that the regressed hyperplane is highly descriptive
about the nature of the movement. The example has been
produced with data from the task described in the section
III-A

G. Trajectory Correction

As stated in the introduction we are interested into the
development of an adaptable system. With adaptation we
mean the ability to change and replan the motion strategies in
consequence of the results of the actions on the environment
or in consequence of external changes coming from the
environment. This capability is typically captured in motion
control system through the use of closed loop controllers
that monitor a tracking error in order to produce correlated
changes in the motion. For example suppose, at relative
normalized timeτ = 0, to have determined a motion vector
Pi associated to given conditionsQi on the begin and the
end of the trajectory. We consider two cases in which the
trajectory should be corrected:

• replan due to motion control errors;
• adaptation due to target changes.
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Fig. 4. Reconstructed trajectories (top) with the constraint of reaching
a given position and with a forced null vertical speed at the end of
the trajectory with the constraint thatP should belong tho the regressed
hyperplane (middle) and without this constraint, on the basis of minimum
square error(bottom).

In the first case, we assume that, during the execution of a
motion, a displacement among desired and effective position
is detected; in the latter, we assume that the final point has
changed during the execution of the motion. In both cases
we request that any replan does not change the past history



of the motion, while it intervenes on the remaining (future)
trajectory to compensate for the variations. At timeτ1 the
variable is found the state to bẽY error

τ1
, that can be different

from Ỹ (τ1), while the desired final state is̃Yf , that can be
different from Ỹ (1). The correction in the parameter vector
P , as following from the definition ofP in the equation 7,
is:

∆PT = [∆Ỹi(τ1) ∆Ỹf ] [Φ(τ1) Φ(1)]
† (10)

where the∆ indicates a deviation of the variable from the
one associated to the original trajectory. Also in this case,
the correction forcesP to lie on the hyperplane defined by
the equation 7.

H. The Importance of Segmentation

It is important to address the importance of the segmen-
tation in this system. Computing an uniqueP for all the
process we lose several desiderable characteristics:

• the possibility to define different scaling in time for
different part of the process;

• the possibility to manage the transition between phases
with a state machine, allowing complex interaction with
the environment and the possibility to change the order
in which the phases are presented;

• The possibility to specify different constraints for dif-
ferent situations occouring during the task.

It is important to define in advance a segmentation criterion
that is possible to apply in real time. This can be defined
explicitly on the basis of the knowledge of the task and of
the contour conditions implied by the breakpoints chosen.
Segmentation in a complex task involving a large number of
variables can be obtained using machine learning techniques
such as neural networks to model the transition between
phases as presented in [20]. This would work, again, in case
the user provides explicitly a segmentation of the sample
to be used to train the neural networks. An optimized
segmentation for this method is still object of research.

III. E XPERIMENTAL RESULTS

A. Test Task

In order to test the system we set up a simplified version
of ball juggling in virtual reality inspired by [4], involving
the catch and the toss of one ball with the right hand.
The examples have been produced recording the vertical
and horizontal component of the hand position of a user
interacting with the virtual environment. We used a Polhemus
electromagnetic tracker sampled at 200 Hz. The set up of the
system is shown in figure 5 The user was asked to perform
the following exercise:

• toss a ball towards the left portion of the screen;
• reach a given point at the bottom of the screen with the

hand;
• catch the ball
• return to the starting point and start again

The task takes place totally in virtual reality. The interaction
is based only on hand tracking: the toss is triggered when
vertical hand acceleration reaches a given negative threshold

Fig. 5. The system used during the experiment.The user standsin front
of a monitor where a a virtual hand and a virtual ball are shown.The user
controls the position of the virtual hand moving a PolhemusR© tracker.

and the ball detaches with the speed of the hand at the end
of the toss. This requirement to perform a trajectory starting
with an acceleration an ending in a deceleration fast enough
to hit the threshold when the speed is the desired one for the
toss. A catch is triggered when the virtual hand touches the
virtual ball and hence the catch can be considered a dynamic
reaching task. We segmented the task in four phases:tossing,
reaching the bottom of the screen, catch, and return. The
phase transition has been based on the toss for the tossing
phase, the position reached for the going-down and the return
phases, and the successful ball catch for the catch phase.
In this case, the test can not be reduced to a two points
reaching problem [10] since in this case complex start/end
point boundary values alter the dynamics of the gesture.

In this example the conditionsQi determining the behavior
are the initial and the final position of the hand. In the case
of the catch the final position should be computed to assure
that the hand reaches the ball.

We used random targets based on the distribution of user
movements for the reaching tasks (going-down and return),
the catch phase was driven setting as constraint to reach the
ball. TheTi times were generated on the basis of a uniform
distribution covering the range of times observed during the
training. The toss phase was driven in the same way, but
applying later a condition of vertical speed equal to zero (as
explained in II-F) this was performed by the user to invert
the motion.

B. Data Regression

To regress the parameters of the model we proceed ac-
tually performing two regressions. First we regress a vector
P from every trajectory associated to a phase, computing
the coefficients (i.e. the first two) representing the linear
translation analytically to achieve the desired position at
the beginning and at the end of the trajectory, we compute
the expansion of the residuals minimizing the square error.
Finally we regress the Hyperplanes using the obtainedP
vectors as samples representing the relation between the



conditionsQi and the movementY . Since the harmonic
decomposition of the residual can be made arbitrary precise
increasing the number of componentsN we concentrate then
in an estimation of the goodness of the linear regression. We
check, at least within the context of the presented case study,
the hypothesis that a linear model can describe the relation
between a human movement and its boundary conditions.

C. Performace

To train the system described in the previous section we
produced dataset for each phase composed from 40 to 60
different examples containing each from 150 to 200 different
sample points. Assuming that the deviation from the plane
can be represented with a Gaussian noise, a linear regression
analysis was carried out on the full dataset. ALilliefor
Normality test on the regression residuals confirmed the
hypothesis of ‘Gaussian Like’.

The trained system is capable of performing the exercise
steadily: this requires to perform reaching tasks between
different points keeping the trajectory shape and to repro-
duce the trajectory dynamics producing the tosses. Besides
reproducing the task we are interest into doing in a style
that is similar to the oneperformed by the human. To asses
this an analysis of the 95% confidence interval on regression
parameters was performed by partitioning samples in differ-
ent test and to assess the relevance of the parameters and of
the model hyperplanes. In the case of relevant parameters,
we found a very high stability of the F-test conducted on
regression results that confirmed the accuracy of estimation.
A jacknife method applied as cross validation check shown
that, the variance in the estimated planes parameters was one
or two order of magnitude less than the estimated values.

IV. CONCLUSIONS

We presented a programming by demonstration frame-
work. We based our method on the construction of a model
for a complex task. We described how the system can give
a great flexibility in modeling motor tasks involving the
interaction with the environment and we shown an example
of how the system can work. We have described a trajectory
correction procedure that can be used explained how the
model can compensate tracking error and react to target
changes. Experimental statistical analyses have demonstrated
the effectiveness of the approach.

Future Work

The modeling of human movement through linear func-
tions between a task phase contour conditions and trajectory
parameters should be formally tested on a wider set of cases
on different tasks and sampling different users). Even if
the decomposition in translation and harmonics is general
enough to reproduce human movements, we are planning to
test differentΦ vectors, mainly to explore the descriptive
properties of the vectorP about the studied movement. An-
other interesting improvement of the described system would
consist in the design of a method to obtain segmentation
(phase transition) rules from the examples.
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