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Abstract—New technologies for ultradense WDM-PON
(udWDM-PON), enabled by coherent techniques and low-cost de-
vices, are developed for an efficient utilization of the optical spec-
trum, revealing that the ‘“Wavelength-to-the-User” concept can
be feasible. In this paper, an udWDM-PON with only 6.25-GHz
channel spacing is implemented with conventional DFB lasers, for
a splitter-based PON infrastructure with 256 ONUs. The results
of the analysis of udWDM access network architecture with re-
spect to their associated complexity, cost, and migration scenar-
ios, exhibit the potential for higher aggregate throughput, higher
split ratios, and node consolidation, when compared to competing
technologies.

Index Terms—Access networks, fiber optical communications,
fiber-to-the-home, PON, WDM.

I. INTRODUCTION

NUMBER of converging factors are contributing to the
A strong growth in fixed broadband subscriptions and mo-
bile traffic. The increasing number of video-capable devices
in consumers’ hands and the growing availability of multime-
dia content that can be streamed to fixed and mobile devices
are accelerating this trend. This growth will not be possible
without faster network speeds that come with wireless develop-
ment towards 5G, higher capacity in optical networks and better
spectral efficiency [1]-[3]. Currently deployed FTTH passive
optical networks (PONs), based on TDM (time division multi-
plexing) equipment, use only one or two wavelengths and may
not cope with these expected bandwidth demands; more ad-
vanced techniques, based on wavelength division multiplexed
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Fig. 1. udWDM-PON application scenario (ptp: point to point, ptmp: point
to multipoint, CO: central office, TX/RX: transceivers).

(WDM-PON:Ss), are being intensively developed in research,
standard bodies and industrial prototypes with network demon-
strations [4]-[7].

The envisioned access network evolves from the almost-
commercial WDM-PON architecture to the realization of the
Ultra-Dense WDM (udWDM) solution, opening the way to
the “wavelength-to-the-user” (WTTU) concept. The key en-
abling technology can be a new cost-effective coherent detec-
tion scheme with flexible wavelength allocation. The udWDM
approach can be useful in supporting, over the same fiber in-
frastructure of current PONs, different applications as depicted
in Fig. 1: mobile back-haul, both as micro- and macro-cells, as
well as fixed-line users (either residential or business). In prin-
ciple, the wavelengths channels can be dedicated (ptp) or shared
in time among users (SWTTU) with burst mode transceivers.

It has been proposed that optical coherent technologies, as re-
cently done in core networks, can be used to enhance the power
budget and capacity of PONs also, although with different re-
quirements and architectures [8]-[15]. The main challenge is
that expensive optical and electronic components do not sim-
ply scale down in cost to be affordable for access networks.
Although conceptually complex, coherent terminals for ac-
cess networks must be commercially compatible with low-cost
consumer electronics.

With this purpose, an optical access network based on sim-
plified coherent technology supporting ultra-dense Wavelength
Division Multiplexing is developed in the EU FP7 COCONUT
project (COst-effective COherent ultra-dense-WDM-PON for
A-to-the-user access networks) [16], [17]. It addresses research
and realization of coherent transmitter / receivers exploiting
low-cost components and simple electronics, so that typical line
terminals would be affordable to the end-users. It aims for a
seamless evolution from present PON architectures and support
of the new emerging applications. With respect to [17] we here
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Fig. 2. System architecture (SW: Switch; coh: coherent; TX eq: Equal-
ized Transmitter; LOL: Local Oscillator; L-AWC: Local Oscillator Automatic
Wavelength Controller; T-AWC: Transmitter Automatic Wavelength Controller;
COD: Coder).

detail the specific transceiver designs and transmission results,
as well as a PON dimensioning and cost analysis. These co-
herent techniques enable serving a higher number of users (e.g.
256 users over 60 km reach), each with a wavelength at 1.25 or
10 Gbit/s, over the existing splitter-based PON. This is possible
thanks to both the udWDM spacing (of 6.25, 12.5 or 25 GHz),
and the higher power budget ( >45 dB), which is a direct result
of the enhanced receiver sensitivity (down to -50 dBm).

This paper presents an overview of the proposed architecture
(Sect. 1), of the optical spectrum allocation (Sect. III), the en-
abling transmission techniques and experimental results (Sect.
IV), as well as discussing migration paths, costs and challenges
(Sect. V, VI and VII).

II. ARCHITECTURE

The reference architecture is based on the standard passive op-
tical network tree, with one or several stages of power splitting,
avoiding optical filters or multiplexers at the optical distribu-
tion network (ODN) that could limit the bandwidth extension
or require changes in the external infrastructure. The scenar-
ios of interest are: remote front-haul, small cell backhauling
and residential, business and macro cell backhauling [18]. The
main difference among these scenarios is the functionality of
the ONU: 1) the ONU feeds a 3GPP cell, ii) it feeds a Wi-Fi spot
or iii) wired devices such as a PC or TV. According to traffic
demand forecasts, a connection of 1.25 Gbit/s per user (1 GEth-
ernet to the user) fulfills scenarios ii) and iii), while 10 Gbit/s
can be required for macrocell in i). In addition, the wavelengths
can be dedicated to each ONU or shared between several by
applying a TDMA protocol at the MAC layer [18], [19].

As target features to cope with the future demands in these
scenarios, the COCONUT optical line terminals of the central
office (CO OLT) should be able to support 256 ONUs, by us-
ing between 64 to 256 wavelengths at 6.25 GHz spacing (for
1.25 Gbit/s data rates) or 12.5 / 25 GHz spacing (for 10 Gbit/s),
providing proper wavelength selectivity over the udWDM flex-
ible grid. The terminals are required to be, for mass production
and provisioning, low cost and all identical a priori, without
preselected wavelengths.
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In Fig. 2 we depict the basic hardware architecture of the
ONU and the OLT at the CO, which are constituted by: udWDM
coherent transmitters (TX) and receivers (RX), downstream and
upstream combiners, TX and RX local oscillator (LO) laser
automatic wavelength controllers (AWC), a CO digital switch
to map external data channels to OLT coherent transceivers
and a CO wavelength control module, which includes a high
resolution spectrum monitor and manager and the OLT-ONU
control communications signaling system.

III. SPECTRUM MANAGEMENT

The most critical elements to manage in the udWDM PON
are the TX and LO lasers, in the ONU and OLT transceivers.
For cost and simplicity matters, here we do not consider the use
of widely tunable lasers (e.g. external cavity or multi-electrode
DBR), nor reflective ONUs, that present transmission limitation
in terms of power budget and bandwidth. On the contrary, we re-
sort on the use of common single-electrode single-mode lasers,
such as Distributed FeedBack (DFBs). A main consequence to
be addressed is the narrow tunability of the ONUs with respect
to the defined PON spectral band. We have therefore adapted
the optical spectrum organization and the transceiver operation
as explained in the following. Given the ultra-dense channel
spacing, the common temperature-based tuning (typically be-
tween 200 and 400 GHz) allows covering many, though not all,
grid positions, here at 6.25 GHz spacing. The fact that users can
employ any ONU at any initial non-preselected wavelength in
the band has been defined as “statistical WDM multiplexing”
[20], [21], where random wavelengths ingress in the network
and contention could occur in the case that they overlap causing
crosstalk. At the same time, the CO laser wavelengths have to
adapt to those of the ONUs, reversing the common WDM-PON
policy where the PON multiplexer and the OLT sets the light-
waves. The overall cost of the access network, dominated by
the user equipment, can thus be minimized. This novel concept
implies a radical new management procedure of the optical spec-
trum and terminals, as well as for the activation of additional
ONU s in the spectrum in a hitless form [19], [22]-[24].

The statistical WDM multiplexing concept has been analyzed,
in terms of number of feasible active ONUs, by means of Monte-
carlo simulations accounting up to 640 wavelength slots, which
are available if the full C-band is considered (32 nm, between
192.1 and 196.1 THz), at a 6.25 GHz spacing. The minimum
wavelength separation between two adjacent channels can be as
low as 3 GHz [24], but it was found convenient to leave few
GHz as guard band. In this study, the laser tunability is here as-
sumed to be 0.1 nm/°C as typical in DFBs, with a tuning range
of 2 nm (250 GHz) by +/—10°C, that can be easily achieved
with a Peltier cell, or just by heating.

Three heuristic strategies for ONU wavelength assignment
are analyzed: First Fit (FF), which selects the closer free channel,
Maximum Scattering (MS) and Maximum Admittance (MA) for
future requests [25]. The FF is the simplest assignment scheme
and the one requiring less initial temperature tuning; it is used
as a basis for comparison. As it can be derived from Fig. 3, MS
exceeds the FF performance in the activation process, but MA
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Fig. 3. Activation rejection probability% against active ONUs using FF, MS
and MA heuristic assignment schemes, for 32 nm band (640 slots).

provides the best results, with the lowest rejection probability
of 10~* (one ONU replacement every 10,000 installed ONUs)
for 500 active ONUs allocated, hence a channel efficiency of
78% over the 640 slots. With the same acceptance ratio, when
employing MS, 440 ONUs can be allocated; and while using
FF, only 405 ONUs are assigned. Variable environmental con-
ditions and demand evolution have been analyzed to guarantee
efficient flexible setup of new and existing connections and min-
imizing the probability of possible conflicts. The sporadic ONU
replacement can be best done at the installation time, for mi-
nor disturbance of the user and operator. Outdoor and indoor
environmental conditions have been considered to design acti-
vation and reconfiguration algorithms in the TX and LO boards
in [23], providing similar results when dynamic adaptation is
implemented. Regarding the dimensioning of the OLT laser ar-
ray, it would not require oversubscription generally because they
can be preselected along the spectrum band and operated under
controlled thermal conditions.

IV. TRANSCEIVER DEVELOPMENTS

Considering the previous principles, several novel transmis-
sion techniques have been proposed and tested, exhibiting ad-
vanced performances with reduced complexity compared with
traditional coherent transceivers. Two main key points have been
considered: the use of direct laser modulation and the inves-
tigation of new solutions to achieve polarization independent
coherent detection in smarter and simplified ways.

A. Direct Phase Modulation

Direct modulation is a convenient solution to attain the low-
cost target of access networks. The generation of a PSK signal
with direct DFB laser modulation at 1.25 Gbit/s (1 GEthernet)
and coherent detection has been developed in this project by
taking advantage of the natural adiabatic frequency chirp of the
laser. In Fig. 4, the measured phase response (PM) of a DFB
laser (model LC25ET) with 4 MHz linewidth (Av) is shown.
It well approximates the expected 1/f characteristic of the adia-
batic chirp. By means of a simple derivative pre-equalizer, the
frequency chirp is converted into flat phase chirp, and adjusted
to 180° phase shifts for PSK. The equalized PM response de-
picts an almost flat phase shift characteristic below the range of
interest (<2.5 GHz approximately). The residual IM was about
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Fig. 4. Original (dotted) and equalized (down) PM and FM responses (solid
lines). The insets correspond to the optical signal spectrum: (i) unequalized at
1.25 Gb/s, (ii) equalized at 1.25Gb/s, and (iii) equalized at 2.5Gb/s.

1.5 dB [26], achieving a penalty with respect to external modu-
lation of only 2 dB. An RX sensitivity of -52 dBm was obtained
with intradyne detection based on a 3x3 coupler, at a BER =
10~% with off-line processing; it attained a channel spacing of
only 3 GHz (24 pm) and negligible phase noise effect [24],
[27]; by extending the technique to QPSK with 4 current levels,
5 Gbps was reached [28].

At the same time, ASK direct modulation and coherent detec-
tion have been also demonstrated, also using a coherent receiver
based on a 3 x 3 symmetric coupler. Exploiting the intrinsic
chirp of DML, the detection can be carried out similarly in a
FSK signal, thus yielding a sensitivity of about —48 dBm at
BER: 10~ in a 6.25 GHz udWDM experiment [29].

B. Polarization Independent 3 x 3 Frontend

A common solution to achieve polarization-independency is
usually to exploit polarization-diversity, which however requires
doubling the receiver structure (one receiver per orthogonal po-
larization). This clearly results into an excess of components and
power consumption, especially when polarization multiplexing
is not considered.

A novel architecture for low-cost polarization-independent
detection of OOK signals has been proposed in [30] and exper-
imentally demonstrated in [31], based on a modification of the
phase-diversity receiver with a 3 x 3 symmetric coupler. When
tested experimentally, it achieved polarization-independence
with a very limited penalty compared to the polarization-
sensitive solution, <1 dB at the sensitivity level, as seen in
Fig. 5, for 1.25 Gbit/s. It requires intradyne operations, which
might become advantageous when considering bidirectional op-
erations as will be discussed later in Sec. IV-D.

C. Common Polarization Scrambling

An alternative polarization-independent detection scheme
with only one photodiode, for minimum complexity, has been
also investigated for the downstream receiver; it is based on a
centralized polarization scrambler placed at the OLT side, and
synchronized with the data clock [32]. Fig. 6 depicts the ex-
perimental setup scheme; the polarization is switched to the
orthogonal state at the second half of the bit, simultaneously
for all downstream wavelengths. At the RX both halves are
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diagram taken with real-time implementation; ¢) BER evolution in a
polarization-scrambled signal for a conventional RX and this RX; d) BER
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Fig. 6. (a) Experimental setup schematics; the insets represent qualitatively
the signal modulation; b) BER against Rx power; the eye-diagrams correspond
to BER = 10~ for (i) btb, and (ii) 50km SMF (Eq.: electrical equalizer).

combined after the differential demodulation. The BER plot
shows an Rx sensitivity of -45 dBm at BER = 1073, and below
1 dB after a transmission over a 50 km SMF link, at 1.25 Gbit/s.

D. Single Laser ONU

As shown in Sec. III, careful laser wavelength control al-
lows to operate a large number of preallocated lasers. In order
to simplify the wavelength management and the overall power
consumption, it would be desirable to reduce the number of
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Fig. 7. Bidirectional subsystem using heterodyne detection sharing one laser
at ONU for UDWDM-PON using RSOA chip, and spectrum for two DPSK-
DPSK ONUs bidirectional transmission (ECL: external cavity laser, P.C.: po-
larization controller, C: circulator).

lasers to control, especially at the ONU side. We therefore in-
vestigated two schemes based on the use of a single laser at
the ONU, serving both as local oscillator and source for the
upstream data external modulator.

In a first experiment, we achieved upstream phase modulation
exploiting the chirp of a reflective semiconductor optical am-
plifier (RSOA) optimized to operate as phase modulator. This
has been tested with a simplified heterodyne bidirectional trans-
mission, where one DFB laser was shared as TX and as LO,
as depicted in the scheme and spectrum in Fig. 7. With an in-
termediate frequency of 2.5 GHz, -46 dBm RX sensitivity was
achieved [33]. In this case, the channel spacing was 12.5 GHz,
but we note that this includes both down and upstream channel.

In a second set-up, a simple bidirectional system based on
ASK signaling was also demonstrated to support up 35 dB
ODN loss [34]. In that case, by using intradyne detection, we
could achieve increased tolerance to the intrinsic crosstalk due
to Rayleigh scattering with minimum frequency offset (1 GHz)
of the down and upstream channels and proper emission power
balance; again, this allows operation of the ONU with a single
laser used, both as LO and signal source for upstream.

Other transmitters realized in photonic integrated chips have
been developed ad-hoc and are also employed to implement
a single laser ONU. These chips under test include: a Dual
Externally Modulated Laser (DEML), a pure Frequency Mod-
ulated Lasers (FML) and a BPSK externally modulated laser
(BPSK-EML).

E. Wavelength Control

Critical aspects of the proposed architecture to be handled
are the frequency noise and the long-term frequency drift of the
lasers, which must be addressed when the operation of closely
spaced DFB lasers is considered. Fig. 8 (a) depicts a measure-
ment over 30 minutes of frequency offset for free-running lasers
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Fig. 8.  (a) Frequency offset measurement over 30 minutes, with and without

AWC, and (b) BER dependence against frequency drift for intradyne receiver
with/out data offset compensation, with eye diagram at 300MHz drift.

(one TX and one LO). The lasers were physically separated
and kept with uncorrelated temperatures. It can be noticed that
about 200 MHz drift can occur in about one minute time. Such
a detuning might prevent correct detection and cause undesired
crosstalk on adjacent channels.

While ASK scheme has strong immunity to frequency noise,
and provides higher tolerance to the frequency drift between
signal and LO (up to around 1 GHz at 1.25 Gbit/s), DPSK sys-
tems must be carefully optimized. To this aim, an automatic
wavelength control (AWC) embedded in the coherent intradyne
DPSK receiver with DFB LO has been developed by applying
joint feed-back stabilization and feed-forward compensation.
At stable operation, a real-time correction of +500 MHz was
achieved in 600 ms, at an Rx sensitivity point of -47 dBm, which
provides a target BER of 10~*. In the absence of feed-forward
compensation, the drift tolerance was about 100 MHz, result-
ing in 1 dB power penalty, whereas data detection with DSP
offset compensation can tolerate up to +300 MHz for 1 dB
power penalty. In comparison with uncompensated detection,
Viterbi and correlation DSP methods obtained 4 dB improve-
ment as shown in Fig. 8 b) [35]. The second one was selected
in the real time FPGA DSP implementation due to its higher
simplicity.

By combining thermal (slow) and laser current (fast) con-
trol, wavelength control circuits were implemented in the laser
boards, for the ONU tracking, activation and reconfiguration
processes, exhibiting a wide operative tuning range and fast
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TABLE I
KEY CHARACTERISTICS OF NG-PON2 AND COCONUT
COCONUT NG-PON2
Wavelength channels 64 - 128 - 256 4-8
Channel spacing 6.25-12.5 GHz 0.05 - 50 - 100 GHz 0.4nm —
0.1 nm 0.8 nm

Channel BitRates

Max. Aggreg. Rate

Receiver sensitivity
(dBm)

1.25 Gbit/s, 2.5 Gbit/s,
10 Gbit/s (down and
upstream)

256 Gbit/s (at 1.25 G),
2.5 Thit/s (at 10 G)

-48 @ 1.25G, BER 103

-38 @ 10G, BER 1073

2.5 Gbit/s, 10 Gbit/s
(down and upstream)

40 Gbit/s (80 with
dedicated A).

-30 @ 2.5G, BER 10*
-28 @ 10G, BER 1073

channel jumps [19], [24]. Wavelength channel jumps below one
microsecond were generated.

FE. Further Developments

Further investigations in other transmission formats are rel-
evant for faster bit rate, channel spacing reduction and link
budget increase, by means of duobinary phase modulation [36],
IQ phase time scrambling [15] or half duplex transmission [37],
along with its real-time implementation [38], both analog and
DSP based. The several developed transceiver solutions men-
tioned will be tested in practical conditions in a field trial.

V. NGPON2 AND COCONUT COMPARISON

The Full Service Access Network (FSAN) group is currently
working on the standardization of next generation — passive op-
tical network 2 (NG-PON2) in ITU-T. It is not yet decided what
will be the next step (NG-PON3), but previously reported results
represent a promising competitive technology candidate for ei-
ther enabling advanced features in NG-PON2 or for a future next
generation PON system. NG-PON2 consists of stacking 4-8 10
Gigabit XG-PONT pairs of wavelengths and making the optical
network unit (ONU) tunable across all wavelengths channels,
which is denoted as Time and Wavelength Division Multiplex-
ing PON (TWDM)-PON [34]. NG-PON2 also defines an op-
tional set of ONU-dedicated point-to-point wavelengths (i.e. a
WDM-PON), which can be overlaid on top of the TWDM-PON
channels. NG-PON2 uses three key elements: a) a wavelength
multiplexer (WM) at optical line terminal (OLT), b) a coex-
istence element at OLT to enable co-existence and migration
from legacy PON systems such as gigabit (G)PON, etc., and
c) a tunable filter at ONU. Strict requirements are set with re-
spect of: i) channel isolation, which dictates the use of either
cascaded filters or more practically the increased channel sep-
aration in expense of reduced spectral efficiency and ii) filter
tuning times, which limit significantly the technology choices,
while increasing the overall implementation cost.

The two main differences of COCONUT at the physical
layer are coherent detection and udWDM. These two param-
eters could give several benefits when benchmarked against
NGPON?2, as summarized in Table I,

i) ONU receivers do not need optical filters or broad guard

bands,
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terms of number of optical slots, for the Maximum Allowance algorithm with
0.1% blocking probability and a maximum power budget for 256 split.

ii) more channel wavelengths can be used, spaced at 6.25GHz
when transmitting at 1.25Gb/s,

iii) high receiver sensitivity, thus requiring a lower transmit-
ted power, enabling to multiplex more channels without
surpassing the eye-safety power-limit and the fiber non-
linearity thresholds,

iv) crosstalk interaction between COCONUT and other PON
systems is reduced, especially when using PSK or FSK
modulation,

v) the thermal tunability and random selection of low cost

lasers in COCONUT strategy can enable to evolve from
4/8 channels in NGPON2, to e.g., 256.

With this, for example an NG-PON2 channel slot can be
divided into 16 sub-wavelengths with 6.25 GHz spacing, allow-
ing a capacity of 20 Gbit/s (with a 1.25 Gbit/s per ONU) per
100 GHz channel.

Considering the discussed basic performances and limita-
tions, a simple general dimensioning of the number of ONUs
can be performed. Fig. 9 depicts the number of allocated ONUs
as a function of the total bandwidth, in terms of number of op-
tical slots. First, the power budget of the transceivers enable for
up to 256 split ratio, plus fiber loss, emitting at a low power e.g.
-3dBm per channel. Second, the eye-safety regulation estab-
lishes a maximum transmitted power, of 21.3 dBm in C-band.
Third, the total optical bandwidth reserved for COCONUT is
here a variable, at a channel spacing of e.g. 6.25 GHz; finally,
the analyzed blocking probability when using laser thermal tun-
ing (2 nm with +/-10°C), instead of fully tunable lasers, with
the Maximum Allowance algorithm at 0.1% blocking proba-
bility. This designates that 256 wavelengths can be allocated in
14.1 nm, hence losing less than 10% (12.8/14.1 = 90%) in spec-
tral efficiency when using limited tunable DFB lasers instead
of widely tunable lasers. Also, it implies that there is no need
of sharing wavelengths and burst mode transceivers if this 10%
extra bandwidth is reserved, since the network size would be
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Fig. 10. Reach and rate extension scenario of Legacy PON with Coherent
udWDM PON (L-PON: legacy PON, C-PON: coherent PON, CE: compatibility
element).

then limited by the power budget and the eye safety limits at
256 ONUs.

VI. MIGRATION PATHS

In order to make migration possible from currently deployed
systems, some elements need to be in place to enable a smooth
upgrade of individual customers from legacy PON systems to
the proposed one. In our view, the two key optical elements are
the Co-existence Element on the OLT side, and a blocking filter
in front of the Receiver on the ONU side.

The coherent technology enables an increased loss budget
which, in turn, allows for: a) reaching far away customers by
just extending a distribution fiber of the first splitting stage, b)
node consolidation, ¢) increase the number of homes passed.
The udWDM grid allows COCONUT to co-exist in the same
fiber with legacy optical solutions (L-PON), occupying a small
portion of the overall spectrum.

Fig. 10 shows one example of a migration scenario. Increased
splitting sizes also help saving costs in a low take-up situation,
thus increasing the homes passed with a single PON port. It
may be useful to reach far away customers by just extending a
distribution fiber of the first stage of splitting. It is worth noting
that this scenario can save costs to the operator. Other migration
scenarios are depicted and explained in [2]. The compatibility of
COCONUT is eased by the reduced crosstalk effects because it
operates at lower powers, with very narrow spectral bandwidth
and can use orthogonal constant envelope modulation formats,
like PSK and FSK.

VII. CoST STUDY

The different COCONUT system solutions have been com-
pared against benchmarked technologies. The methodology of
the cost study is described in [2]. In brief, the OLT and ONU have
been broken down to components and parts, and a cost value has
been assigned to each element. Here the dedicated wavelength-
to-the-user (WTTU) scenario is illustrated; the analysis that
discusses both dedicated and shared wavelength scenarios is
detailed in [2]. The COCONUT transceiver solutions have been
also compared with a conventional coherent receiver based on
a 90° optical hybrid. As a reference, the cost of an InGaAs
PIN for 1.25 Gbit/s operations was set to 1 a.u. and the rest of
components scaled accordingly, as one of the central elements
in the COCONUT coherent frontend receiver is the photodiode.
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Fig. 11.  WTTU@10G ONU relative costs of XGPON, conventional coherent
transmission system and COCONUT versions.

The results of the cost modelling of the COCONUT ONU op-
tions for the WITU @ 10G connection configuration are shown
in Fig. 11. The estimated savings in comparison to the conven-
tional coherent receiver based on the 90° optical hybrid is a
maximum of ~87%. Our ASK and DPSK solutions are shown
to have very similar costs (differences are within the estimation
error); further improvements may come by implementing fully
analogue signal processing. On the other hand, the lowest cost
COCONUT design shows a ~30% increase over the bench-
marked solution of XG-PONI, although it must be noted that
this technology cannot match the capacity of the COCONUT
architectures and has been included only for the purpose of ref-
erence. At 1G, the relative results are analogous but around 25%
lower than at 10G, due to the decreased bandwidth requirement.

Regarding energy consumption efficiency, the fact that the
coherent transceivers operate at the user low bit rate, instead
of the TDM aggregate rate, improves the power efficiency, as
it is to be demonstrated in the practical prototypes. Analogue
implementations of the signal processing have lower energy
consumption [2].

VIII. CONCLUSION

Our analysis shows that ultra dense wavelength division mul-
tiplexing distributed among distant users can be a feasible alter-
native to high bit rate TDM-PONs for future access networks,
with aggregate bandwidth of hundreds of Gbit/s with limited
energy consumption of the ONU. The feasibility for 320 Gbit/s
aggregate bandwidth, by 1.25 Gbit/s per 256 ONUs, in 14.1 nm
only has been demonstrated.

We have shown that COCONUT approach solves inher-
ent NG-PON?2 issues, i.e., tunable filters and the cross-talk
acceptance at the input ports of the wavelength multiplexing
device. In addition, our proposed solution shows about 80%
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cost reduction when compared to a conventional coherent re-
ceiver as we have demonstrated that it is possible to eliminate
the need for external modulators, external cavity and fully tun-
able lasers and 90° hybrids, among others, without sacrificing
the performance.

The proposed udWDM PON offers, in the migration path,
an increased loss budget allows for node consolidation, in-
creased number of homes passed, longer reach and, by using
narrow band in the same fiber, increased spectral efficiency.
For this to become a deployable solution, further investiga-
tion has to be done on e.g. flexible fast sharing and tuning the
wavelength channels, simplified real time processing, software
defined transceivers, integrated optics, among others.
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