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an Graphical Causal Inference Be Extended
Nonlinear Settings?

n Assessment of Conditional Independence Tests

dine ChlaB and Alessio Moneta

m 1 Introduction

aphical models are a powerful tool for causal model specification. Besides al-
owing for a hierarchical representation of variable interactions, they do not require
y a priori specification of the functional dependence between variables. The con-
truction of such graphs hence often relies on the mere testing of whether or not
odel variables are marginally or conditionally independent. The identification of
ausal relationships then solely requires some general assumptions on the relation
tween stochastic and causal independence, such as the Causal Markov Condition
d the Faithfulness Condition (Spirtes et al. 2000; Pearl 2000). However, a pro-
edure would require further assumptions to hold. Namely those the independence
tests themselves are based on.

_ In continuous settings, Spirtes et al. (2000) suggest causal inference based on a
ery restrictive formulation of independence, that is, vanishing partial correlations.
uch a measure does, however, limit the applicability of causal inference to lin-
ear systems. This constitutes a serious drawback especially for the social sciences
here an a priori specification of the functional form proves difficult or at odds with
inearity. In short: graphical models theoretically reduce specification uncertainty re-
arding functional dependence, but their implementation in practice deprives them

of this virtue.
In this paper we investigate how causal structures in continuous settings can

be identified when both functional forms and probability distributions of the vari-
bles remain unspecified. We focus on tests exploiting the fact that if X and Y are
conditionally independent given a set of variables Z, the two conditional densities
f(X]Y, Z) and f(X|Z) must coincide. We start by estimating the conditional den-
sities f(X|Y, Z) and f(X|Z) via nonparametric techniques (kernel methods). We
proceed by testing if some metric expressing the distance between these very con-
ditional densities is sufficiently close to zero. Out of several metrics available in the
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UISIALUIE W CAPIESS SUCH GISIANCe we choose two, the BEuchidean, and the Hellinger
distance. We investigate in a Monte Carlo study how different tests involving either
measure are able to detect statistical independence, conditioned on a small set of
variables. -

One limitation may result from nonparametric density estimation being subject
to the curse of dimensionality. As the number of variables increases, the estimated
empirical density converges at a slower rate to its population value. To compensate
this drawback we use a local bootstrap procedure which consists of resampling the
data for each test. While local bootstrap strongly increases the computational time
of the test, it succeeds in counterbalancing the curse of dimensionality. Section 6.2
presents the statistical methods used in detail. Section 6.3 describes the simulation
design and our results. Section 6.4 concludes.

6.2 Nonparametric Tests for Conditional Independence

We want to test the following null hypothesis: X is independent of Y given Z, that is
X1Y|Z, 6.1)

where X and Y are continuous random variables, and Z is a (possibly empty) vector
of d continuous random variables (Z1, ..., Z ). We observe n random realizations
(Xe, Y0, Z), r=1,...,n.

Note that Fisher’s z statistic proposed by Spirtes et al. (2000: 94) to test con-
ditional independence relations in continuous settings, and also incorporated in
Tetrad (Scheines et al. 1996), requires normality of the Jjoint probability distribution
S(X,Y,Z). The latter is guaranteed by the linearity assumption if the error terms
are also normal.

We propose a class of tests based on the estimation and comparison of the fol-
lowing two multivariate distribution & (-) and /5 (-):

ha(X,Y,Z) = f(X,Z) f(Y, Z). '

This type of tests exploits the fact that under the null hypothesis:
f(XIY. 2) = f(X|2),

whenever f(Y,Z) and f(Z) > 0. Hence, by definition of a conditional density

function:
fX.Y.2)  f(X.2)

f(¥,2) [y’

It follows that under the null hypothesis:

hy() = ha(). (6.3)

We estimate /1y and h, using a kernel smoothing approach (see Wand and Jones
1995: Chapter 4). Both &y and i are of lengthm = d + 2. In particular, we use the
so~called product kernel estimators:

; \Mmm»ugv\., .N“ @v

1 z X; —-x Yi—y Zi—z " VAR
= s | LK () K (55 )<(%5) NACS

i=1

ha(x.y. 2 b)
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(64)

where K denotes the kernel function, b indicates a scalar bandwidth parameter, and
K p represents a product kernel, i.e., K ,((Z; ~z)/b) = :wuw K((Z;;, —z;)/b). For
our simulations (see next section) we choose the kernel: K(u) = 3 - u?)pw)/2,
with ¢(u) the standard normal probability density function. We use a “rule-of-
thumb” bandwidth: b = n=1/8:5,

. Emi:m)og&:oa hy and ha, we test the null hypothesis (6.1) by verifying whether
hi() and hy (") are sufficiently similar. There are several ways to measure distance
between two products of estimated density functions (see Su and White 2008). Here,
we focus on the following ones:

(i) Weighted Hellinger distance proposed by Su and White (2008). In this case the
distance is:

X, Y, Z), .
\:A\/\?M\TNL alX:,Y:, Zy) (6.5)

where a(-) is a nonnegative weighting function. The weighting function a(-),
as well as the resulting test statistics are specified in Su and White (2008).

(ii) Euclidean distance as proposed by Szekely and Rizzo (2004) in their “energy
test.” In this case, we have:

n

~ n n n n n
Az =2 303 Wiy —ha, ll=5= 57 3 s, = =5 30 3 iz~ I,

=1 j=] i==1 j=1 i=1 j=1
(6.6)

where hy, = hy(X;,Y:, Z)), ha, = hao(X;, Yy, Z;), and {1 - ]! is the Euclidean
norm.

(iii) Euclidean distance as proposed by Baringhaus and Franz (2004) in their
“Cramer test.” There is no substantial difference with (it) in the distance pro-
posed, which is dg /2. There is only some difference in the method to obtain
the critical values (see Baringhaus and Franz 2004).
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When Z is empty we obtain:p values-using (ii) and (iii) as implemented in the R
packages energy and cramex respectively. The Hellinger distance test cannot be
used in this case, since it has been designed for Z non-empty.

When Z is non-empty we obtain p-values for (i), (ii), and (iii) using a local
bootstrap procedure, as described in Su and White (2008: 840, 84 1) and Paparoditis
and Politis (2000: 144, 145). Local bootstrap imposes the null hypothesis in the re-
sampling scheme and counts how many times the bootstrap statistic is larger than
the statistic calculated on the basis of the real data. More specifically, local boot-
strap proceeds as follows: (1) Draw a bootstrap sampling Z; (fort = 1,...,n)
from the estimated kernel density .\ANV =n1p~d Yt Kp((Zy — 2)/P). (2) For
t=1,....n, given Z[, draw X" and Y, independently from the estimated kernel
density f(x|Z/) and f(y|Z]) respectively. These functions are defined as follows:

n (=X Zy—-Z}
x@ﬁvuMwaaAﬁwvm@mqrv

b Y Ky (255)
\ximnnnMu"_aAmevxmAm$mmv

b Y Ky (25E)

(3) Using X', Y;*, and Z] compute the bootstrap statistic S, using one of the

%mﬂmswom defined above. (4) Repeat steps (1) and (2) I times to obtain I statistics
{Sy:}i=,- (5) The p-value is then obtained by:

p = Zizi 155 > Sa}
: ,

where S, is the statistic obtained from the original data using one of the distances
defined above, and 1{-} denotes an indicator function taking value one if the expres-
sion between brackets is true and zero otherwise.

6.3 Monte Carlo Study
6.3.1 Simulation Design

To compare the aforementioned test procedures we assess their performance in both
size and power. To identify size properties, the hypothesis Hy of independence or
conditional independence must hold everywhere. Data generating processes (DGPs)
for which Hy is true are named size-DGPs. The null hypothesis (Hg : X L Y|Z)
may apply for three reasons. Either (i) there is no connection at all between X

6  Can Graphical Causal Inference Be Extended to Nonlinear Settings? 67
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and Y, or (ii) there exists a causal relation between X and Y but only via a set of
variables Z, or still (ili) Z constitutes a common cause for X and Y in absence

_of any other connection besides (ii). In these latter two cases Z is said to screen

off X from Y (Reichenbach 1956). To illustrate, let us represent the DGP via a
Directed Acyclic Graph (DAG).! In absence of any causal relation between X and
_ Y the corresponding DAG does not contain any edge or path between X and Y. In

 caseof screening-off, there is a path connecting X and Y via variables Z. Take, for
_ instance, the DAG represented in Fig. 6.1. Here, V, screens off (or d-separates) Vi

from V3 such that V; L V3| V5. Analogously, Vo L Va|V3 and Vi L Vii{Va, Vs,
 While for size DGPs Hy : X 1 Y|Z holds everywhere, Z may obviously
form causal relations with X and/or Y. These causal relations may take on different
functional forms and represent the touchstone for the testing procedures emphasized
~ in this work. To systematically vary nonlinearity and its impact we characterize the

_ causal relation between, say, z; and y, in a polynomial form, i.e., viay = f(z1) +e,

where [ = Muwno bz . Herein j would reflect the degree of nonlinearity while b
would capture the impact nonlinearity exerts. For polynomials of any degree only
b, # 0. An additive error term e completes the specification. In case of p = 1 we
also examine the impact of an error entering the causal relation in a multiplicative
manner, i.e., y = hjz; - e.

Besides varying the functional form we distinguish an i.i.d. and a time-series
case. The latter proves interesting since kernel smoothers generally show notori-
ously little sensitivity to i.i.d. violations (Welsh et al. 2002). Hence, the alternative
procedures put forth before may not be subject to the usual overrejection of Ho
entailed by non-i.i.d. structures (Chlal and Kriiger 2007). For the i.i.d. case, real-
izations {X;,Y;, Z,}]_, are generated from a (serially) independent and identical
distribution, i.e., corr(X;, X;) = 0 for s # t. For the time-series case, each element
of {X:, Y, Z; #_, follows an AR(1) process with coefficient @y = 0.5 and error
term e, ~ N0, 1),i.e., X; = a; X;—; + ex,. For an illustration, take the DAG dis-
played in Fig. 6.2 representing such a time series case. Here, Vi ; 1 V2,|V1 (-1,
since Vi (1) d-separates Vi, from V, ., while V2, L V34, forany ¢ and s.

Within the i.i.d. and AR(1) scenarios we vary the number of variables that
may establish conditional independence between X, and Y;. Either zero, one, but

U'For definition and properties of DAGs see Spirtes et al. (2000: Chapter 2).
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Table 6.1 Simulated cases for size properties

Causal relations with screening-off

No causal relations p=1 p=2 p=3
#Z =0 S0.1
{X,7,Z} ~iid. #Z =1 Si.1 S$1.281.5* S1.3 S1.4
#7 =2 S2.1 $2.2 82.5* 823 S24
#Z =0 50.2
{X,Y.Z} ~AR(l) #Z =1 Sl6 S1.7
#Z =2 52.6 S2.7
Note: *Non-additive errors.
Table 6.2 Simulated cases for power properties
p=1 p=2 p=3
#Z =0 PO.1' PO.22 PO.7* P0.3' p0.42 PO.5! P0.6?
{X.Y,Z} ~iid. #Z =1 Pl.1 P1.4* P1.2P1.5 PL.3
#Z =2 P2.1 P2.5* P22PpP23 P24
#Z =0 P1.8 P1.9
{X.Y.Z} ~ AR(1) #Z =1 PL6
#Z =2 P2.6
Note: *Non-additive errors; b, = 0.4, 2p, =0.8.
maximally two variables may form the set Z = {Z1,...,Z4} of conditioned vari-

m.Emmu hence Z has cardinality #Z = {0, 1,2}. Table 6.1 reviews all cases for which
size properties are investigated.

Power properties of the tests proposed were assessed using DGPs such that Hy
does not hold anywhere, i.e., X L Y|Z. The latter is guaranteed by either (i) a direct
path between X and ¥ which does not include Z , (i1) a common cause for X and Y
which is not an element of Z or (iii) a “collider” between X and ¥ belonging to Z.2
As before, we vary the functional form S of these causal paths polynomially. In a
very stylized manner we design three further phenomena that often arise jointly with
nonlinearity. First, we investigate the impact of a non-additive, i.e., multiplicative
error term when b, = 0.5and p = 1. Second, we relinquish the i.i.d. assumption
as before and induce X; and ¥; as two time series of the aforementioned AR(1)-
structure. X; now furthermore depends on ¥, while the functional, i.e., polynomial
form of this dependence writes either thjr1 = 0,by = 0.5,p = 1}or{hjz, =
0,hy = 0.5, p = 2}. Third, we investigate different cardinalities #Z = {0, 1,2}
of the set of variables that establishes conditional independence between X, and
Y;. The latter is done to challenge nonparametric procedures in higher dimensional
settings where they are known to weakly perform.® Table 6.2 reviews all cases for
which size properties are investigated.

?An example for a collider is displayed in Fig.6.2: V5, forms a collider between Vig—1y and
V2. In this case Vi g—iy L Vy —1y|V2, although V; ,_,, L Vao—1)-
* For an introduction to the so-called curse of dimensianality coe a o Vetahow /2002~ £7e0
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; m& Results

_ Table 6.3 reports our simulation results for the case where Z is empty (#Z = 0).
Hence, ¥ and X are marginally independent. Rejection frequencies are reported for
three different tests, both at the 0.05 and 0.1 level of significance. Take the first line
depicting the case S0.1. Here, X and Y were generated 1,000 times from two inde-
pendent white noise processes. We find a proportion of rejections that is 0.048 at the
- 0.05 confidence level and 0.096 at the 0.1 confidence level. In other words, for 48
simulation runs out of 1,000 the p-value was greater than 0.05 and for 96 simulation
runs out of 1,000 the p-value was greater than 0.1. The Energy test behaves quite
well for all cases, since it tends not to reject Hg when it holds (size DGPs) and it
tends to reject Ho when it is violated (power DGPs). Only when X linearly depends
upon ¥ with a low coefficient (case P0.1), the rejection frequency is not as high as
in the other cases. The Cramer test does not produce correct results for: P0O.1, P0.3,
~ P05, PO.8, PO.9. Let us compare these two nonparametric tests with the Fisher test
proposed by Spirtes et al. (2000). We find this test to perform well in some nonlinear
cases (P0.2, PO.5, P0.6). However, the percentage of rejection is too high for inde-
pendent time series (S0.2) and too low for several forms of nonlinear dependence
_ {P0.3, P04, P07, P0.9). To summarize the case without conditioned variables, the
Energy test outperforms both the Cramer and the Fisher test.

Results for the one-conditioned-variable case (Z consisting of one variable) are
reported in Table 6.4. Here, for each simulated realization of the process, we ap-
ply the local bootstrap procedure described in Section 6.2. To save computation
time, we lower the number of iteration to 200. We assess the nonparametric tests
described in Section 6.2 and compare them with the parametric Fisher’s z. The la-
bel *“Euclid” comprises Energy and Cramer tests based on the Euclidean distance

Table 6.3 Proportion of rejection of Hy (no conditioned variables)

Energy Cramer Fisher Energy Cramer Fisher

Level of significance 5% Level of significance 10%
8ize DGPs
80:1 (ind. white noises) 0.048 0.000 0.046 0.096 0.000 0.096
§0.2 (ind. time series) 0.065 0.000 0.151 0.122 0.000 0.213
Power DGPs
PO:1 (linear, coefficient = 0.4) 0.675 0.024 0.972 0.781 0.047 0.988
PO0.2 (linear, coefficient = 0.8) 0.999 0.663 1 1 0.821 1
P0.3 (quadratic, coef. = 0.4) 0.855 0.023 0.165 0.897 0.093 0.240
P04 (quadratic, coef. = 0.8) 0.999 0.598 0.282 1 0.790 0.383
P0.5 (cubic, coefficient = 0.4) 0.865 0.025 1 0.915 0.105 1
P0.6 (cubic, coefficient = 0.8) 1 0.605 1 i 0.805 1
P0.7 (non-additive, coef, = 0.5) 1 0.969 0.279 1 0.996 0.376
P0.8 (time series linear) 0.959 0.308 0.999 0.981 0.462 1
P0.9 (time series non-linear) 0.986 0.255 0.432 0.997 0.452 0.521

Note: Length series (n) = 100; number of iterations = 1,000.
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Table 6.4 Proportion of rejection’of Hy (one conditioned variable)
Hellinger Buclid  Fisher  Hellinger  Euclid * Fisher
Level of significance 10%

Level of significance 5%

Size DGPs

S1.1 (ind. white noises) 0.035 0.035 0.053 0.070 0.085 0.100
$1.2 (linear) 0.030 0.025 0.050 0.050 0.055 0.099
$1.3 (quadratic) 0.015 0.005 0.220 0.015 0.005 0.315
S1.4 (cubic) 0.000 0.000 0.375 0.000 0.000 0.436
S1.5 (non-additive) 0.005 0.345 0.221 0.020 0.600 0.313
$1.6 (time series) 0.035 0.035 0.062 0.090 0.060 0.103
S1.7 (time series nonlinear)  0.040 0.020 0.048 0.065 0.035 0.104
Power DGPs

P1.1 (linear) 0.735 0.745 0.997 0.825 0.820 1
P1.2 (quadratic) 0.865 0.870 0.187 0.925 0.925 0.278
P1.3 (cubic) 0.995 i 1 1 1 1
P1.4 (non-additive) i i 0.260 1 1 0.352
P1.5 (quadratic) 0.965 0.975 0.204 0.995 0.990 0.285
P1.6 (time series nonlinear)  0.905 0.895 0.416 0.940 0.950 0.504

Note: n == 100; number of iterations == 200; number of bootstrap iterations (I} == 200.

formulated in equation 6.6. P-values for the Hellinger and Energy/Cramer tests are
obtained using the local bootstrap procedure described in Section 6.2 with 7 = 200.
The upper part of the table refers to size DGPs for which the hypothesis of condi-
tional independence (Hy : X 1L Y|Z) always holds. For instance, when X, Y, and
Z follow independent white noise processes, Ho : X 1L Y|Z is rejected in 3.5%
of all simulation runs using the Hellinger test (same result for the Energy/Cramer
test) at the 0.05 level of significance and rejected in 7% of all runs at the 0.1 level of
significance. That is, the p-value obtained for this case is greater than 0.05 in 3.5%
of all simulations and greater than 0.1 for 7% of the simulations. Our results show
that the Hellinger distance test (supported by the local bootstrap) performs quite
well in all cases, except for the case of linear dependence. Therein, the frequency of
rejection is satisfactory while not as high the one for the Fisher test. Such a result
was to be expected since the linear case satisfies the assumptions required by the
Fisher test. Both Energy and Cramer test (labeled “Euclid” in the table) perform
quite similarly to the Hellinger test. In some cases they even slightly outperform the
Hellinger test with somewhat lower rejection frequencies for size DGPs S1.2 and
S1.7 and relatively higher rejection frequencies in many power DGPs (P1.1, P1.2,
P1.3, P1.5). However, neither Energy nor Cramer test detect conditional indepen-
dence in case of non-additive errors (S1.5). The results also confirm that we are led
astray when applying the Fisher test in presence of nonlinear dependencies. In many
of these cases (P1.2, P1.4, P1.5, P1.6) the power of the test turns out unsatisfactory.
A better strategy proves to apply the Hellinger or, in case of additive errors, the
Energy/Cramer test.

Table 6.5 finally displays our results for the case of two conditioned variables
(#Z = 2). As previously, columns “Hellinger”, “Euclid”, and “Fisher” refer to the

& Can Graphical Causal Inference Be Extended to Nonlinear Settings? I

ble 6.5 Proportion of rejection of Hy, (two conditioned variables)
; Hellinger -Euclid Fisher Hellinger Euclid Fisher

Level of significance 5% Level of significance 10%
 Size DGPs
_ 82.1 {independent white noises)  0.040 0.070  0.059 0.060 0.100  0.109
- 82.2 (livear) 0.000 0.007 0056 0.000 0.047 0.108
 82.3{quadratic) 0.000 0.000 0336  0.000 0.000 0434
 82.4{(cubic) 0.000 0.000 0.028 0.007 0.000  0.068
$§2.5 (non-additive) 0.960 0253  0.190 0993 0340  0.268
52.6 (time series linear) 0.006 0.020 0.050 0.033 0.046  0.102

82,7 (time series non-linear) 0.000 0.010 0.035 0.000 0.040 0.087
Power DGPs

_ P21 (linear) 1 1 1 1 i 1
 P2.2 (quadratic) 1 1 1 1 1 1
P2.3(quadratic) 0.273 0573 1 0.320 0673
P24 {cubic) I ] 0999 1 i i
. P2.5 (non-additive) 1 I 0246 1 1 0.336
_ P2.6{time series non-linear) 0.170 0.960 0.338  0.250 0.980 0411

 Note: n = 100; number of iterations == 150; number of bootstrap iterations (1) = 100.

Hellinger distance test, the Energy/Cramer test, and the Fisher’s z test respectively.

The Hellinger and Energy/Cramer tests here are based on four dimensional den-

sity functions. To save computational time, we lower the number of test iterations
to 150 and the number of bootstrap iterations (/) to 100. All nonparametric tests
perform well except for some cases. The Hellinger distance test fails in presence of

nonadditive-errors (S2.5), quadratic dependencies (P2.3) and time series (P2.6). The

Energy/Cramer test rejects somewhat less often in the S2.5 case, though still too fre-

_ quently. Moreover, the power of the Energy/Cramer test outperforms the Hellinger
_ lest in the quadratic (P2.3) and time series case (P2.6). Fisher’s z test does not pro-

duce satisfactory results for: $2.3, S2.5, P2.5, P2.6. To sum up, in absence of any

_ information about the functional form, using the Energy/Cramer test proves the bet-

ter strategy.

6.5 Concluding Remarks

We have assessed the performance of conditional independence tests to be used for
graphical causal inference in continuous settings. Hitherto, the latter was based on
parametric formulations of conditional independence, i.e., vanishing partial corre-

lations. Such measures do, however, prove restrictive since they require linearity in

the underlying dependencies and normally distributed errors. Here, we stress and
compare nonparametric procedures operating on the distances between conditional
kernel densities and on a local bootstrap. On one hand, our findings show these
tests to reach a performance comparable to Fisher’s z given linearity and normal



72 N. ChiaB and A. Moneta

errors. On the other hand, parametric tests perform very poorly given nonlinear data
generating processes whereas nonparametric procedures still yield correct results.
In continuous settings graphical causal inference hence cannot generally be based
on the independence tests used so far. Their results lead astray when the functional
form is not known and/or likely to be nonlinear. Any constraint-based causal dis-
covery method, (Spirtes et al. 2000; Pearl 2000; Moneta 2008), can be applied on
the basis of the tests proposed in this paper.
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owards a Grammar of Bayesian Confirmation*

/incenzo Crupi, Roberto Festa, and Carlo Buttasi

w Introduction

ong standing tradition in epistemology and the philosophy of science sees the
otion of confirmation as a fundamental relationship between a piece of evidence E
ad a hypothesis H. A number of philosophical accounts of confirmation, moreover,
have been cast or at least could be cast in terms of a formally defined model c(H, E)
olving evidence and hypothesis. !

Ideally, a full-fledged and satisfactory confirmation model c(H, E) would meet
series of desiderata, including the following: (1) ¢(H, E) should be grounded on

;maﬁm‘mmaﬁ_m and intuitively appealing “core intuition”; (2) ¢(H, E) should exhibit a

t of properties which formally express sound intuitions; (3) it should be possible
to specify the role and relevance of ¢(H, E) in science as well as in other forms of

In what follows we will focus on accounts of confirmation arising from the
Bayesian framework and we will mainly address issues (1) and (2). Bayesianism

_arguably is a major theoretical perspective in contemporary discussions of reason-

ing in science as well as in other domains (Bovens and Hartmann 2003; Howson and
Urbach 2006; Oaksford and Chater 2007). As we will see, the Bayesian approach

to confirmation includes traditional and well-known proposals along with novel and

more recent variants. Despite all this, the exploration of points (1) and (2) still seems
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! 1t should be kept in mind that this relationship is strictly speaking a three-place one, involving a
given background of knowledge and assumptions, often denote as K. Such a term will be omitted
froni our notation for simple reasons of convenience, as it is unconsequential for our discussion.
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