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a b s t r a c t

We report the results of our experimental and theoretical investigations of the neural response dynamics
in primary visual cortex (V1) during naturalistic visual stimulation. We recorded Local Field Potentials
(LFPs) and spiking activity from V1 of anaesthetized macaques during binocular presentation of Holly-
wood color movies. We analyzed these recordings with information theoretic methods, and found that
visual information was encoded mainly by two bands of LFP responses: the network fluctuations mea-
sured by the phase and power of low-frequency (less than 12 Hz) LFPs; and fast gamma-range (50–
100 Hz) oscillations. Both the power and phase of low frequency LFPs carried information largely comple-
mentary to that carried by spikes, whereas gamma range oscillations carried information largely redun-
dant to that of spikes. To interpret these results within a quantitative theoretical framework, we then
simulated a sparsely connected recurrent network of excitatory and inhibitory neurons receiving slowly
varying naturalistic inputs, and we determined how the LFPs generated by the network encoded informa-
tion about the inputs. We found that this simulated recurrent network reproduced well the experimen-
tally observed dependency of LFP information upon frequency. This network encoded the overall strength
of the input into the power of gamma-range oscillations generated by inhibitory–excitatory neural inter-
actions, and encoded slow variations in the input by entraining the network LFP at the corresponding fre-
quency. This dynamical behavior accounted quantitatively for the independent information carried by
high and low frequency LFPs, and for the experimentally observed cross-frequency coupling between
phase of slow LFPs and the power of gamma LFPs. We also present new results showing that the model’s
dynamics also accounted for the extra visual information that the low-frequency LFP phase of spike firing
carries beyond that carried by spike rates. Overall, our results suggest biological mechanisms by which
cortex can multiplex information about naturalistic sensory environments.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The natural visual environment is complex and contains many
features (such as the color, shape or orientation of images and ob-
jects) which continuously change over a wide range of spatial and
temporal scales (Simoncelli, 2003). To understand how sensory
areas of cortex cope with the demands of representing such a com-
plex environment, it is important to address two questions. The
first question regards what type of neural response dynamics is
best suited to represent the complexity of the visual stimuli and
their evolution over time. The second question regards the mecha-
nisms underlying the generation of such dynamics, i.e. what are
ll rights reserved.
the biological processes translating the visual stimuli into the neu-
ral responses.

In order to answer the first question, a key step is to record neu-
ral responses of cortical visual areas to naturalistic visual stimuli,
which replicate at least part of the complexity of the natural envi-
ronment. Using naturalistic stimuli has also limitations (which
mostly reflect the difficulty of the interpretation of their results
(Rust and Movshon, 2005)) and cannot replace the knowledge
gained by decomposing neural dynamics in terms of the effect of
simple carefully controlled stimulus parameters (Benucci et al.,
2009). However, analyzing neural responses to stimuli such as col-
or movies which have a complex spatio-temporal structure similar
of the natural world (Geisler, 2008) is important for several rea-
sons. First, naturalistic stimuli are likely to engage some aspects
of neural response which may not be elicited in the presence of
simpler stimuli (Felsen and Dan, 2005; Reinagel, 2001). For exam-
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ple, any neural representation of stimulus time is unlikely to be en-
gaged by stimuli with quasi stationary or impoverished dynamics.
Moreover, responses to naturalistic visual stimuli have been found
to be more reliable (Hasson et al., 2009), suggesting that coding in
the visual system may be optimized for processing naturalistic
stimuli (Dan et al., 1996).

While earlier neurophysiological work has concentrated in
characterizing spiking responses to naturalistic stimuli (Baddeley
et al., 1997; Desbordes et al., 2008; Smyth et al., 2003; Treves
et al., 1999), more recent work is beginning to complement the
analysis of spiking responses with that of Local Field Potentials
(LFPs). LFPs are highly localized signals (Berens et al., 2008; Katz-
ner et al., 2009), which relate well to subthreshold integrative pro-
cesses in areas such as the dendrite which are otherwise
inaccessible by recording only spiking activity of a few neurons
(Gustafsonn, 1984; Harada and Takahashi, 1983; Kamondi et al.,
1998; Logothetis, 2003), and present a rich and easily measurable
spectrum of response frequencies (Buszaki, 2006). For this reason,
inclusion of LFPs into the analysis of neural responses can offer
additional insights into the origin of sensory representations be-
yond those offered by only measuring neuronal spike trains, be-
cause the latter can only give information about the output of
the local neural computation implementing the representation of
sensory events (Belitski et al., 2010; Nicolelis and Lebedev, 2009;
Panzeri et al., 2010).

In order to shed light on the candidate mechanisms underlying
information processing, it is useful to complete these studies with
models and simulations which can be used to test quantitatively
specific hypotheses against the empirical observations. In the last
two decades simulations and experiments have built on each other
to provide descriptions of a variety of cortical phenomena (Amit
et al., 1994; Breakspear et al., 2010; David et al., 2009; Fix et al.,
2007).

Here we review a series of neurophysiological (Belitski et al.,
2008; Montemurro et al., 2008) and modeling (Mazzoni et al.,
2008, 2010) studies from our group which investigated, respec-
tively through extracellular recordings from the primary visual
cortex of anaesthetized macaques and through simulations of
recurrent networks, how naturalistic movie stimuli are encoded
in different frequency bands of primary visual cortical LFPs. We
then extend the previous modeling results to demonstrate that
our recurrent network model can account for the additional infor-
mation about visual stimuli carried by the phase of low frequency
LFPs at which spikes are fired, which was described in previous
experimental reports (Montemurro et al., 2008). We finally discuss
how models and experiments contributed to give a coherent
understanding of all these observed phenomena.
2. Material and methods

2.1. Neurophysiological procedures

We briefly summarize the experimental procedures used to re-
cord neural responses to naturalistic color movies in primary visual
cortex (V1). We refer to previous studies (Belitski et al., 2008,
2010; Montemurro et al., 2008) for full details.

Four adult rhesus monkeys (Macaca mulatta) participated in the
experiments. All procedures were approved by the local authorities
(Regierungsprsidium) and were in full compliance with the guide-
lines of the European Community (EUVD 86/609/EEC) for the care
and use of laboratory animals. Prior to the experiments, form-fitted
head posts and recording chambers were implanted during an
aseptic and sterile surgical procedure (Logothetis et al., 2002).
Recordings were obtained while the animals were anaesthetized.
We maintained anesthesia with remifentanil (0.5–2 lg/kg/min)
in combination with a fast acting paralytic, mivacurium chloride
(5–7 mg/kg/h). Body temperature was strictly maintained at 38–
39 �C, and end-tidal CO2 and oxygen saturation were kept constant
at 33 mm Hg and over 95%, respectively. Acidosis was prevented by
the administration of lactated Ringer’s solution with 2.5% glucose,
infused at 10 ml/kg/h, and intravascular volume was maintained
by the additional administration of colloids (hydroxyethyl starch,
20–30 ml over 1–2 min or 20 ml/kg/h). To ensure that no stress
was caused to the animal, we measured catecholamines and opti-
mized dosages to ensure unaffected physiological responses at nor-
mal catecholamine concentrations (Logothetis et al., 1999).

The main reason for collecting neural responses during anesthe-
sia is that this protocol offers several advantages for the investiga-
tion of primary cortical dynamics. In particular: microcircuits can
be studied in a ‘‘idle-state’’ without the strong effects of animal
state, including effects of attention and arousal that introduce
additional complication in the interpretation of signals; some prac-
tical issues, such as those arising from trial to trial variations of eye
movements, are simply eliminated; the initial correct interpreta-
tion of the basic functional profile of neural circuits requires excel-
lent signal-to-noise ratio, which can be more easily obtained in
anesthetized animals due to long acquisition times. The main rea-
son for using opiates was the fact that they selectively act on the
pain matrix while largely sparing sensory areas. The concentration
of opiate receptors, i.e. l, j, r and d (Pfeiffer et al., 1982), varies
over different brain regions (Leppa et al., 2006), with high concen-
trations mainly found in the so-called pain matrix (Talbot et al.,
1991). The latter refers to the regions commonly activated in re-
sponse to noxious stimulation, namely thalamus, somatosensory/
motor cortices, insula, cingulate cortex, basal ganglia, as well as
orbitofrontal, frontal and parietal cortices. Remifentanil, an ultra-
fast-acting l-opioid receptor agonist, has no significant effect on
the neurovascular and neural activity of brain areas that do not be-
long to the pain matrix (Goense et al., 2008; Goense and Logothe-
tis, 2008; Logothetis et al., 1999, 2009; Lund et al., 1994; Sereno
et al., 2002; Zappe et al., 2008a,b). The visual cortex in particular
does not even bind remifentanil (Jones et al., 1991), and early vi-
sual information processing is largely preserved during remifenta-
nil anesthesia (Lund et al., 1994).

Neuronal activity was recorded from opercular V1 (foval and
para-foveal representations) using microelectrodes (FHC Inc.,
Bowdoinham, Maine, 300–800 kX) which were arranged in a
4 � 4 square matrix (interelectrode spacing varied from 1 mm to
2.5 mm) and introduced in each experimental session into the cor-
tex through the overlying dura mater by a microdrive array system
(Thomas Recording, Giessen, Germany). Electrode tips were typi-
cally positioned in the upper or middle cortical layers. In total
we recorded from 55 sites in V1 with a well-defined receptive field
within the field of movie projection.

Visual stimuli were presented binocularly at a resolution of
640 � 480 pixels (field of view: 30 � 23�, 24 bit true color, 60 Hz
refresh) using a fiberoptic system (Avotec, Silent Vision, Florida).
Stimuli consisted of ‘naturalistic’ complex and commercially avail-
able Hollywood movies (30 Hz frame rate), from which 3.5–6 min
long sequences were presented and repeated 30–40 times. The
receptive fields of all recording sites analyzed were within the area
of visual stimulation (Rasch et al., 2008).

2.1.1. Spectral separation and spectral analysis of extracellular signals
Extracellularly recorded neural signals were amplified using an

Alpha Omega amplifier system (Alpha Omega GmbH, Ubstadt-Wei-
her, Germany) and recorded at 20.83 kHz. The amplifying system
filtered out the frequencies below 1 Hz. The LFPs were extracted
from these raw recordings by low-pass-filtering the neural signal
in the frequency range up to 250 Hz. The LFP extraction procedure
lowpass filtered and downsampled the neural signal to a rate of
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500 Hz using a Kaiser filter with bandwidth 1–250 Hz, sharp tran-
sition bandwidth (1 Hz), very small passband ripple (0.01 dB), and
high stopband attenuation (60 dB). Forwards and backwards filter-
ing was used to eliminate phase shifts introduced by the filters. In
order to extract multiunit spike times, the 20.83 kHz neural signal
was filtered in the high-frequency range of 500–3500 Hz. The
threshold for spike detection was set at 3.5 standard deviations.
A spike was recognized as such only if the last spike occurred more
than 1 ms earlier. For the present analysis we did not separate sin-
gle and multi-units.

The band-limited LFP signals were generated using the same
Kaiser filters described above with the appropriate bandwidth set-
tings. From these band-passed signals, we computed the instanta-
neous phase as the argument of the Hilbert transform.

To assess how the power of LFP and spike rate oscillations chan-
ged over different segments of the movies, we divided each movie
into non-overlapping time windows of length T (a parameter that
was varied in a wide range (Belitski et al., 2008)). The resulting
structure of the neural activity in each stimulus time window s
was quantified by computing the power spectrum rf at each fre-
quency f, independently for each trial using the multitaper tech-
nique (Percival and Walden, 1993) which provides an efficient
way to simultaneously control the bias and variance of spectral
estimation.

2.2. Model

Here we briefly describe the methods used to simulate spiking
and LFP responses of recurrent networks of excitatory and inhibi-
tory neurons. The model was first introduced by Brunel (2000)
and Brunel and Wang (2003)). It was later extended (Mazzoni
et al., 2008, 2010) to include time-varying inputs. We summarize
here the structure of the network and we refer to the original re-
ports (Mazzoni et al., 2008, 2010) for full details.

The simulated network was composed of 4000 pyramidal neu-
rons with AMPA-like synapses, and 1000 interneurons with
GABA-like synapses. The network connectivity was random and
sparse, with a connection probability of 0.2 between any directed
pair of cells. Both pyramidal neurons and interneurons were de-
scribed by voltage-based leaky integrate and fire (LIF) dynamics
with fixed threshold, fixed refractory time (Tuckwell, 1988). The
model included conduction delays and a post-spike refractory per-
iod. The AMPA and GABA postsynaptic currents were determined
by the spikes emitted by the pre-synaptic neurons of the network
and by the external inputs. Compound synaptic currents were the
linear sum of contributions induced by single pre-synaptic spikes.
Each contribution was described by a difference of exponentials,
with rise time, decay time, and amplitude depending on the kind
of synapse and the category of the post-synaptic neuron. All values
were of the order of magnitude of the values reported in the liter-
ature (Gupta et al., 2000; Markram et al., 1997). We verified that
modifying these values did not affect qualitatively the results as
long as the network was in the weakly synchronized regime. Each
neuron received inhibitory and excitatory inputs from the neurons
of the network, and also received two types of distinct external
excitatory drives (see Fig. 1A). A ‘‘thalamic’’ input carried the sim-
ulated sensory information, and was injected through synapses
with timescales and strength resembling those of thalamocortical
synapses (Gil and Amitai, 1996). An ‘‘unspecific’’ input represented
instead stimulus unrelated changes of ongoing activity and non-
specific contributions from other areas of cortex and was injected
through AMPA synapses identical to those of the network. Since
cortical ongoing activity has the most power in the slow frequency
range, these non-specific contributions were generated according
to an Orstein-Uhlenbeck process with a low pass cut-off frequency
of 10 Hz. Synapses carrying both types of external inputs were acti-
vated by random Poisson spike trains, with time-varying rates
which were identical for all neurons.

Three types of inputs signal were injected, in different simula-
tion sessions, from the model ‘‘thalamic’’ region: (i) time-invariant
(‘‘constant’’) inputs, (ii) perfectly periodic inputs which varied
sinusoidally in time, (iii) ‘‘naturalistic’’ input spike trains which
reproduced the firing activity recorded in the LGN of an anaesthe-
tized monkey during one of the binocular naturalistic visual stim-
ulation sessions described in Section 2.1 (Rasch et al., 2008).

Since a prominent contribution to real cortical LFPs arises from
current flows due to synaptic activity (Logothetis, 2003; Mitzdorf,
1985), we computed the simulated LFP signal generated by the net-
work as the sum of the absolute values of AMPA and GABA currents
(Buehlmann and Deco, 2008; Mazzoni et al., 2008, 2010). We
decided to sum the absolute values of currents because AMPA syn-
apses are usually apical and GABA synapses are usually peri-somatic
and thus their dipoles sum with the same sign along the dendrite
(Fig. 1B). In computing the simulated LFPs, we summed only cur-
rents from synapses of pyramidal neurons (Fig. 1B), under the
assumption that pyramidal neurons contribute more due to their
approximate open field arrangement (Murakami and Okada,
2006). In Mazzoni et al. (2010) the LFP signal was taken with a neg-
ative sign to be directly comparable with experimental recordings.
Although more detailed quantifications of signals such as LFPs from
simulated networks are in principle possible (see e.g. Pettersen et al.,
2008), we found that the simple quantification we chose was enough
to reproduce all the features of interest of experimentally recorded
LFPs (see Sections 3.2 and following), thereby suggesting that our
simple description of LFPs was sufficient for the present purpose.

2.3. Information analysis

To quantify the stimulus selectivity of neural responses, we
measured the mutual information between a given set of stimuli
S and a set of neural responses R. Mutual information (abbreviated
as ‘‘information’’ in the following), is a popular measure of the
goodness of stimulus encoding in neuroscience (de Ruyter van Ste-
veninck et al., 1997; Fairhall et al., 2001; Panzeri et al., 2003). It
quantifies the reduction of the uncertainty about the stimulus that
can be gained from observing a single-trial neural response, and
we measured it in units of bits (1 bit means a reduction of uncer-
tainty by a factor of two).

Information depends on both the choice of the stimulus set and of
the quantification of the neural response. To create the stimulus set,
we divided the presentation time of the dynamic stimulus (a movie
in the case of recordings from visual cortex, and a time dependent in-
put spike train in the case of neural network simulations) into differ-
ent segments of length T (a parameter that was varied in the range
from few ms to several seconds) and each segment was considered
as a different stimulus s (see schematic in Fig. 2). We then computed
the information about which dynamic stimulus time segment elic-
ited the considered response. This procedure has several advanta-
ges. The first is that it is simple to apply and lends itself to
comparisons between experimental and theoretical data. The sec-
ond is that it does not make any assumption as to which specific fea-
tures of the dynamic stimulus triggered the neural response and so
can potentially capture the information about all possible dynamical
stimulus features presented experimentally (de Ruyter van Steven-
inck et al., 1997). Regarding the choice of neural response, we con-
sidered several different possibilities, as detailed next.

We first computed the information between the stimulus and
the power of the LFP at a given frequency f, as follows.

IðS; Rf Þ ¼
X

s

PðsÞ
X

rf

Pðrf jsÞlog2
Pðrf jsÞ
Pðrf Þ

ð1:1Þ



Fig. 1. Recurrent inhibitory–excitatory model of local cortical network. (A) Schematic of network structure. The network was composed by 5000 neurons, with a 4:1 ratio
between pyramidal neurons and interneurons. The connectivity was random, a synapse being present between any directed pair of neurons with probability 0.2. The size of
the arrows illustrates the strength of the different synaptic connections. In addition to recurrent interactions each neuron received two types of distinct external excitatory
drives: a ‘‘thalamic’’ input carrying the simulated sensory information, and an ‘‘unspecific’’ input representing stimulus unrelated changes of ongoing activity and non-specific
contributions from other areas. Figure reproduced with permission from Mazzoni et al. (2010). (B) Schematic of the computation of the simulated LFP. Left side: we computed
the simulated LFP as the sum of the absolute values of AMPA and GABA currents because AMPA synapses are usually apical and GABA synapses are usually peri-somatic and
thus their dipoles sum with the same sign along the dendrite. Right side: we summed only currents from synapses of pyramidal neurons because, due to their approximate
open field arrangement, they contribute to LFP more than interneurons, which have a much less regular dendritic spatial organization.
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where P(s) is the probability of presentation of the stimulus window
s (here equal to the inverse of the total number of stimulus win-
dows (Fig. 2A)), P(rf |s) is the probability of observing a power rf

at frequency f in response to a single trial to stimulus s (Fig. 2D
and E), and P(rf) is the probability of observing power rf across all
trials in response to any stimulus (Fig. 2C). To facilitate the sam-
pling of response probabilities, the space of power values at each
frequency was binned into six equipopulated bins (Belitski et al.,
2008). For all measures of information about power presented here,
we used a stimulus window of length T = 2.048 s.

The above single-frequency information analysis was extended
to compute how much information about the stimuli we can ob-
tain when combining together the power rf1 and rf2 at two different
frequencies. The mutual information that the joint knowledge of
the powers rf1 and rf2 conveys about the stimulus is defined as:

IðS; Rf 1Rf 2Þ ¼
X

s

PðsÞ
X

rf 1rf 2

Pðrf 1rf 2jsÞlog2
Pðrf 1rf 2jsÞ
Pðrf 1rf 2Þ

ð1:2Þ

where the stimulus–response probabilities defined in Eq. (1.2) are
analogous to the ones in Eq. (1.1) – see Belitski et al. (2008) for full
details. The redundancy between the information carried by the
powers at the two considered frequencies is defined as the differ-
ence between the sum of the information carried by the power of
each frequency individually and their joint information:

RedðS; Rf 1Rf 2Þ ¼ IðS; Rf 1Þ þ IðS; Rf 2Þ � IðS; Rf 1Rf 2Þ ð1:3Þ

We finally considered the information carried by phase of firing
code, which is the neural response defined when the timing of
spikes emitted in response to the stimulus are measured with re-
spect to the phase of a concurrent LFP wave bandpassed around
a considered frequency f. This can be done by dividing the phase
range into quarters, and then by tagging the spikes with a label
indicating the phase quadrant at which they were emitted. Then,
the phase of firing information can be defined as follows:

IðS; RU
f Þ ¼

X

s

PðsÞ
X4

uf¼0

Pðuf jsÞlog2

Pðuf jsÞ
Pðuf Þ

ð1:4Þ
where in the above equation the response set is composed by five
different symbols: uf ¼ 0 denotes the absence of spikes in response
to the stimulus in the considered trial, and uf ¼ 1;2;3;4 denote
that a spike was emitted when the LFP phase was in a given quad-
rant. To evaluate if the phase of firing carries information above and
beyond that carried by spike rates, we compared IðS; RU

f Þ to the spike
rate information, which was evaluated from Eq. (1.4) but after ran-
domly shuffling the responses uf > 0 independently for each trial.
The shuffling operation preserves all the information carried by
the spike rate while at the same time completely destroying any
additional information that may be carried by the knowledge of
phase. For all phase of firing information measures reported here,
we used a stimulus window T of 4 ms (Montemurro et al., 2008).

In computing all the above information quantities, all the stim-
ulus–response probabilities were evaluated empirically from all
available stimulus repetitions (‘‘trials’’). Since the number of avail-
able trials may be limited (and especially so when considering real
rather than simulated data), estimation of probabilities suffers
from statistical errors which lead to a systematic error in informa-
tion estimates (called limited sampling bias). We corrected for this
problem using the procedures reported in Refs. Montemurro et al.
(2007a,b) and Panzeri et al. (2007) and implemented in the Infor-
mation Breakdown Toolbox (www.ibtb.org, Magri et al., 2009)
which we used for the analysis.
2.4. Circular variance analysis of entrainment

The strength by which a given frequency component of the LFP
of the simulated network entrained to a given frequency compo-
nent of the time course of the network spike rate input was quan-
tified by the circular variance over time of the phase difference
between the considered frequency component of the LFP and the
considered frequency component of the input (each bandpassed
in 2 Hz wide bands with the Kaiser filter detailed above). Circular
variance, defined e.g. in Fisher (1993) is a measure of the disper-
sion of a distribution of angles and in our case ranges from 0 (per-
fect phase locking and entrainment) to 1 (no entrainment).

http://www.ibtb.org


Fig. 2. Schematic representation of the computation of the mutual information carried by LFP power about movie scenes. The figure illustrates how we obtained the different
probabilities needed to compute (through Eq. (1.1)) the information IðS; RÞ about the movie carried by the LFP power at a given frequency. (A) First the movie presentation
time is portioned into non-overlapping window, each considered a different stimulus s (a ‘‘scene’’). The set of the stimuli is the set of the different scenes, each of which is
presented once every trial, so the probability of each scene is the inverse of the number N of the scenes presented. (B) The color plot shows the single-trial LFP power (in this
example, we chose the [72–76 Hz] frequency range in the gamma band for the example channel D04nm2 ch3) across all trials and movie scenes. From these data we
compute: (C) Probability distribution PðrÞ of the LFP gamma power across all trials and scenes. (D and E) Probability distribution PðrjsÞ of the LFP gamma power across trials
given the presented scenes s1 and s2 respectively. The differences between the two distributions and the distribution PðrÞ suggest that the LFP gamma power carried
information about which scene is presented. Computing P(r|s) for all scenes and inserting it in Eq. (1.1) gave the actual value of the mutual information.
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3. Information content of Local Field Potential during
naturalistic stimulations

3.1. LFP recordings in response to natural stimuli suggest that cortex
multiplexes information over a small number of different frequency
bands

Recordings of LFPS from cortical areas indicate that sensory cor-
tex responds to sensory stimuli with a very broad spectrum of fluc-
tuations, which spans a wide range of frequencies ranging from
less than one Hz to hundred Hz or more (Buszaki, 2006; Kayser
and Konig, 2004; Lakatos et al., 2005; Senkowski et al., 2007). How-
ever, the functional consequences and the implications for sensory
coding of this wide range of frequencies remain largely unknown.
On the one hand, the presence of a wide spectrum of activity could
imply that there is no privileged scale for information representa-
tion, because information is evenly spread over all scales. This view
is consistent with the proposal that neural activity is largely scale
free (Bedard et al., 2006; He et al., 2010; Mazzoni et al., 2007). On
the other hand, it is possible that information is represented by
only a small number of specific frequency ranges, each carrying a
separate contribution to the information representation.

To shed light on this issue, it is important to quantify the informa-
tion content of each frequency range of neural activity, and under-
stand which ranges carry complementary or similar information.
To investigate this question, we used spectral analysis and informa-
tion theory to analyze LFPs and spiking responses recorded from the
primary visual cortex of anaesthetized macaques in response to bin-
ocularly-presented naturalistic color movies (Belitski et al., 2008).

To quantify the characteristics of LFP fluctuations at different
frequencies, we first computed the LFP spectrum during the entire
period of movie presentation (reported for an example channel in
Fig. 3A). The LFP spectrum had a very wide band with fluctuations
ranging over the entire frequency range analyzed. The highest LFP
power was at low frequencies (<12 Hz), and the power decreased
steeply at increasing frequencies. We compared the averaged LFP
spectrum evoked during the movie to the LFP spectrum of the same
electrode during spontaneous activity (measured in the absence of
visual stimulation). There was an increase of power during movie
stimulation at frequencies below 12 Hz (Fig. 3A). The evoked and



Fig. 3. Examples of LFP recordings during spontaneous activity and movie presentations in macaque V1. (A) Trial-averaged LFP spectrum for a representative channel (D0nm1
ch5) during presentation of three different movies and during spontaneous activity. (B) LFP traces (band-passed in the [1–5 Hz] frequency range) from five presentations of a
15 s long movie extract. Traces were displaced on the vertical axis to make them distinguishable. (C) Time courses of the [28–32 Hz] band-passed LFP recorded during the
same five movie presentations of (B). (D) Time courses of the [72–76 Hz] band-passed LFP recorded during the same five movie presentations of (B). Bandpassed LFPs were
obtained with a Kaiser filter (see text). Panels (B–D) reproduced from Panzeri et al. (2008) with permission. (E) Raster plot of spike times (indicated by black markers)
recorded from the same electrode of LFP displayed in (B–D) during the same five presentations of (B).
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spontaneous LFP spectrograms were similar at frequencies be-
tween 12 and 24 Hz, while the power associated to frequencies
>24 Hz was higher during movie presentation. Consistent with pre-
vious studies (Henrie and Shapley, 2005), we found the most sub-
stantial power increase over spontaneous activity of the movie-
evoked LFP in the gamma frequency region [30–100 Hz].

We next analyzed how the neural signals responded to the mo-
vie. Fig. 3B–D shows the bandpassed LFP responses (in the [1–
5 Hz], [28–32 Hz] and [72–76 Hz] frequency range respectively)
for several trials, from a representative example recording site dur-
ing the presentation of a 15-s long movie sequence. The presenta-
tion of the movie elicited LFP patterns that, both in the low
frequency (1–5 Hz) range (Fig. 3B) and in the [72–76 Hz] range
within the high gamma region (Fig. 3D), were clearly modulated
by the movie and repeatable across trials: episodes of high instan-
taneous power were elicited reliably in correspondence of certain
scenes in the movie. In contrast, LFP waveforms in the intermedi-
ate frequency range [28–32 Hz] (Fig. 3C) could not be reliably asso-
ciated to the movie time course.

We also investigated the V1 spiking responses to the movie.
Fig. 3E shows that the spike rates clearly encoded the movie. The
high spike rate episodes were associated more closely with epi-
sodes of high LFP power in the high-gamma LFP frequency range
than at lower LFP frequencies, suggesting that gamma LFPs may
be more closely related to the stimulus-modulated spiking activity
than low LFP frequencies.

We then investigated more quantitatively how the power of dif-
ferent LFP frequency bands encoded the stimuli computing the
information that the LFP power carried about which scene was
being presented (see Eq. (1.1) and Section 2.3). The information
of the LFP power, averaged over all channels recorded in session
A98 (the one selected for comparison with model results, see Sec-
tions 2.2 and 3.2), is reported in Fig. 4A. We found two informative
bands in the LFP spectrum: a low frequency range below 10 Hz
(corresponding to the delta and theta bands) and a high frequency
range [50–100 Hz] in the gamma band.

Having established that both high-gamma and low frequencies of
LFPs convey information, the next important question is to establish
whether the different informative frequencies ranges are redundant
or not, i.e. whether they carry the same or different stimulus infor-
mation. Thus, we computed both the joint information carried by
the power of pairs of LFP frequencies (Eq. (1.2)) and their redun-
dancy (Eq. (1.3)). The information obtained by the combined knowl-
edge of the power at low frequencies and the power at gamma
frequencies was nearly the sum of the information carried by the
two frequencies separately (Fig. 4B). This means that the redun-
dancy between the information carried by the power of high and
low frequencies is nearly zero. In contrast, frequencies in the gamma
band were highly redundant between each other (Fig. 4C), suggest-
ing that all frequencies in the gamma range reflect largely the same
network phenomenon. We found also that LFP frequencies below
40 Hz carried independent information with respect to spike rates,
and were indeed totally decoupled from spike rates (both in terms
of stimulus selectivity and trial to trial covariations). However, the
power of gamma range LFPs was largely (but not completely) redun-
dant to the spike rate, suggesting that spike rates and gamma power
are a largely overlapping information channel (results not reported
here but fully explained in Belitski et al. (2008)).

In summary, V1 LFP spectral information during naturalistic
stimulations is multiplexed in two different and independent
streams, one at very low frequencies and one at gamma frequen-
cies. The gamma power carries information partly (but not com-
pletely) redundant to that carried by spike rates. Therefore, out
of the many time scales of neural activity that have significant
power, only a handful of time scales seem to carry different types
of information. An advantage of encoding information into a lim-
ited number of frequencies is that it gives the benefit of multiplex-
ing without complicating too much the decoding procedure, which



Fig. 4. Information about movie scenes carried by LFP power. (A) Information about
the movie scenes carried by the LFP power of experimental session A98. Gray area
represents mean ± STD area across all channels. The red dashed line represents he
p = 0.05 (bootstrap test) significance line of information values. (B) Joint informa-
tion and (C) redundancy of power for all frequency pairs, averaged over all channels
in session A98.
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needs to pay attention only to a small number of different frequen-
cies rather than to a continuum of time scales.
3.2. A recurrent network model reproduces and explains frequency
multiplexing of information

The experimental findings described in the previous section
raise two important questions. The first question regards the net-
work mechanisms generating these two information channels.
The second question regards the nature of the sensory information
and of the type of stimulus features encoded in the two bands.

In order to answer these questions, we used a simulated model
of a recurrent sparsely connected neural network with excitatory
and inhibitory neurons (Mazzoni et al., 2008) and we computed
the LFPs generated by these networks under different types of
stimulation conditions. These networks are simple, but able to cap-
ture the interplay between excitation and inhibition, which is one
feature of the organization of cortical microcircuits which is be-
lieved to shape the dynamics of local mass activation (Deco
et al., 2008; Douglas and Martin, 1991; Logothetis, 2008). The
sparse and random network (Fig. 1A) was composed of inhibitory
and excitatory neurons and received external excitatory synaptic
inputs mimicking the thalamic inputs (conveying the information
about sensory stimuli) and the ongoing cortical fluctuations (sum-
marizing the effect of the slow covariations in network state due to
ongoing activity). The network LFP was modeled as the sum of the
absolute values of AMPA and GABA currents computed on pyrami-
dal neurons (see Section 2.2 and Fig. 1B).

We used different inputs to analyze the response properties of
the network. In a first series of simulations in Mazzoni et al.
(2008) we injected the network with constant inputs of different
intensity. In agreement with previous studies (Brunel and Wang,
2003), we found that the gamma power of the LFP increased mono-
tonically with input strength (Fig. 5A). These results are consistent
with neurophysiological findings that grating stimuli of increasing
contrast (which is known to modulate the thalamic input to V1
(Derrington and Lennie, 1984; Shapley et al., 1981)) indeed modu-
late also the power of the LFP gamma band in V1 (Friedman-Hill
et al., 2000; Henrie and Shapley, 2005). Similar relationships be-
tween stimuli intensity and gamma band power have also been
found in non-invasive recordings in humans (Muthukumaraswam-
y et al., 2010; Swettenham et al., 2009). Furthermore, in the net-
work model (Mazzoni et al., 2008) increases in the inputs
intensity were not only associated to a stronger power of the gam-
ma band, but also to an higher peak frequency, consistent with the
experimental recordings from visual cortices (Ray and Maunsell,
2010).

In a second set of simulations we studied the response of the
network to time-varying inputs. We injected periodic inputs of dif-
ferent frequency and intensity. We found that a sufficiently strong
and slow periodic input was able to entrain the network LFP at the
corresponding frequency (Fig. 5B and C). This is compatible with
the entrainment between low frequency stimuli and neural activ-
ity recently observed in auditory cortices (Chandrasekaran et al.,
2010; Lakatos et al., 2008; Luo and Poeppel, 2007). We quantified
the entrainment measuring the circular variance of the phase dif-
ference between the LFP and the inputs for each pair of frequency
bands (see Section 2.4). Entrainment was shown to depend not
only on the input strength, but also on the input frequency, and
was in general stronger at low frequencies of the input (Fig. 5C).

In a third and final set of simulations we injected the network
with a naturalistic input based on the firing activity recorded from
the LGN of an anaesthetized macaque presented with naturalistic
movies (see Section 2.1). The LGN recordings were performed dur-
ing the same session of the V1 LFP recordings whose spectral infor-
mation was presented in Fig. 4. The naturalistic LGN spiking
response had a spectrum with a strong power associated to a broad
range of low frequencies (Fig. 6A). Fig. 6B illustrates that the rules
found above for simple inputs held also for the broadband natural-
istic input: the low frequency LFP entrained to the large-amplitude
slow fluctuations of the input, and the power of gamma oscillations
increased in correspondence of high input rates. As a consequence,
the information carried by the LFP power of the simulated network
during naturalistic stimulation closely matched the experimental



Fig. 5. Information processing in a recurrent network model injected with simple
inputs (A) LFP spectral modulation when the network was injected with constant
inputs of different intensity (see legend). The peak of the modulation occurred in
the range [50–100 Hz] in the gamma band. (B) LFP dynamics when the network was
injected with low-frequency periodic inputs (see legend). The low frequency
component of the network LFP entrained to the input. The network also displayed
cross frequency coupling between high frequency power and low frequency phase.
(C) The circular variance over time of the difference between the considered
frequency component of the LFP and the considered frequency component of the
input (each bandpassed in 2 Hz wide bands – see Section 2). This shows that
entrainment became weaker at higher input frequencies. Panels (A and C) modified
from Mazzoni et al. (2008), panel (B) modified from Panzeri et al. (2010) with
permission.
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one (Fig. 7A): significant information was conveyed at low fre-
quencies, and in the gamma band and above, with the two infor-
mation peaks separated by an interval of non-informative
frequencies. Also the combined information was similar to the
one found experimentally: frequencies above 50 Hz were redun-
dant with each other and independent from the informative fre-
quencies at the low end of the spectrum (Fig. 7B and C). This was
a consequence of the fact that input features encoded in the two
bands, the intensity and the power at low frequencies, varied inde-
pendently from scene to scene (Mazzoni et al., 2008).

In sum, the model reproduced well the experimental data and
suggested answers to the two questions about the underlying
mechanism asked at the beginning of the section: (i) the low fre-
quencies convey information about the low frequency components
in the input, and the gamma frequencies convey information about
the strength of the input; (ii) encoding at low frequencies occurs
through entrainment of the local neural activity to the external
stimuli, encoding at gamma frequencies occurs through modula-
tions of locally generated rhythms. Note that the presence of two
streams of information could only be detected using naturalistic
inputs which display large variations in intensity and a power
spectrum peaking at low frequencies.

3.3. A recurrent networks with slow dynamic inputs naturally
reproduce cross-frequency phase-power coupling

Another interesting finding of the dynamics of recurrent net-
works under naturalistic time-varying stimulation was that these
networks presented cross-frequency phase-power coupling, i.e.
the power of fast rhythms – such as the gamma rhythm – de-
pended upon the phase of slower rhythms (Mazzoni et al., 2010).
This phenomenon has also been consistently observed in neocortex
(Canolty et al., 2006; He et al., 2010; Jensen and Colgin, 2007;
Whittingstall and Logothetis, 2009) and hippocampus (Bragin
et al., 1995; Lisman, 2005) and was proposed to be central for a
number of cognitive and sensory processes (Jensen and Colgin,
2007; Lisman, 2005; Schroeder and Lakatos, 2009).

The presence of cross-frequency phase-power coupling in our
simulated network is illustrated in Fig. 5B: when slow input fluctu-
ations are present (such as the slow sinusoidal inputs of Fig. 5B),
the gamma LFP power is higher when the input reaches a local
maximum in time and thus (because of entrainment between
low frequency LFPs and inputs) the LFP phase reaches a value sig-
naling a maximum of the low frequency LFP (Mazzoni et al., 2010)).
As a result of this simple mechanism, we found that, when stimu-
lating the network with the naturalistic LGN input, the phase of
delta range oscillations (which dominated the fluctuations in the
naturalistic input, see Fig. 6A), significantly modulated the power
of gamma oscillations (Fig. 8). This cross-frequency phase-power
coupling was also found in experimental V1 recordings (Mazzoni
et al., 2010), and the model could quantitatively account for the ob-
served amount of coupling in real data (Fig. 8). These results sug-
gest that the interplay between fast oscillation reflecting
excitatory–inhibitory recurrent interactions and the slow oscilla-
tions reflecting changes in the external word contributes to the ori-
gin of the well documented phenomenon of cross-frequency
coupling.

4. Coding of visual information by the phase of firing

The previous sections showed that during stimulation with nat-
uralistic dynamics both visual cortex and recurrent network models
develop slow fluctuations which are informative about the external
world and can be measured by recording LFP. An interesting ques-



Fig. 6. Illustrations of the response of the simulated network to naturalistic input spike trains. (A) Power spectral density of the LGN recording injected as naturalistic input in
the network. (B) Network dynamics during naturalistic input: the delta [1–4 Hz] component of the LFP was entrained by the low-frequency structure of the input, while
periods of large amplitude of the LFP gamma [30–100 Hz] power were associated to peaks in the input. Thus, even if naturalistic inputs displayed a broad range of timescales,
low and gamma frequency bands were still associated to the same input features revealed in the study of constant and sinusoidal inputs. Panels modified from Mazzoni et al.
(2010) with permission.
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tion is whether these fluctuations provide an internal temporal
frame which can be used to reference spike times and increase
the information that can be extracted from them. The existence of
this type of spike timing coding, called phase of firing, has received
considerable attention in recent years. Evidence has been reported
that spatial-navigation and memory-related structures encode
some information by phase of firing (Huxter et al., 2003; Lee
et al., 2005; O’Keefe and Recce, 1993). However, the extent to which
firing rate and phase encode genuinely different information is still
debated (Harris, 2005; Harris et al., 2002; Mehta et al., 2002). Fur-
thermore, the research has focused so far mainly on the role of
phase of firing in the hippocampus, without clarifying whether
phase coding represents a fundamental code for cortical informa-
tion transmission used already in primary sensory areas.

In a recent study, we used the V1 recordings of LFPs and spikes
in response to movie stimuli to investigate whether such phase of
firing codes carry information about complex naturalistic visual
stimuli (Montemurro et al., 2008). We found that the presentation
of naturalistic color movies elicited reliable responses across trials
both for the spikes and for the delta-band [1–4 Hz] LFP phase
(Fig. 9A top rows). To visualize how LFP phases were modulated
by the movie, we divided the phase range into four equi-spaced
quadrants and labeled each with a different color (Fig. 9A). It was
apparent that the [1–4 Hz] LFP phase also encoded the movie, be-
cause the phase values were modulated by the movie time, and
this modulation was reliable across trials at several times during
the movie (Montemurro et al., 2008). Visual inspection of the data
suggested the LFP phase at which spike were fired allowed to dis-
ambiguate different movie scenes eliciting the same firing rate
(Fig. 9A bottom rows), suggesting that the phase of firing carried
visual information not available in the spike rates. This point was
investigated in detail using information theory. We found
(Fig. 9B) that the phase of the low frequency [1–4 Hz] LFP at which
spikes were fired carried 55% more information than spike counts
about the movie segment being shown. Labeling the spikes with
the phase of higher frequencies LFPs increased the information
by a much smaller amount, suggesting that spike times are partic-
ularly informative with respect to slow (rather than fast) LFP fluc-
tuations. In another study, the phase of firing with respect to [4–
8 Hz] LFPs was found to carry large amount of information about
complex natural sounds in auditory cortex (Kayser et al., 2009),
suggesting a general role of such code in representing sensory
stimuli with complex, naturalistic dynamics. Slow fluctuations in
the excitability of the local network can be measured by consider-
ing low frequency LFPs (Buzsaki and Draguhn, 2004; Logothetis,
2002; Schroeder and Lakatos, 2009), and the phase of such LFPs re-
flects the timing of changes in the state of the network and in its
excitability. Thus, the increased information available in the phase
of firing with respect to low frequency LFP fluctuations could be
interpreted as suggesting that knowledge of the network state gen-
erating a spiking response would increase the information that the
spiking response carries.

We analyzed the dynamics of the phase of firing code studying
the responses of our local cortical network model when injected
with naturalistic inputs (see Section 2.2). Each input was injected
100 times with different outcomes of the process representing
the cortical spontaneous activity in order to study the reliability
of the LFP and the amount of information conveyed by the phase
of firing code (see Section 2.3). We bandpassed the network LFP re-
sponse into different frequency bands (see Section 2.1.1) and we
found that the reliability of the LFP phase was high for low fre-
quencies and reached at �30 Hz a minimum level that was stable
for higher frequencies. The same dynamics was observed in the
experimental data (Montemurro et al., 2008), even if frequencies
above 30 Hz were more reliable in simulations than in recordings.
We built the phase of firing code considering the cumulative spik-
ing activity of small groups of neurons (from 1 to 10), since this is
the order of magnitude of the units available from single electrode
recordings as those used in Montemurro et al. (2008). We found
that the gain in information of the phase of firing relatively to
the spike rate grew linearly with the average firing rate, i.e. the
amount of information that the phase label added to each spike
was relatively stable. As observed in Montemurro et al. (2008),
the phase of firing gain was larger for low frequencies (Fig. 9C)
even if it never reached zero in simulations because of the higher
reliability of high frequency bands. Notably, very good quantitative
agreement with experimental data was obtained when considering
the cumulative activity of few excitatory units with a total average
firing rate of 5–10 spikes/s (Fig. 9C), in the range of typical values
of rates recorded from a single extracellular electrode.



Fig. 7. The information carried by LFP power in a recurrent network model injected
with naturalistic inputs. (A) Information about different parts of the dynamic input
stimulus carried by the LFP power for both experimental recordings (gray area,
representing the mean ± STD area across the different channels of session A98) and
simulations (black line). The red dashed line represents the p = 0.05 (bootstrap test)
significance line of information values. (B) Joint information and (C) redundancy of
simulated LFP power for all frequency pairs. Results are consistent with experi-
mental results in Fig. 4: (i) there were two peaks of information, one for low
frequencies and one in the [50–100 Hz] frequency range in the gamma band; (ii)
low frequencies and gamma frequencies carried independent information (iii) there
was high redundancy within the gamma range. Panels modified from Mazzoni et al.
(2008) with permission.

Fig. 8. Cross frequency phase-power coupling in experiment and simulations. The
plot shows the modulation of gamma amplitude as a function of delta phase in the
LFP recorded from primary visual cortex (red shaded area representing mean and
SEM across recording sessions) compared to the modulation of the simulated LFP
obtained in response to a naturalistic input (blue line, mean across all simulation
points). Panel modified from Mazzoni et al. (2010) with permission.
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Overall, these results suggest that (i) low frequency LFP phase
and spiking activity in the primary visual cortex convey indepen-
dent information about naturalistic stimuli; (ii) a phase of firing
code carries indeed more information than the spike rate alone
(and is also more robust to noise); (iii) this dynamics can be stud-
ied in the same framework used to analyze the phenomena de-
scribed in the previous sections, and in particular by the means
of the same recurrent LIF network.
5. Discussion

In this article we presented the progress that we made in char-
acterizing empirically the frequency ranges used by primary corti-
cal neural populations to represent naturalistic sensory
information and in using models to test quantitatively specific
hypotheses about the biological mechanisms generating these
neural representations.

5.1. Multiplexing and sensory coding

Our main empirical result is that, out of the very wide range of
frequencies expressed by the activity of the primary visual cortex,
only two frequency ranges carry significant information. The first
consists in low frequency (<10 Hz) fluctuations, and the second con-
sists in gamma range oscillations. Low frequency fluctuations are
decoupled and independent from gamma oscillations and spiking
activity, whereas gamma oscillations carry information similar to
that of spiking activity. Our models suggest that this information
independence stems from the difference in network mechanisms
originating the activity in the different frequencies and in the differ-
ent nature of the information encoded. In particular, our models sug-
gest that recurrent cortical excitatory–inhibitory networks encode
the strength of the input to the network as gamma-range oscillations
generated by inhibitory–excitatory neural interactions, and encode
slow dynamic features of the input into slow LFP fluctuations that
are entrained to the slow fluctuations of the naturalistic stimuli.

Taken together, these findings suggest that a key strategy used
by cortical networks to cope with the challenges of representing
the complexity of the natural environment is to use a multiplexing
strategy to encode simultaneously different types of information at
different time scales and so enhance the information capacity of
cortical columns (Panzeri et al., 2010). Evidence is now accumulat-
ing that a multiplexing strategy, suggested in earlier seminal work
(Bullock, 1997; Lisman, 2005) is key for the brain to represent the
complexity of changing environments (Fairhall et al., 2001; Lund-



Fig. 9. Information about movie scenes conveyed by spike rate and phase of firing codes. (A) From top to bottom: spike times (indicated by dots) from a representative
recording (D04nm1 ch1) from macaque’s V1 during 30 different presentations of the same movie clip; superimposition of the traces of delta band (1–4 Hz) of the LFP recorded
from the same channel where the spikes were recorded, with the line color denoting the instantaneous LFP phase (divided in quarters as indicated in the legend); same spike
times displayed in top row, but with spike times colored according to the concurrent LFP phase; average spike rate over trials with colored markers indicating response peaks
occurring reliably for different LFP phases. The movie scenes can be much better discriminated from each other using the phase of firing (colored spikes) than the spike count
alone (black spikes). (B) Black circles show the information carried by the phase of firing code as function of the considered LFP frequency (mean ± SEM over the data set). The
black dashed line plots the mean over the data set of the spike rate information (SEM over data set indicated as gray area). Panel reproduced from Montemurro et al. (2008)
with permission. (C) Information carried by the summed activity of two simulated excitatory neurons from the network (total average rate: 5.6 spikes/s) when naturalistic
inputs were injected. Blue line represents the information carried by the phase of firing code, red line the information carried by the spike rate, and red area the bootstrap
significance (p < 0.05) obtained with 40 permutations of the phase.
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strom and Fairhall, 2006) and of the information relevant for
behavior (Schyns et al., 2011). These findings have also potential
implications for the development of Brain Machine Interfaces
(Donoghue, 2008; Nicolelis and Lebedev, 2009), because decoding
based on multiple time scales may be used to enhance the amount
of information that can be extracted by each single electrode.

5.2. Implications of the model prediction that information in low
frequency LFPs arises in part by entrainment to slow stimulus features

Our modeling work suggested that the information about natu-
ralistic movies carried by low frequency LFPs results from entrain-
ment to the low frequency components of the time evolution of
naturalistic stimuli. This model prediction is consistent with re-
sults from the auditory system, which show that low frequency
LFPs entrain to sound features during the presentation of complex
naturalistic sounds (Chandrasekaran et al., 2010).

An experimentally testable prediction of this model, which we
are currently investigating, is that low frequency LFPs in primary vi-
sual cortex should entrain to the frame by frame changes of one or
more image features (such as contrast or orientation) displayed in
the receptive field of the considered recording sites during movie
presentation. This is because the latter should somehow reflect the
time course of the input to the local cortical network, as these fea-
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tures influence the firing of geniculate neurons and of other cortical
areas.

Natural visual stimuli are characterized by both ‘‘what’’ aspects
(image properties such as contrast or orientation which are defined
by the relationship between visual signals simultaneously pre-
sented at different points in space) and ‘‘when’’ aspects, describing
the temporal variations of the various image features. Although
temporal information is crucial for sensory processing, our under-
standing of stimulus processing is currently biased toward the rep-
resentation of non-temporal aspects (Buonomano and Maass,
2009). A potentially interesting implication of the hypothesis that
low frequency LFPs entrain to the slow stimulus dynamics is that
they may provide a way to encode information about the temporal
structure of natural visual stimuli in the low temporal frequency
range (<10 Hz) in which these stimuli have the most power and
information (Dan et al., 1996; Geisler, 2008).

5.3. Partial decoupling of the information carried by gamma
oscillations and spike rates during naturalistic stimulation

We investigated whether LFPs and spikes convey redundant or
independent stimulus information at particular frequencies, and
we found that in primary visual cortex of anaesthetized macaques
the power of gamma range LFPs was largely (but not completely)
redundant to the spike rate, indicating that spike rates and gamma
power are similar but can also decouple in some condition during
naturalistic stimulation. We note that in our simple model of a lo-
cal randomly connected recurrent network with balanced excita-
tion and inhibition, spike rate and power should be largely
coupled, because in these model networks higher input excitation
corresponds to higher gamma power and higher output spike rate
(Brunel and Wang, 2003). For example, an increase in contrast
within the receptive field is likely to elicit an increase of both spike
rate and gamma power. It is therefore interesting to consider the
reasons and mechanisms by which this partial decoupling may
arise. Thiele and Gieselmann (2008) reported that in V1 of awake
macaques an increase in the size of the visual stimulus was associ-
ated to a decrease in the spiking activity and to an increase in the
LFP power, particularly in the gamma band. The decoupling oc-
curred when the stimulus borders reached the surround of the
receptive field: the inhibition from the receptive field surround
mechanisms suppressed the firing activity while contributed to
strengthen the LFP gamma oscillations. Thus, one possibility is that
the partial decoupling between gamma power and spike rate that
we observed is caused by objects present in natural movies chang-
ing their size across time, and this could be modeled by a differen-
tial recruitment of excitatory and inhibitory populations during the
movie. A second factor contributing to decoupling in our data may
be the one proposed in an interesting modeling study by Deco and
colleagues (2008), which revealed the mechanisms of decoupling
between gamma power and spike rates in models of networks
made of pools of interacting neurons. Their results suggest that
the interplay of different networks, which was not considered in
our own simulations, may also contribute to the partial decoupling
between gamma power and spike rate which we observed.

5.4. Statistical validation of models and estimation of model
parameters

In principle, models like the ones presented here are not only
useful to provide a potential explanation of the network phenom-
ena generating neural representations, but also to estimate the
changes across different stimulation conditions of important
parameters of the network (such as the balance of excitation and
inhibition) which would be difficult or impossible to measure di-
rectly from extracellular recordings. So far, we estimated network
parameters by first fixing them from plausible literature values,
and then fine tune them by hand to obtain a good fit with the
experimental data, as measured by chi square statistics. However,
in principle, methods such as Dynamic Expectation Maximization
(Friston et al., 2008) or Bayesian estimation (Friston, 2002) could
be used to obtain a much more rigorous correspondence between
model and data and estimate the best fit parameters as well as the
confidence of parameter estimation. However, a practical problem
is that these statistical procedures require integrating the network
dynamics and produce a numerical output over a wide range of
possible different parameter values, and this is not feasible with
simulations like the one described above, because of the high
dimensional parameter space and because of the long time cur-
rently taken to run the analysis (several hours per parameter set-
ting on a state of the art PC). A solution to this problem is to
obtain analytical approximations of the model network variables
that can be measured experimentally (such as the LFP or spike rate
spectrum or the spectral LFP information) which are valid in a gi-
ven network regime (such as the weakly synchronized one) and
then use these approximations to estimate the network parame-
ters by means of the statistical techniques described above. The
analytical methods consist in computing the dynamics of the
instantaneous firing rate of both excitatory and inhibitory neurons
in the presence of time-dependent inputs, using linear response
theory (Ledoux and Brunel, 2011). This allows in turn the compu-
tation of the LFP spectrum and spectral LFP information, and the
use of these analytical expressions to fit the experimental data.
We are currently working toward this goal.
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