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Information Content of Local 
Field Potentials
Experiments and Models

Alberto Mazzoni, Nikos K. Logothetis, and Stefano Panzeri

21.1 � LOCAL FIELD POTENTIAL DYNAMICS OFFER INSIGHTS 
INTO THE FUNCTION OF NEURAL CIRCUITS

The local field potential (LFP) is a massed neural signal obtained by low-pass filtering (usually 
with a cutoff low-pass frequency in the range 100–300 Hz) of the extracellular electrical potential 
recorded with intracranial electrodes. LFPs have been neglected for a few decades because in vivo 
neurophysiological research focused mostly on isolating action potentials from individual neurons, 
but the last decade has witnessed a renewed interest in the use of LFPs for studying cortical func-
tion, with a large amount of recent empirical and theoretical neurophysiological studies using LFPs 
to investigate the dynamics and the function of neural circuits under different conditions.

There are many reasons why the use of LFP signals has become popular over the last 10 years. 
Perhaps, the most important reason is that LFPs and their different band-limited components (e.g., 
known as alpha, beta, or gamma bands) are invaluable for understanding cortical function. They 
offer unique windows onto integrative excitatory and inhibitory synaptic processes at levels of 
neural population activity. The LFP captures a multitude of neural processes, such as synchro-
nized synaptic potentials (Mitzdorf, 1985; Logothetis, 2003), after potentials of somatodendritic 
spikes (Gustafsonn, 1984), and voltage-gated membrane oscillations (Harada and Takahashi, 1983; 
Kamondi et al., 1998). As a result, the LFP is sensitive to subthreshold integrative processes and 
carries information about the state of the cortical network and the local intracortical processing, 
including the activity of excitatory and inhibitory interneurons and the effect of neuromodulatory 
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412 Principles of Neural Coding

pathways (Mitzdorf, 1985; Logothetis, 2003, 2008). These contributions are almost impossible to 
capture using spiking activity from only a few neurons (Logothetis et al., 2002; Buszaki, 2006; 
Mazzoni et al., 2008). Therefore, the combined recording and analysis of LFPs and spikes offers 
insights into the circuit mechanism generating neural representation of information that cannot be 
obtained at present by examining spikes alone.

Another source of interest is that cortical LFPs typically contain a broad spectrum of oscil-
lations or of fluctuations of neural activity, that span a wide range of frequencies ranging from 
less than 1 Hz to 100 Hz or more (Kayser and Konig, 2004; Lakatos et al., 2005; Buszaki, 2006; 
Senkowski et al., 2007). This broadband range of activities most likely reflects contribution of 
several different neural processing pathways. Several studies have shown that these contributions 
can, to some extent, be separated out and identified from LFPs with relatively simple techniques 
such as frequency decompositions (Steriade et al., 1993; Logothetis et al., 2002; Buszaki, 2006; 
Mazzoni et al., 2008; Ray and Maunsell, 2010). Therefore, recording LFPs allows the empiri-
cal examination and separation of different and potentially independent information channels 
participating in neural information processing (Belitski et al., 2008; Montemurro et al., 2008; 
Kayser et al., 2009).

An additional reason of interest of LFPs is that they provide stable signal for a longer period of 
time than multiunit spiking activity, and are therefore useful for long-term chronic experiments and 
for clinical applications such as brain machine interfaces (Mehring et al., 2003; Andersen et al., 
2004; Rickert et al., 2005; Scherberger et al., 2005; Donoghue, 2008; Nicolelis and Lebedev, 2009; 
Bansal et al., 2011; Markowitz et al., 2011).

However, LFPs have also a drawback. Due to the multiple neuronal processes that contribute to 
them, the LFP is a partly ambiguous signal and is more difficult to interpret than spikes. To take full 
advantage of the opportunities this signal offers to study neural information processing and cortical 
organization, careful analytical, modeling, and empirical considerations are therefore necessary. 
To illustrate the challenges to a computational understanding of LFPs, and to present the progress 
we made so far, here we review a series of neurophysiological (Belitski et al., 2008; Montemurro 
et al., 2008) and modeling (Mazzoni et al., 2008, 2010) studies from our group which attempted 
to identify and separate out, respectively through extracellular recordings from the primary visual 
cortex of anesthetized macaques and through simulations of recurrent networks, the neural path-
ways involved into the primary cortical representation of naturalistic visual information and the 
type of information carried by each pathway. Inspired by a recent review of Mazzoni et al. (2011), 
we discuss how models and experiments contribute to provide a coherent understanding of how LFP 
recordings may be used to study neural population coding.

21.2 � INFORMATION CONTENT OF PRIMARY CORTICAL LFP 
DURING NATURALISTIC VISUAL STIMULATIONS

As mentioned above, the LFPs is a broadband signal that captures variations of neural population 
activity over a wide range of timescales (Kayser and Konig, 2004; Lakatos et al., 2005; Buszaki, 
2006; Senkowski et al., 2007). The range of timescales available in LFPs is particularly interest-
ing from the neural coding point of view, because it opens up the possibility to investigate whether 
there are privileged timescales for information processing, a question that has been hotly debated 
over the last one or two decades. On the one hand, the presence of a wide spectrum of activity could 
imply that there is no privileged scale for information representation, because information is evenly 
spread over all scales (Panzeri et al., 2010). This view is consistent with the proposal that neural 
activity is largely scale free (Bedard et al., 2006; Mazzoni et al., 2007; He et al., 2010). On the other, 
it is possible that information is represented by only a small number of specific frequency ranges, 
each carrying a separate contribution to the information representation. To shed light on this issue, 
it is important to quantify the information content of each frequency range of neural activity, and 
understand which ranges carry complementary or similar information.
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To investigate this question, we used spectral analysis and information theory to analyze LFPs 
and spiking responses recorded from the primary visual cortex of anesthetized macaques in 
response to binocularly presented naturalistic color movies. Here, we used naturalistic movies for 
several reasons. First, they reflect better, in a better way than simplified stimuli do, the range of con-
tinuous changes over a wide range of spatial and temporal scales that characterize the natural visual 
environment (Reinagel, 2001; Simoncelli, 2003; Felsen and Dan, 2005; Geisler, 2008). Perhaps 
more importantly for this study, the use of complex stimuli containing many parameters varying 
partly independently (as it happens in naturalistic movies) gives us a better chance to engage dif-
ferent processing pathways in a partly independent way, and this facilitates the separation, through 
analysis and models, of different processing channels from LFP recordings.

In the following, we first review the experimental methods used to collect the data and we 
then present the results of a number of computational analyses aimed at characterizing quantita-
tively the information carried by different frequency components of the spectrum of extracellular 
recordings.

21.2.1  Neurophysiological Procedures and Spectral Analysis of Extracellular Signals

We briefly summarize the experimental procedures used to record neural responses to naturalistic 
color movies in primary visual cortex (V1). We refer to earlier data (Belitski et al., 2008, 2010; 
Montemurro et al., 2008; Mazzoni et al., 2011) for full details.

Four adult rhesus monkeys (Macaca mulatta) participated in the experiments. All procedures 
were approved by the local authorities (Regierungspräsidium) and were in full compliance with the 
guidelines of the European Community (EUVD 86/609/EEC) for the care and use of laboratory 
animals. Prior to the experiments, form-fitted head posts and recording chambers were implanted 
during an aseptic and sterile surgical procedure (Logothetis et al., 2002). Recordings were obtained 
while the animals were anesthetized. The main reason for collecting neural responses during 
anesthesia is that this protocol offers several advantages for the investigation of primary cortical 
dynamics. In particular, anesthesia remove effects of attention and arousal, as well as trial-to-trial 
variations of eye movements, and good signal-to-noise ratio, which can be more easily obtained in 
anesthetized animals due to long acquisition times. Neuronal activity was recorded from opercular 
V1 (foveal and para-foveal representations) using microelectrodes (FHC Inc., Bowdoinham, Maine, 
300–800 kΩ) which were arranged in a 4 × 4 square matrix (interelectrode spacing varied from 1 
to 2.5 mm) and introduced in each experimental session into the cortex through the overlying dura 
mater by a microdrive array system (Thomas Recording, Giessen, Germany). Electrode tips were 
typically positioned in the upper or middle cortical layers. In each of the five recording sessions, 
we recorded from 7 to 10 sites in V1 with a well-defined receptive field within the field of movie 
projection for a total of 45 sites.

Visual stimuli were presented binocularly at a resolution of 640 × 480 pixels (field of view: 
30 × 23°, 24-bit true color, 60 Hz refresh) using a fiberoptic system (Avotec, Silent Vision, Florida). 
The stimuli consisted of commercially available Hollywood movies (30 Hz frame rate) displaying 
“naturalistic” image dynamics, from which 3.5–6 min long sequences were presented and repeated 
30–40 times. The receptive fields of all recording sites analyzed were within the area of visual 
stimulation (Rasch et al., 2008).

Extracellular neural signals were recorded at a 20.83 kHz rate. LFPs were extracted by low-pass 
filtering the neural signal in the frequency range up to 250 Hz. To extract multiunit spike times, the 
neural signal was bandpassed in the high-frequency range of 500–3500 Hz. The threshold for spike 
detection was set at 3.5 standard deviations. A spike was recognized as such only if the last spike 
occurred more than 1 ms earlier. For the present analysis, we did not separate single and multiunits. 
Power spectra were computed in single trials using the multitaper technique (Percival and Walden, 
1993), which provides an efficient way to simultaneously control the bias and variance of spectral 
estimation.
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21.2.2 S pectral Properties of LFP Recordings in Response to Natural Stimuli

To quantify the characteristics of LFP fluctuations at different frequencies, we first computed 
the LFP spectrum during the entire period in which movies were presented (an example channel, 
reporting LFP response spectra to two different movies and LFP spectra in the absence of visual 
stimulation is shown in Figure 21.1a). The LFP spectrum had a very wide band with fluctuations 
ranging over the entire frequency range analyzed. The highest LFP power was at low frequen-
cies (<10 Hz), and the power decreased steeply at increasing frequencies. We compared the aver-
age LFP spectrum evoked during the movie to the LFP spectrum of the same electrode during 
spontaneous activity (measured in the absence of visual stimulation). There was a proportionally 
small increase of power during movie stimulation at frequencies below 10 Hz (Figure 21.1a). The 
evoked and spontaneous LFP spectrograms were similar at frequencies between 10 and 24 Hz, 
while the power associated to frequencies higher than approximately 40 Hz was higher during 
movie presentation. The difference in power between different movies was also more marked in 
the region [40–100 Hz]. Consistent with previous studies (Henrie and Shapley, 2005), we found the 
most substantial power increase over spontaneous activity of the movie-evoked LFP in the gamma 
frequency region (40–100 Hz).

Next, we analyzed the reliability of the responses of different LFP band to the movie presenta-
tion. Figure 21.1b–d shows the bandpassed LFP responses (in the [1–5 Hz], [28–32 Hz], and [72–
76 Hz] frequency range, respectively) for several trials, from a representative example recording 
site. The presentation of the movie elicited LFP patterns that, both in the low-frequency (1–5 Hz) 
range (Figure 21.3b) and in the (72–76 Hz) range within the high gamma region (Figure 21.1d), were 
clearly modulated by the movie and repeatable across trials: episodes of high instantaneous power 
were elicited reliably in correspondence of certain scenes in the movie. In contrast, LFP waveforms 
in the intermediate frequency range (28–32 Hz) (Figure 21.1c) could not be reliably associated to 
the movie time course.

We also investigated the V1 spiking responses to the movie. Figure 21.1e shows that the spike 
rates clearly encoded the movie time course. The high spike rate episodes were associated more 
closely with episodes of high LFP power in the high-gamma LFP frequency range than at lower LFP 
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FIGURE 21.1  ​Examples of LFP responses in macaque V1. (a) Trial-averaged LFP spectrum for a represen-
tative channel during presentation of two different movies and during spontaneous activity. (b) LFP traces 
(band-passed in the (1–5 Hz) frequency range) from five presentations of a 15 s long movie extract. Traces 
were displaced on the vertical axis to make them distinguishable. (c) Time courses of the (28–32 Hz) band-
passed LFP recorded during the same five movie presentations of (b). (d) Time courses of the (72–76 Hz) 
band-passed LFP recorded during the same five movie presentations of (b). Frequency bands were obtained 
bandpassing LFPs with a Kaiser filter (see text). (e) Raster plot of spike times (indicated by black markers) 
recorded from the same electrode of LFP displayed in (b)–(d) during the same five presentations shown in (b). 
(Panels (b)–(d) adapted from Panzeri S, Magri C, Logothetis NK. 2008. Magn Reson Imaging 26:1015–1025.)
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frequencies, suggesting that gamma LFPs may be more closely related to the stimulus-modulated 
spiking activity than low LFP frequencies.

21.2.3 �I nformation Analysis of LFPs Suggest that Cortex Multiplexes Naturalistic 
Information Over a Small Number of Frequency Bands

We then investigated more quantitatively how the power of different LFP frequency bands encoded 
the stimuli computing the information that the LFP power carries about which scene was being pre-
sented. Mutual information (abbreviated as “information” in the following), is a popular measure of 
the goodness of stimulus encoding in neuroscience (de Ruyter van Steveninck et al., 1997; Fairhall 
et al., 2001; Panzeri et al., 2003). It quantifies the reduction of the uncertainty about the stimulus 
that can be gained from observing a single-trial neural response, and we measured it in units of bits 
(1 bit means a reduction of uncertainty by a factor of 2). We refer to Chapter 8 for more in-depth 
discussion about mutual information and its applications to neuroscience.

Information depends on both the choice of the stimulus set and of the quantification of the 
neural response. To create the stimulus set S, we divided the presentation time of the dynamic 
stimulus (a movie in the case of recordings from visual cortex, and a time-dependent input 
spike train in the case of neural network simulations) into different nonoverlapping segments 
of length T (a parameter that was varied in the range from few milliseconds to several seconds 
(Belitski et al., 2008)) and each segment was considered as a different stimulus s (see schematic 
in Figure 21.2). We then computed the information about which dynamic stimulus time segment 
elicited the considered response. This procedure has several advantages. The first is that it is 
simple to apply and lend itself to comparisons between experimental and theoretical data. The 
second is that it does not make any assumption as to which specific features of the dynamic 
stimulus triggered the neural response and so can potentially capture the information about 
all possible dynamical stimulus features presented experimentally (de Ruyter van Steveninck 
et al., 1997). Regarding the choice of neural response R, we considered several different pos-
sibilities, as detailed next.

We first computed the information between the stimulus and the power of the LFP at a given 
frequency f, as follows:
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P r s
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where P(s) is the probability of presentation of the stimulus window s (here equal to the inverse of 
the total number of stimulus windows), P(rf) is probability of observing power rf across all trials 
in response to any stimulus (Figure 21.2a), and P(rf |s) is the probability of observing a power rf at 
frequency f in response to a single trial to stimulus s (Figure 21.2c–d). To facilitate the sampling of 
response probabilities, the space of power values at each frequency was binned into six equipopu-
lated bins (Belitski et al., 2008). For all measures of information about power presented here, we 
used a stimulus window of length T = 2.048 s.

The information of the LFP power, averaged over all channels recorded in session A98 (the one 
selected for comparison with model results, see below), is reported in Figure 21.3a. We found two 
informative bands in the LFP spectrum: a low-frequency range below 10 Hz (corresponding to the 
delta and theta bands) and the (40–100 Hz) in the gamma band.

Having established that both high-gamma and low frequencies of LFPs convey information, 
the next important question is to establish whether the different informative frequencies ranges 
are redundant or not, that is, whether or not they carry the same or different stimulus information. 
The above single-frequency information analysis was extended to compute how much information 
about the stimuli we can obtain when combining together the power rf1 and rf2 at two different 
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FIGURE 21.2  Schematic representation of the computation of the mutual information carried by LFP 
power about which movie scene was being presented. The figure illustrates how we obtained the different 
probabilities needed to compute (through Equation 21.1) the information I(S;R) about the movie carried by 
the LFP power at a given frequency. The movie presentation time is portioned into nonoverlapping windows, 
each considered a different stimulus s (a “scene”). The set of the stimuli is the set of the N different scenes, 
each of which is presented once every trial, so the probability of each scene is P(s) = 1/N. (a) Probability dis-
tribution P(r) of the LFP 72–76 Hz power across all trials and scenes. (b) Single-trial LFP power across all 
trials and movie scenes. (c) and (d) Probability distribution P(r|s) of the LFP (72–76 Hz) power across trials 
at the time of presentation of two particular scenes s1 and s2, respectively. The differences between the two 
distributions and the distribution P(r) suggest that the LFP gamma power carried information about which 
scene is presented. The key for evaluating mutual information expressed in Equation 21.1 is the computation 
of P(r|s) for all scenes.
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frequencies. The mutual information that the joint knowledge of the powers rf1 and rf2 conveys 
about the stimulus is defined as
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where the stimulus−response probabilities defined in Equation 21.2 are analogous to the ones in 
Equation 21.1—see Belitski et al. (2008) for full details. The redundancy between the information 
carried by the powers at the two considered frequencies is defined as the difference between the sum 
of the information carried by the power of each frequency individually and their joint information:

	
Red( ;S R R Rf f f f f fR I S I S R I S R1 2 1 2 1 2) ( ; ) ( ; ) ( ; )= + −

	
(21.3)

Thus, we computed both the joint information carried by the power of pairs of LFP frequencies 
(Equation 21.2) and their redundancy (Equation 21.3). We found that the redundancy between the infor-
mation carried by the power of high and low frequencies was nearly zero (Figure 21.3b). Consequently, 
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FIGURE 21.3  Information about movie scenes carried by the power of LFPs at different frequencies. 
(a)  Information carried by different frequency bands (black line and gray area represent the mean ± STD 
area across recorded channels). The dashed line represents the p = 0.05 (bootstrap test) significance line of 
information values. (b) Average across channels of the redundancy of information carried by the power for 
all measured pairs of LFP frequencies. Note that frequencies in the gamma range are highly redundant. 
(c) Average across channels of the joint information carried by the LFP power at a given pair of frequency, 
plotted as function of the frequencies. The highest information is carried by the joint observation of the power 
of a low frequency and of a gamma frequency.
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the information obtained by the combined knowledge of the power at low frequencies and the power 
at gamma frequencies was nearly the sum of the information carried by the two frequencies separately 
(Figure 21.3c). In contrast, frequencies in the gamma band were highly redundant between each other 
(Figure 21.3c), suggesting that all frequencies in the gamma range reflect largely the same network 
phenomenon. We found also that low LFP frequencies carried independent information with respect 
to spike rates, and were indeed totally decoupled from spike rates (both in terms of stimulus selectiv-
ity and trial-to-trial covariations). However, the power of gamma range LFPs was largely (but not 
completely) redundant to the spike rate, suggesting that spike rates and gamma power are a largely 
overlapping information channel (results not reported here but fully explained in Belitski et al., 2008).

In summary, V1 LFP spectral information about naturalistic stimuli is multiplexed in two inde-
pendent streams, one at very low frequencies and one at gamma frequencies. The gamma power 
carries information partly (but not completely) redundant to that carried by spike rates. Powers at 
different frequencies in the low frequencies range carry largely independent information, while 
frequencies in the gamma range are highly redundant with each other. Intermediate frequencies do 
not carry any information, suggesting that out of the many timescales of neural activity that have 
significant power, only a handful of timescales seem to carry different types of information.

21.2.4 C oding of Information by Phase of Firing

The previous sections showed that during stimulation with naturalistic dynamics the visual cortex 
develops slow fluctuations which are informative about the external world and can be measured 
by recording LFP. An interesting question is whether these fluctuations provide an internal tem-
poral frame which can be used to reference spike times and increase the information that can be 
extracted from them. The existence of this type of spike timing coding, called phase of firing, has 
received considerable attention in recent years. Evidence has been reported that spatial-navigation- 
and memory-related structures encode some information by phase of firing (O’Keefe and Recce, 
1993; Huxter et  al., 2003; Lee et  al., 2005). However, the extent to which firing rate and phase 
encode genuinely different information is still debated (Harris et  al., 2002; Mehta et  al., 2002; 
Harris, 2005). Furthermore, the research has focused so far mainly on the role of phase of firing in 
the hippocampus, without clarifying whether phase coding represents a fundamental code for corti-
cal information transmission used already in primary sensory areas.

In a recent study, we used the V1 recordings of LFPs and spikes in response to movie stimuli to 
investigate whether such phase of firing codes carry information about complex naturalistic visual 
(Montemurro et al., 2008). We found that the presentation of naturalistic color movies elicited reliable 
responses across trials both for the spikes and for the delta-band (1–4 Hz) LFP phase (Figure 21.4a top 
rows). To visualize how LFP phases were modulated by the movie, we divided the phase range into four 
equi-spaced quadrants and labeled each with a different color (Figure 21.4a). It was apparent that the 
(1–4 Hz) LFP phase also encoded the movie, because the phase values were modulated by the movie 
time, and this modulation was reliable across trials at several times during the movie (Montemurro 
et al., 2008). Visual inspection of the data suggested that the LFP phase at which spikes were fired 
allowed to disambiguate different movie scenes eliciting the same firing rate (Figure 21.4a bottom 
rows), suggesting that the phase of firing carried visual information not available in the spike rates.

This point was investigated in detail using information theory. We defined a phase of firing code, 
which is the neural response defined when the timing of spikes emitted in response to the stimulus 
are measured with respect to the phase of a concurrent LFP wave bandpassed around a considered 
frequency f. This can be done by dividing the phase range into quarters, and then by tagging the 
spikes with a label indicating the phase quadrant at which they were emitted. Then, the phase of 
firing information can be defined as follows:
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FIGURE 21.4  (See color insert.) Phase of firing coding. (a) From top to bottom: raster plot of spike time, 
with each line representing a different trial and each dot representing the time of an action potential recorded 
from an example electrode; superimposition of the traces of delta band (1–4 Hz) of the LFP recorded from 
the same channel where the spikes were recorded, with the line color denoting the instantaneous LFP phase 
(discretized into phase quadrants as indicated in the inset); same spike times as displayed in top row, but with 
spike times colored according to the quadrant of the LFP phase at which they were emitted; trial-average 
spike rate, with colored markers indicating the dominant LFP phase corresponding to different peaks in the 
trial-average time-dependent firing rates. The fact that many peaks of the time-dependent rate had similar 
amplitude but corresponded to spikes fired in different phase quadrants suggests that the phase of firing car-
ries some additional information to that carried by spike rates alone. (b) Black circles show the information 
carried by the phase of firing code as function of the considered LFP frequency (mean ± SEM over the data 
set). The black dashed line plots the mean over the data set of the spike rate information (SEM over data set 
indicated as gray area). (Panel reproduced from Curr Biol 18, Montemurro MA, et al. Phase-of-firing coding 
of natural visual stimuli in primary visual cortex. 375–380, Copyright 2008, with permission from Elsevier.)
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where in the above equation the response set is composed of five different symbols: 
φf = 0 denotes the absence of spikes in response to the stimulus in the considered trial, and φf = 
1,2,3,4 denote that a spike was emitted when the LFP phase was in a given quadrant. To evalu-
ate if the phase of firing carries information above and beyond that carried by spike rates, we 
compared I S Rf( ; )Φ  to the spike rate information, which was evaluated from Equation 21.4 but 
after randomly shuffling the responses φf > 0 independently for each trial. The shuffling opera-
tion preserves all the information carried by the spike rate while at the same time completely 
destroying any additional information that may be carried by the knowledge of phase. For all 
phase of firing information measures reported here, we used a stimulus window T of 4 ms 
(Montemurro et al., 2008).

We found (Figure 21.4b) that the phase of the low frequency (1–4 Hz) LFP at which spikes 
were fired carried 55% more information than spike counts about the movie segment being 
shown. Labeling the spikes with the phase of higher frequencies LFPs increased the information 
by a much smaller amount, suggesting that spike times are particularly informative with respect 
to slow (rather than fast) LFP fluctuations. In another study, the phase of firing with respect to 
(4–8 Hz) LFPs was found to carry large amount of information about complex natural sounds in 
auditory cortex (Kayser et al., 2009), suggesting a general role of such code in representing sen-
sory stimuli with complex, naturalistic dynamics. Slow fluctuations in the excitability of the local 
network can be measured by considering low-frequency LFPs (Logothetis, 2002; Buzsaki and 
Draguhn, 2004; Schroeder and Lakatos, 2009), and the phase of such LFPs reflects the timing of 
changes in the state of the network and in its excitability. Thus, the increased information avail-
able in the phase of firing with respect to low-frequency LFP fluctuations suggests that knowledge 
of the network state generating a spiking response would increase the information that the spik-
ing response carries.

21.3 � MULTIPLEXING OF INFORMATION IN AN INTEGRATE AND FIRE 
MODEL OF A LOCAL CORTICAL NETWORK

The experimental studies described above suggest that visual information might be multiplexed in 
two separate information streams associated to separate frequency band of the LFP. However, these 
studies do not clarify the mechanisms generating these two information channels and the nature of 
the sensory information encoded in the two bands. To investigate which mechanisms are compatible 
with our observations, we used biophysically plausible neural network models, which we review in 
the following.

21.3.1 �D escription of the Recurrent Models of Networks of Excitatory 
and Inhibitory Neurons

We used a simulated model of a recurrent sparsely connected neural network of leaky integrate and 
fire neurons (Tuckwell, 1988; Brunel and Wang, 2003). These networks are simple, but able to cap-
ture the interplay between excitation and inhibition, which is one feature of the organization of cor-
tical microcircuits which is believed to shape the dynamics of local mass activation (Douglas and 
Martin, 1991; Deco et al., 2008; Logothetis, 2008). The network we used (Figure 21.5a) was com-
posed of 4000 pyramidal neurons with AMPA-like synapses, and 1000 interneurons with GABA-
like synapses. AMPA and GABA postsynaptic currents were determined by the spikes emitted by 
the presynaptic neurons of the network and by the external inputs mimicking the thalamic inputs 
(conveying the information about sensory stimuli) and the ongoing cortical fluctuations (summariz-
ing the effect of the slow covariations in network state due to ongoing activity). Synapses carrying 
both types of external inputs were activated by random Poisson spike trains, with time-varying 
rates which were identical for all neurons. The network connectivity was random and sparse, with 
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a connection probability of 0.2 between any directed pair of cells. We refer to the original reports 
(Mazzoni et al., 2008, 2010), as well as to Chapter 25, for more details about this work in particular 
and about models of neural networks in general.

To compare simulation and experimental results, we needed to compute simulated LFPs from 
the model network. The simplest model of LFP consists in averaging the membrane potential of the 
network neurons (Hill and Tononi, 2005; Xing et al., 2009). This approximation, however, has the 
disadvantage that it may slow down the synaptic potentials by an extra factor due to the low-pass-
filtering properties of the neural membrane, and that it might be unable in some circumstances to 
pick effects potentially based on the interplay between inhibitory and excitatory stimuli (Mazzoni 
et al., 2008; Linden et al., 2010). Since a prominent contribution to real cortical LFPs arises from 
current flows due to synaptic activity (Mitzdorf, 1985; Logothetis, 2003), a better way to model of 
LFPs is to use weighted sums of the currents crossing the membrane, whether given only by syn-
aptic components (Esser et al., 2007), or by a wider range of sources (Makarov et al., 2010). In the 
work presented in this chapter (see Mazzoni et al., 2008, 2010), we computed the simulated LFP 
signal generated by the network as the sum of the absolute values of AMPA and GABA currents (the 
model does not include other currents). We decided to sum the absolute values of currents because 
AMPA synapses are usually apical and GABA synapses are usually peri-somatic and thus their 
dipoles sum with the same sign along the dendrite (Figure 21.5b). Our model can then be considered 
as a two-compartment model with a single current on each compartment. Our simple model takes 
into account a very general feature of the geometry of cortical organization: since pyramidal neu-
rons are likely to contribute more due to their approximate open-field arrangement (Murakami and 
Okada, 2006), in computing the simulated LFPs, we summed only currents from synapses of pyra-
midal neurons (Figure 21.5b). The LFP signal was taken with a negative sign to be better compared 
with the polarity of our experimental recordings. As shown below, we found that the simple quan-
tification that we chose was enough to reproduce all the features of interest of the neural dynamics 
observed during real primary cortical recordings, thereby suggesting that our simple description of 
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FIGURE 21.5  Schematics of a randomly connected network of integrate-and-fire neurons. (a) Schematics of 
network structure. The network was composed by 4000 AMPA neurons and 1000 GABA neurons. Directed 
pairs of neurons were connected with probability 0.2. The size of the arrows illustrates the strength of the 
different synaptic connections. In addition to recurrent interactions each neuron received two types of distinct 
external excitatory drives: a “thalamic” input carrying the simulated sensory information, and an “unspecific” 
input representing stimulus unrelated changes of ongoing activity and nonspecific contributions from other 
areas. (b) Schematics of the computation of the simulated LFP. Left side: we computed the simulated LFP as 
the sum of the absolute values of AMPA and GABA currents because AMPA synapses are usually apical and 
GABA synapses are usually peri-somatic and thus their dipoles sum with the same sign along the dendrite. 
Right side: we summed only currents from synapses of pyramidal neurons because, due to their approximate 
open-field arrangement, the neurons contribute more than inhibitory neurons, which have a much less regular 
dendritic spatial organization.
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LFPs was sufficient for the present purposes. Interestingly, a bulk of more comprehensive model-
ing work considering in more detail the geometry of neural organization and how different sources 
of LFPs combine in the extracellular medium (Einevoll et al., 2007; Pettersen et al., 2008; Linden 
et al., 2011), concludes that the type of LFP models used here are the simplest way to capture most 
relevant properties of field potentials (Linden et al., 2010).

21.3.2 S imulation Results

Three types of inputs signal were injected, in different simulation sessions, from the model “tha-
lamic” region: (i) time-invariant (“constant”) inputs, (ii) perfectly periodic inputs which varied sinu-
soidally in time, (iii) “naturalistic” input spike trains which reproduced the firing activity recorded 
in the lateral geniculate nucleus (LGN) of an anesthetized monkey during one of the binocular 
naturalistic visual stimulation sessions described above (Rasch et al., 2008).

In a first series of simulations in Mazzoni et al. (2008), we injected the network with constant 
inputs of different intensity. In agreement with previous studies (Brunel and Wang, 2003), we found 
that the gamma power of the LFP increased monotonically with input strength (Figure 21.6a). 
These results are consistent with neurophysiological findings that grating stimuli of increasing 
contrast (which is known to modulate the thalamic input to V1 (Shapley et al., 1981; Derrington 
and Lennie, 1984)) indeed modulate also the power of the LFP gamma band in V1 (Friedman-
Hill et al., 2000; Henrie and Shapley, 2005). Similar relationships between stimuli intensity and 
gamma band power have also been found in noninvasive recordings in humans (Swettenham et al., 
2009; Muthukumaraswamy et al., 2010). Furthermore, in the network model (Mazzoni et al., 2008) 
increases in the inputs intensity were not only associated to a stronger power of the gamma band, 
but also to an higher peak frequency, consistent with the experimental recordings from visual cor-
tices (Ray and Maunsell, 2010).

In a second set of simulations, we studied the response of the network to time-varying inputs. 
We injected periodic inputs of different frequency and intensity. The strength by which a given 
frequency component of the LFP of the simulated network entrained to a given frequency com-
ponent of the time course of the network spike rate input was quantified by the circular variance 
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FIGURE 21.6  Information processing in a recurrent network model injected with simple inputs. (a) LFP 
spectral modulation when the network was injected with constant inputs of different intensity (see legend). 
The peak of the modulation occurred in the range (50–80 Hz) in the gamma band. (b) LFP dynamics when the 
network was injected with low-frequency periodic inputs (see legend). The low-frequency component of the 
network LFP entrained to the input. The network also displayed cross frequency coupling between high-
frequency power and low-frequency phase. (Panel (a) adapted from Mazzoni A et al. 2008. PLoS Comput Biol 
4:e1000239; panel (b) adapted from Panzeri S et al. 2010. Trends Neurosci 33:111–120.)
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(Fisher,  1993) over time of the phase difference between the considered frequency component 
of the LFP and the considered frequency component of the input (each bandpassed in 2 Hz wide 
bands with the Kaiser filter detailed above). We found that a sufficiently strong and slow periodic 
input was able to entrain the network LFP at the corresponding frequency (Figure 21.6b). This is 
compatible with the entrainment between low-frequency stimuli and neural activity in the primary 
visual cortex recently observed in auditory cortices (Luo and Poeppel, 2007; Lakatos et al., 2008; 
Chandrasekaran et al., 2010). The level of entrainment was weaker for higher frequencies (Mazzoni 
et  al., 2008). Note that since input peak phases correspond to higher input intensities, they are 
associated to high gamma power. Therefore, the model can account also for the widely observed 
phenomenon of cross-frequency coupling (Mazzoni et al., 2010).

In a third and final set of simulations, we injected the network with a naturalistic input based on 
the firing activity recorded from the LGN of an anesthetized macaque presented with naturalistic 
movies. The LGN recordings were performed during the same session of the V1 LFP recordings 
whose spectral information was presented in Figure 21.3. The naturalistic LGN spiking response 
had a spectrum with a strong power associated to a broad range of low frequencies (Mazzoni et al., 
2008). Figure 21.7 illustrates that the rules found above for simple inputs held also for the broad-
band naturalistic input: the low-frequency LFP entrained to the large-amplitude slow fluctuations 
of the input, and the power of gamma oscillations increased in correspondence of high input rates. 
As a consequence, the information carried by the LFP power of the simulated network during 
naturalistic stimulation closely matched the experimental one (Figure 21.8a, compare to Figure 
21.3a): significant information was conveyed at low frequencies, and in the gamma band and above, 
with the two information peaks separated by an interval of noninformative frequencies. Also the 
redundancy structure was similar to the one found experimentally: frequencies above 40 Hz were 
redundant with each other and independent from the informative frequencies at the low end of the 
spectrum (Figure 21.8b, compare to Figure 21.3b). This was a consequence of the fact that input fea-
tures encoded in the two bands, the intensity and the power at low frequencies, varied independently 
from scene to scene (Mazzoni et al., 2008). When injecting the network with naturalistic inputs we 
analyzed also the dynamics of the phase of firing code in the network responses. Each input was 
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FIGURE 21.7  Illustrations of the response of the simulated network to naturalistic input spike trains. 
Network dynamics during naturalistic input: the delta (1–4 Hz) component of the LFP was entrained by the 
low-frequency structure of the input, while periods of large amplitude of the LFP gamma (30–100 Hz) power 
were associated to peaks in the input. Thus, even if naturalistic inputs displayed a broad range of timescales, 
low and gamma frequency bands were still associated to the same input features revealed in the study of con-
stant and sinusoidal inputs. (Adapted from Mazzoni A et al. 2010. Neuroimage 52:956–972.)
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injected 100 times with different outcomes of the process representing the cortical spontaneous 
activity in order to study the reliability of the LFP and the amount of information conveyed by the 
phase of firing code. We bandpassed the network LFP response into different frequency bands and 
we found that the reliability of the LFP phase was high for low frequencies and reached at ~30 Hz 
a minimum level that was stable for higher frequencies. The same dynamics was observed in the 
experimental data (Montemurro et al., 2008), even if frequencies above 30 Hz were more reliable in 
simulations than in recordings. We built the phase of firing code considering the cumulative spiking 
activity of small groups of neurons (from 1 to 10), since this is the order of magnitude of the units 
available from single electrode recordings as those used in Montemurro et al. (2008). We found 
that the gain in information of the phase of firing relatively to the spike rate grew linearly with the 
average firing rate, that is, the amount of information that the phase label added to each spike was 
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relatively stable. As observed in Montemurro et al. (2008), the phase of firing gain was larger for 
low frequencies (Figure 21.8c) even if it never reached zero in simulations because of the higher reli-
ability of high-frequency bands. Notably, very good quantitative agreement with experimental data 
was obtained when considering the cumulative activity of few excitatory units with a total average 
firing rate of 5–10 spikes/s (Figure 21.8c), in the range of typical values of rates recorded from a 
single extracellular electrode.

In sum, the model reproduced well the experimental data and suggested answers to the two ques-
tions about the underlying mechanism asked at the beginning of the section: (i) the low frequencies 
conveys information about the low-frequency components in the input, and the gamma frequencies 
convey information about the strength of the input; (ii) encoding at low frequencies occurs through 
entrainment of the local neural activity to the external stimuli, encoding at gamma frequencies 
occurs through modulations of locally generated rhythms. Note that the presence of two streams 
of information could only be detected using naturalistic inputs which display large variations in 
intensity and a power spectrum peaking at low frequencies. Moreover, the same framework and par-
ticularly the same network can be used to analyze the phase of firing code described in Montemurro 
et al. (2008) and Kayser et al. (2009).

21.4  DISCUSSION

LFPs offer the opportunity to get important insights into the function of cortical microcircuits. 
However, a full understanding of what they can (or cannot) tell us about the function of micro-
circuits requires understanding how LFPs originate from cortical neural networks, and how they 
can be analyzed and modeled. Though this task is obviously a difficult challenge, an important 
advantage is that (unlike for other measured neural activity such as functional magnetic reso-
nance imaging) a reliable biophysical modeling scheme linking activity of individual neurons and 
measured LFP signals has been established (Holt and Koch, 1999; Einevoll et al., 2007; Mazzoni 
et al., 2008, 2010; Pettersen et al., 2008; Leski et al., 2010, 2011; Linden et al., 2010, 2011). In this 
chapter, we presented the progress that we made so far in using these computational models, as 
well as specialized analytical tools, in characterizing the frequency ranges expressed by primary 
cortical neural populations, and captured by the LFPs they generate, to represent naturalistic 
sensory information.

We presented results showing that, out of the whole broad LFP spectrum, only two frequency 
ranges carry significant information: low frequencies (<10 Hz) and gamma range. Moreover, the 
information carried by the two frequency bands is largely independent. Our models suggest that the 
origin of this information independence stems from the difference in network mechanisms originat-
ing the activity in the different frequencies and in the different nature of the information encoded. In 
particular, our models suggest that inhibitory–excitatory neural interactions generate gamma-range 
oscillations encoding the strength of the input to the network, while the slow fluctuations of the 
naturalistic stimuli encode slow dynamic features of the input into slow LFP fluctuations because 
the two fluctuations are entrained.

Taken together, these findings suggest that a key strategy used by cortical networks to cope with 
the challenges of representing the complexity of the natural environment is to use a multiplex-
ing strategy to encode simultaneously different types of information at different timescales and so 
enhance the information capacity of cortical columns (Panzeri et al., 2010). Evidence is now accu-
mulating that a multiplexing strategy, suggested in earlier seminal work (Bullock, 1997; Lisman, 
2005) is key for the brain to represent the complexity of changing environments (Fairhall et al., 
2001; Lundstrom and Fairhall, 2006) and of the information relevant for behavior (Schyns et al., 
2011). It is interesting to note that we found that the multiplexed information was concentrated over 
a small number of frequency ranges rather than being uniformly distributed over the entire fre-
quency spectrum. An advantage of encoding information into a limited number of frequency ranges 
is that it gives the benefit of multiplexing without complicating too much the decoding procedure, 
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which needs to pay attention only to a small number of different frequencies rather than to a con-
tinuum of timescales.

Our empirical evidence in support of multiplexing has also potential implications for the devel-
opment of brain machine interfaces (Donoghue, 2008; Nicolelis and Lebedev, 2009), because 
decoding based on multiple timescales may be used to enhance the amount of information that can 
be extracted by each single electrode.

The hypothesis that the information about naturalistic movies carried by low-frequency LFPs 
results from entrainment to the low-frequency features of naturalistic stimuli, is coherent with 
results from the auditory system, showing that low-frequency LFPs entrain to sound features during 
the presentation of complex naturalistic sounds (Chandrasekaran et al., 2010). If this hypothesis is 
correct low-frequency LFPs in primary visual cortex should entrain to the frame-by-frame changes 
of one or more image features (such as contrast or orientation) displayed in the receptive field of the 
considered recording sites during movie presentation. This is because the latter should somehow 
reflect the time course of the input to the local cortical network, as these features influence the firing 
of geniculate neurons and of other cortical areas.

Natural visual stimuli are characterized by both “what” aspects (image properties such as con-
trast or orientation which are defined by the relationship between visual signals simultaneously 
presented at different points in space) and “when” aspects, describing the temporal variations of 
the various image features. Although temporal information is crucial for sensory processing, our 
understanding of stimulus processing is currently biased toward the representation of nontempo-
ral aspects (Buonomano and Maass, 2009). A potentially interesting implication of the hypothesis 
that low-frequency LFPs entrain to the slow stimulus dynamics is that they may provide a way 
to encode information about the temporal structure of natural visual stimuli in the low temporal 
frequency range (<10 Hz) in which these stimuli have the most power and information (Dan et al., 
1996; Geisler, 2008).
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