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Despite the widespread use of EEGs to measure the large-scale dynamics of the human brain, little is known
on how the dynamics of EEGs relates to that of the underlying spike rates of cortical neurons. However,
progress was made by recent neurophysiological experiments reporting that EEG delta-band phase and
gamma-band amplitude reliably predict some complementary aspects of the time course of spikes of visual
cortical neurons. To elucidate the mechanisms behind these findings, here we hypothesize that the EEG delta
phase reflects shifts of local cortical excitability arising from slow fluctuations in the network input due to
entrainment to sensory stimuli or to fluctuations in ongoing activity, and that the resulting local excitability
fluctuations modulate both the spike rate and the engagement of excitatory–inhibitory loops producing
gamma-band oscillations. We quantitatively tested these hypotheses by simulating a recurrent network of
excitatory and inhibitory neurons stimulated with dynamic inputs presenting temporal regularities similar
to that of thalamic responses during naturalistic visual stimulation and during spontaneous activity. The
network model reproduced in detail the experimental relationships between spike rate and EEGs, and
suggested that the complementariness of the prediction of spike rates obtained from EEG delta phase or
gamma amplitude arises from nonlinearities in the engagement of excitatory–inhibitory loops and from
temporal modulations in the amplitude of the network input, which respectively limit the predictability of
spike rates from gamma amplitude or delta phase alone. The model suggested also ways to improve and
extend current algorithms for online prediction of spike rates from EEGs.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Electroencephalography (EEG) is one the most important tools for
non-invasively studying brain activity in humans at fine time
resolution (Lopes da Silva and Van Rotterdam, 1987; Nunez, 1981).
Despite its wide use in clinical applications and in neurophysiological
research, the exact relationships between the surface EEG and the
underlying physiological events at the cellular and network level
remain only partly known. Early studies (Creutzfeldt et al., 1966a, b;
Klee et al., 1965) demonstrated that a prominent contribution to
cortical surface EEGs comes from excitatory and inhibitory synaptic
potentials (mostly from pyramidal neurons but perhaps also from
spiny and aspiny stellate cells, see (Murakami and Okada, 2006)),
and from afterdischarges not directly related to cellular activity
(Creutzfeldt et al., 1966a, b; Klee et al., 1965). Other studies (Granit
et al., 1963; Juergens et al., 1999; Kamondi et al., 1998; Mitzdorf,

1987) showed that these mechanisms also contribute to the
generation of the Local Field Potential (LFP), an intracortical signal
which shares similarities with the EEG but is more localized (Katzner
et al., 2009). However, we still do not know which aspects of the time
course and frequency content of the surface EEG allow an estimation
of the time course of the spiking activity of cortical projection
neurons, i.e. the output of the cortical site. This is clearly an
important question to address for several reasons. First, progress in
estimating the strength and timing of cortical spike rates from EEGs
would greatly increase our understanding of the neural computations
underlying the recorded EEG signal. Second, understanding how
macroscopic and mesoscopic signals such as EEGs and LFPs relate to
the output of a very local neuronal computation (whose results is
carried by the spikes of pyramidal neurons) is a fundamental
empirical step in constructing models linking large scale dynamics
of cortex to computations of local networks.

Recently, we made progress in this direction (Whittingstall and
Logothetis, 2009) by showing that, in macaque primary visual cortex,
the time course of the spike rate can be predicted by a combination
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of the instantaneous delta-band (2–4 Hz) phase and gamma-band
(30–100 Hz) amplitude of the concurrently recorded surface EEG.
This was observed both during visual stimulation with naturalistic
movies and during stimulus-free periods. Consistent findings were
also obtained when predicting spike rates from intracortical LFPs
rather than from EEGs (Rasch et al., 2008; Whittingstall and
Logothetis, 2009). Interestingly, the cross-frequency coupling (i.e.
the coupling of the phase of a slower frequency with the amplitude
of a faster rhythm) which has been shown to determine the strength
and timing of spiking activity in visual cortex (Whittingstall and
Logothetis, 2009) has also been consistently observed in neocortex
(Canolty et al., 2006; Lakatos et al., 2005) and hippocampus (Bragin
et al., 1995; Lisman, 2005) and is thought to be central for a number
of cognitive and sensory processes (Jensen and Colgin, 2007; Lisman,
2005; Lisman and Idiart, 1995; Schroeder and Lakatos, 2009).

These findings raise the important question of what are the
mechanisms which generate cross frequency-coupling, and how
cross-frequency coupling correlates to the timing and strength of
spiking activity. Answering these questions would not only allow
better insights into the mechanism regulating cortical dynamics, but
has obvious implications for improving the prediction of spiking
activity from EEGs and LFPs.

Here we aim at explaining these empirical findings by hypothe-
sizing that the EEG-LFP delta phase reflects shifts of the cortical
excitability arising from low-frequency (delta range) fluctuations in
the strength of the input to the local network, and that these changes
in excitability modulate both the output spike rate and the
engagement of excitatory–inhibitory loops producing gamma-band
oscillations, which in turn leads to the observed three-way relation-
ships between spike rate, gamma amplitude and delta phase. Slow
(delta range) input fluctuations may be either mediated by thalamo-
cortical connections and arise from slow variations in thalamic firing
reflecting responses to the relatively slow and regular changes
present in naturalistic stimuli, or may be mediated by cortico-cortical
connections and originate from slow and spatially extended fluctua-
tions of ongoing cortical activity.

To test quantitatively this hypothesis, we simulated a recurrent
network of integrate-and-fire neurons with excitatory–inhibitory
connections stimulatedwith dynamic inputs with temporal regularities
similar to that of thalamic responses during naturalistic visual stimu-
lation and during spontaneous activity; we then carefully studied the
dependence between the simulated EEG-LFP frequency bands and the
spike rate of the simulatedpyramidal neurons andhow this dependence
ismodulated bydifferent biophysicalmechanisms; andwe compared in
detail the spike-EEG/LFP relationships found in the model and in real
EEG/LFP recordings of awake and anaesthetized macaques during
stimulation with naturalistic movies or in absence of visual stimuli.

Methods

All experiments conducted on macaques were approved by the
local authorities (Regierungspräsidium Tübingen) and are in full
compliance with the guidelines of the European Community (EUVD
86/609/EEC) for the care and use of laboratory animal.

Recordings of EEGs, LFPs and spike from the primary visual cortex of
awake macaques

Methods were fully reported elsewhere (Whittingstall and
Logothetis, 2009), to which we refer for more details. In brief, EEG
recordings were made from two non-anesthetized monkeys (Macaca
mulatta) using a Ag/AgCl ring electrode (impedance below 20 kΩ)
positioned over the visual cortex. EEG signals were amplified and
filtered into a band of 0.2–250 Hz (Brain Products, Munich, Germany)
and digitized at 5 kHz. The EEG ring electrode of interest was placed at
the base of a recording chamber positioned over primary visual cortex

(V1), made from PEEK (polyetheretherketone; TecaPEEK, Nufringen,
Germany) and secured to the skull. The EEG ring electrode rested on
the skull and small circular openings (under the center of the EEG ring
electrode) in the skull were made to access cortical neurons. In one
monkey, a 5 mm circular patch was resected, while in the other
monkey, a 2 mm circular patch was resected in order to access the
underlying cortex. Tungsten microelectrodes (FHC Inc., Bowdoinham,
Maine, 0.5 to 2 MΩ) were lowered through the middle of the EEG ring
electrode into the cortex in order to obtain spiking activity and LFPs.
The extracellular signals obtained from these intracortical tungsten
microelectrodes (whose tipswere typically, but not always, positioned
in the upper or middle cortical layers) were high-pass filtered (1 Hz,
digital two pole Butterworth filter), amplified (Alpha Omega Engi-
neering) and digitized at 20.83 kHz. A frontal EEG electrode placed on
the scalp was used as reference.

The LFPs were extracted by band-pass filtering the neural signal in
the 2- to 125-Hz range and resampling at a rate of 250 Hz. Filtering
was done using Kaiser filters with sharp transition bandwidth (1 Hz),
small passband ripple (0.01 db) and high stopband attenuation
(60 dB). A mirroring technique was used to reduce edge artifacts
during filtering and forwards and backwards filtering was used to
eliminate phase shifts. The very same filtering technique was applied
to further bandpass all the real neural data and the simulated to create
the signal bandpassed in the various frequency bands (such as delta
and gamma band). The instantaneous amplitude and phase of the
bandpassed signals were obtained by taking respectively the modulus
and angle of the complex time series obtained through the Hilbert
transform of the bandpassed signal. Circular statistics analysis on the so
obtained phase distributions was performed with the CircStat MATLAB
(The Mathworks, Natick, MA) Toolbox described in Berens (2009).

To extract spike times, following Quiroga et al. (2004), we band-
pass filtered (with the same filtering techniques described above) the
extracellular signal from intracortical electrodeat 300–4000Hz, andwe
used for spike detection an amplitude threshold of 4 standard de-
viations (sds) of the mean amplitude. A spike was recognized as such
only if the last spike occurred more than 1.5 ms earlier. This threshold
approach for spike detection is appropriate for spike times but not for
the isolation of single units. Thus, the spikes used for the analysis
represented the spiking activity of a small population of cells rather
than well-separated spikes from single neurons (Quiroga et al., 2004).

Visual stimuli consisted of naturalistic commercially available
movies (30 Hz frame rate), from which 5-s clips were presented on a
computer screen (field of view: 90 Hz refresh); each stimulus was
repeated 30–40 times per experimental session. Data were acquired
while the animals performed a visual fixation task (9 s fixation period,
2.0–2.8 deg fixation window). Each 9-s-long trial consisted of 2 s of
fixation of a small (0.2 deg) fixation spot on dark background,
followed by 5 s of movie presentation during fixation of the same spot,
finally followed by 2 of continued fixation of the spot on dark
background. When analyzing movie-driven activity, we discarded
from further analysis the first second of data as it mainly consisted of a
transient response to the stimulus onset. We also analyzed data
recorded from the awake monkey during the first period of fixation of
spot on dark background prior to the movie, and we will refer for
brevity to these data as collected during “spontaneous activity” to
mean that they are collected in absence of the movie stimulus.

Recordings in primary visual cortex and in the lateral geniculate nucleus
of anaesthetized monkeys

We also analyzed recordings from 76 sites in V1 and from 8 sites in
the dorsal lateral geniculate nucleus (LGN) that were obtained in a
separate set of experiments involving four adult rhesus monkeys
(Macaca mulatta). Full details of experimental procedures were given
elsewhere (Belitski et al., 2008; Rasch et al., 2008). In brief, recordings
were obtained while the animals were anaesthetized (remifentanyl,
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1 μg/kg/min), muscle-relaxed (mivacurium, 5 mg /kg/h) and
ventilated (end-tidal CO2 33 mm Hg, oxygen saturation N95%). Body
temperature was kept constant and lactated Ringer's solution
supplied (10 ml/kg/h). Vital signs (SpO2, ECG, blood pressure, end-
tidal CO2) were continuously monitored. 1% ophthalmic solution
(cyclopentolate hydrochloride) was applied to induce mydriasis and
refractive errors were corrected using contact lenses. Microelectrodes
(FHC Inc., Bowdoinham, Maine, 300–800 kΩ) were positioned using a
microdrive array system (Thomas Recording, Giessen, Germany).
When recording from cortex, microelectrodes were arranged in a 4×4
square matrix (interelectrode spacing varied from 1 mm to 2. 5 mm).
In some sessions, an additional array of two or four electrodes was
additionally positioned in the dorsal LGN using an additional set of
drives in order to record thalamic activity simultaneously to the
recording of cortical activity. Signals were high-pass filtered (1 Hz,
digital two pole Butterworth filter) and amplified using an Alpha
Omega amplifier system (Alpha Omega Engineering) and digitized at
20.83 kHz. Binocular visual stimuli were presented at a resolution of
640x480 pixels (field of view: 30x23 degrees, 24 bit true color, 60 Hz
refresh) using a fiber-optic system (Avotec, Silent Vision, Florida).
Stimuli consisted of “naturalistic” complex and commercially available
movies (30 Hz frame rate), from which 3.5- to 6-min long sequences
were presented and repeated 30–40 times. In addition to recordings in
response movies, for each recording session and site we also recorded
5–10 trials of 5-min long “spontaneous activity”when the input to the
fiber-optic stimulus presentation system was blank.

LFP bands were extracted from the extracellular signal exactly as
described above for recordings with awake monkeys. To extract spike
times, the extracellular signalwasfiltered in the range of 500–3500Hz.
The threshold for spike detection was set at 3.5 sds. A spike was
recognized as such only if the last spike occurred 1ms earlier. As for the
awakemacaque data, this simplemethod does not permit the isolation
of single units.

Simulations

The model is similar to the one described in Brunel and Wang
(2003) and then extended in Mazzoni et al. (2008) to include time-
varying inputs. In brief, the main difference with respect to the model
of Mazzoni et al. (2008) is that the thalamic input stimulus was
modified to make it more realistic, and that a “slow noise” term was
inserted in the corticocortical synapses (to simulate ongoing cortical
activity fluctuations) rather than in the thalamocortical ones. Full
details are given in the following, and a model description according
to the scheme suggested by Nordlie et al. (2009) is reported in Table 1.

Single neuron model and network structure
The network is composed of 5000 neurons. 4000 excitatory

neurons have synapses with AMPA-like characteristics to model
pyramidal neurons, while 1000 have synapses with GABA-like
characteristics to model interneurons. The network is randomly
connected: the connection probability between any directed pair of
cells is 0.2 (Holmgren et al., 2003; Sjostrom et al., 2001). Both
pyramidal neurons and interneurons are described by leaky integrate
and fire (LIF) dynamics with fixed threshold, fixed refractory time.
The subthreshold dynamics of the membrane potential Vk(t) of each
neuron k was described by the following equation:

τmV
:
k tð Þ = − Vk tð Þ + VAk tð Þ− VGk tð Þ ð1:1Þ

where dots represent time derivatives τm is the membrane time
constant (20 ms for pyramidal neurons and 10 ms for interneurons)
and VAk and VGk are respectively the absolute values of the AMPA-
type and GABA-type post-synaptic currents (in membrane potential
units for convenience) on neuron k. Potentials are measured such in a
way that the resting potential is set at 0.

The neuron k fires if the potential Vk crosses the threshold Vthr

(18 mV above resting potential). When a neuron fires, all the post-
synaptic neurons are affected by the spike after a latency of 1 ms
(according to Eqs. (1.2) and (1.3)), and the potential of neuron k is
reset and kept at a value Vr (11 mV) during a refractory period τref,k
(1 ms if neuron k belongs to interneurons, 2 ms if it belongs to
pyramidal neurons).

Synaptic currents are the linear sum of contributions induced by
single pre-synaptic spikes, which are described by a difference of
exponentials. The AMPA and GABA compound post-synaptic currents
(PSC) VAk and VGk of neuron k are determined by the spikes emitted
by the pre-synaptic neurons of the network and by the external inputs
(modelling both inputs from the neighbouring areas of the cortex and
inputs from the thalamus). The values of the PSCs are obtained using
auxiliary variables XA/G,k, using the following equations

τdAV
:
Ak tð Þ = − VAk tð Þ + XAk ð1:2Þ

τrAX
:
Ak tð Þ = − XAk tð Þ + τm
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τdGV
:
Gk tð Þ = − VGk tð Þ + XGk ð1:4Þ

τrGX
:
Gk tð Þ = − XGk tð Þ + τm Jk;inter

X
nainter

Ck;nδ t − t4n − τL
� � ! !

ð1:5Þ

where tn⁎are the times at which the neuron n fired and C is the
connectivity matrix, in which Ck,n is 1 if n projects to k and 0
otherwise. τdA/G and τrA/G are respectively the decay and rising times
of the AMPA and GABA synapses, τL is the latency of post-synaptic
currents (1 ms), Jk,pyr/thal/int is the synaptic strength of cortical AMPA
synapses/ thalamic AMPA synapses/GABA synapses on the popula-
tion of neurons to which k belongs (interneurons or pyramidal
neurons). SkC/Thal(t) is the number of excitatory synapses of neuron k
activated by stimuli from the neighbouring areas of the cortex / from
the thalamus (see Inputs subsection). The values of synaptic
parameters are shown in Table 2. All values are of the order of
magnitude of the values measured experimentally (Buhl et al., 1997;

Table 1
Model summary.

Model summary

Populations Four: excitatory (4000), inhibitory (1000), thalamic input,
non-local cortical input.

Topology –

Connectivity Random directed pair connections with probability 0.2.
Delay: 1 ms. Different synaptic weights for each kind of
connection (see Table 2).

Neuron model Leaky integrate and fire, fixed voltage threshold (18 mV
above resting potential), fixed reset potential (11 mV above
resting potential), and fixed absolute refractory time (2 ms
for excitatory neurons, 1 ms for inhibitory neurons).

Channel models -
Synapse model Difference of exponentials (AMPA and GABA), with different

rise and decay time for each kind of connection (see Table 2).
Plasticity -
Inputs Thalamic input: Poisson spike trains to all neurons with time

varying rate based on LGN spiking activity recorded in
anesthetized monkey V1 during move presentation (movie
condition) or during blank screen presentation
(spontaneous condition). Non local cortical input: Poisson
spike trains to all neurons with time varying rate given by
Ornstein Uhlenbeck process with cut-off frequency of 10 Hz.

Measurements Spiking activity and EEG-LFP, the latter given by sum of
absolute values of AMPA and GABA currents.
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Gabernet et al., 2005; Gil and Amitai, 1996; Gupta et al., 2000; Tamas
et al., 1998). Modifying these values affects quantitatively but not
qualitatively the results as long as recurrent inhibition is stronger
than recurrent excitation (see Section Robustness to parameter
changes of the behaviour of the simulated network and also Brunel
and Wang (2003) and Mazzoni et al. (2008).

Inputs
Each neuron k receives two excitatory inputs from outside the

network: SkThal(t) from the thalamus and Sk
Cl(t) from the afferent areas

of the cortex, conveyed by synapses of different strengths (see
Synapse model section). These synapses are activated by random
Poisson spike trains, with time-varying rates which are identical for all
neurons. Input rate to corticocortical and thalamocortical synapses
are generated as follows. The input rate to the thalamocortical
synapses vThal(t) was a simple time-independent or sinusoidal
function of time when investigating “artificial” inputs with a
simplified dynamics (Figs. 3 and 4), while when considering
naturalistic stimulation dynamics was constructed from real LGN
spike rates as follows. The naturalistic input was built from 1 min of
extracellular LGN recordings of spike times from anesthetized
macaque presented binocularly with natural movie scenes (movie
condition) or with blank screen (spontaneous condition). The spike
time sequence was smoothed with a 20-ms Gaussian window
convolution. The resulting time series was normalized to set the
average input per neuron in the movie input stimulation condition to
1.5 spikes/ms/cell. The latter is a realistic estimate of the total input to
real pyramidal neurons, taking into account that they receive
excitatory inputs from approximately ∼ 120 thalamic neurons
(Latawiec et al., 2000) each one firing ∼ 12 spikes/s (Dan et al.,
1996; Lesica et al., 2007; Whittingstall and Logothetis, 2009) during
stimulation with movies. The same normalization factor between
measured spike rates and model input rates, determined as above
from responses to movies, was used for spontaneous activity and
naturalistic movie inputs. The input rate from the corticocortical
synapses vC(t) represents non-specific ongoing contributions from
different areas of cortex. Since cortical ongoing activity has the most
power in the slow frequency range, and since the slow frequencies are
the ones with higher spatial extension and thus are more likely to
summate, these non-specific contributions were modelled to have the
maximal power in a range below a cutoff frequency τC which was set
to 10 Hz (and whose precise value had a negligible impact on the
results as long as it remained below 20 Hz (Mazzoni et al. 2008)). The
rate vC(t) activating the corticocortical synapses was generated
according to an Orstein–Uhlenbeck process, as follows:

τCm ̇
C tð Þ = μC − mC tð Þ + σC

ffiffiffiffiffiffiffiffi
2τC

p
η tð Þ ð1:6Þ

where μC is the average value of 1.5 spikes/ms/cell, σC the standard
deviation of 0.5 spikes/ms and η(t) a Gaussian white noise process.
The latter parameter values were chosen so that the input coefficient
of variation across time matched the one of the spikes recorded in V1
during movie stimulation, and the LFP from the simulated network
matched the information values of power of LFPs in the 1–150 Hz
range obtained in V1 during naturalistic movie presentation (see
(Mazzoni et al., 2008)). This ensured the simulation of ongoing
activity matched the trial-to-trial variations in real data.

Computation of simulated LFPs and EEGs
Since a prominent contribution to real cortical LFP and EEG arises

from current flows due to synaptic activity, we computed the LFP/EEG
signal generated by the network simply as the sum of the absolute
values of AMPA and GABA currents, as in Mazzoni et al. (2008). In
computing the simulated LFP/EEG we summed only currents from
synapses of pyramidal neurons, under the assumption that pyramidal
neurons contribute more due to their approximate open field
arrangement. The LFP/EEG signal was taken with a negative sign to
be directly comparable with experimental recordings. Although more
detailed quantifications of signals such as LFPs from simulated
networks are in principle possible (see e.g.(Pettersen and Einevoll,
2008)), we note that the simple quantification we chose was enough
to reproduce all the features of interest of experimentally recorded
LFPs and EEGs (see Results), thereby suggesting that our simple
description of LFPs and EEGs was sufficient for the present purpose.
Moreover, we verified (Supplemental Fig. S1) that all main results in
this study were robust to changes in the definition of LFP/EEG signal
considering different weights to GABA currents (ranging from 0% to
50% more than AMPA currents) or adding a small contribution (up to
10%) from the currents computed from synapses of interneurons
(Murakami and Okada, 2006).

Numerical implementation of model
Model algorithms were developed in C. Equations were solved

using a second-order Runge–Kutta schemewith a time step of 0.05ms.

Results

Summary of relationship between spike rate, gamma amplitude and
delta phase in visual cortex

Before analyzing the model of the relationship between the time
course of spiking activity and the frequency components of LFPs and
EEGs, we present and analyze the basic experimental findings in
visual cortex of awake and anaesthetized macaques. The core of these
findings was reported by Whittingstall and Logothetis (2009) for the
case of the awake monkey. Here we summarize their results by
analyzing them in exactly the same way that will be later applied to
models, and we extend them by analyzing in more details the
differences between the responses to natural movies and spontaneous
activity and by analyzing LFPs from anaesthetized macaques collected
in separate experiments.

Fig. 1A shows single-trial traces of the delta and gamma frequency
bands of the EEG signal recorded over visual cortex of an awake
monkey performing a fixation task during the presentation of a colour
naturalistic movie. The delta and gamma band EEG traces were
obtained by bandpassing the single trial traces of the raw signal from
the EEG electrode (see Methods) in the [2–4 Hz] and [30–100 Hz]
frequency range, respectively. Comparison with the simultaneously
measured spike trains from visual cortex (Fig. 1C) suggests that
modulations of EEG gamma amplitude are clearly associated with
modulation of the spike rate: during time periods with high gamma-
band EEG amplitude there is typically an increase of spike rate with
respect to periods when the gamma oscillations haveweak amplitude.
A similar relationship between spike rate and gamma amplitude can
be observed in the concurrent LFP traces (Fig. 1B). Moreover, visual

Table 2
Synaptic parameters.

Target GABA AMPA (cortex) AMPA (thalamus)

Pyramidals Interneurons Pyramidals Interneurons Pyramidals Interneurons

Rise time (ms) 0.25 0.25 0.4 0.2 0.4 0.2
Decay time (ms) 5 5 2 1 2 1
Strength (mV) 1.7 2.7 0.42 0.7 0.55 1.1

959A. Mazzoni et al. / NeuroImage 52 (2010) 956–972
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inspection of EEG and LFP traces in Fig. 1 suggests that spike rate was
higher during troughs of the EEG and LFP delta band, and was lower at
its peaks.

The previous illustration based on a single trace is confirmed by a
quantitative population analysis, which we performed as follows. We
divided the time range into 2-ms bins. In each time bin and each trial,
we computed the spike rate and also the associated instantaneous
phase of the delta-band EEG or LFP and the amplitude of the gamma
band EEG or LFP. Instantaneous amplitude and phase of each band-
passed signal were computed in each trial as themodulus and angle of
the Hilbert transform of the band-passed signal, respectively. In
Fig. 2A we plot the spike rate as function of the LFP gamma amplitude
and delta phase, averaged over all recording sessions, trials and time
points duringmovie presentation. Spike ratewas normalized between
maximum and minimum value for each session before taking the
average across sessions. Fig. 2A confirms that the LFP gamma
amplitude was clearly correlated with spiking activity: on average,
the higher was the gamma amplitude, the higher was the spike rate
(Pearson correlation r=0.26; pb0.001). However, gamma amplitude
alone did not entirely predict the spike rate because the phase of the
delta band also modulated the spike rate (circular–linear correlation
r=0.12, pb0.001), as well as the gamma amplitude (circular–linear
correlation r=0.08; pb0.001). Fig. 2A shows that spike rate was
maximal at the preferred phase pi and minimal at the anti-preferred
phase 0. Noteworthy, LFP delta phase and LFP gamma amplitude
exerted a partly complementary role in predictingwhether spike rates
were high or low. In fact, Fig. 2A shows that strong gamma responses
occurring during delta peaks (phase 0) corresponded to a reduced
spike rate compared to when an equally strong gamma response
occurring during a delta trough (phase pi). Moreover, at any given LFP
delta phase higher spike rates were achieved if the concurrent gamma
oscillation had a higher amplitude. During movie stimulation sessions
(Fig. 2A) the highest spike rate range (N75% of the maximum spike
rate value) was obtained only for values of gamma amplitude above
0.9 sd over the mean concurrent with a delta phase between 2 and 4.3
radians. In summary, the cross-frequency coupling between LFP

gamma amplitude and delta phase was crucial to determine the
amount of spiking activity: only the right combination of delta phase
and gamma amplitude gave rise to pronounced spiking activity.

We also investigated the relationship between spike rate, LFP delta
phase and LFP gamma amplitude during stimulus-free periods. The
dependence of the spike rate on the LFP gamma amplitude and delta
phase during spontaneous activity (Fig. 2B) was very similar to the
one obtained from the same population during movie stimulation,
suggesting that similar mechanisms of cross-frequency modulation of
spiking activity are at work even in absence of stimuli. Also during
spontaneous activity spike rate correlated significantly to gamma
amplitude (Pearson correlation r=0.22; pb0.001) and also to delta
phase (circular–linear correlation r=0.12; pb0.001), and delta phase
significantly modulated gamma amplitude (circular–linear correla-
tion r=0.11; pb0.001). The most notable difference that we found
between stimulus free and movie driven activity was that the tuning
of spike rates to delta phase and gamma amplitude was sharper
during spontaneous activity. During spontaneous activity sessions
(Fig. 2B) the highest spike rates (N75% of the maximum spike rate)
were associated only to gamma values above 2.1 sd over the mean
concurrent with a delta phase between 2.7 and 3.7 radians, a much
narrower set of gamma amplitude and delta phases values than the
one found to give highest spike rates for the movie condition.

We then considered the relationships between spike rate and the
delta phase and gamma amplitude of EEGs (rather than LFPs). Results
are reported in Figs. 2C and D for movie-driven and stimulus-free
activity respectively. Again, in both stimulation conditions, the same
cross-frequency coupling mechanism (referred to as frequency–band
coupling in Whittingstall and Logothetis, 2009) observed for LFPs
described the relationship between the EEG oscillations and the spike
rate. Spike rate was significantly correlated to EEG gamma amplitude
(Pearson correlation r=0.16 and r=0.20 for movie and spontaneous
condition, respectively, both significant at pb0.001) and also to EEG
delta phase (circular–linear correlation r=0.04 and r=0.06 for
movie and spontaneous condition respectively, both significant at
pb0.001). Delta phase significantly modulated gamma amplitude

Fig. 1. Illustration of the time course of simultaneously recorded raw and band-passed EEGs and LFPs and spike rates during movie presentation. All signals were recorded
simultaneously in the primary visual cortex of awake monkey during presentation of a colour movie. (A) EEG single-trial traces. Green lines indicate the raw signal (top), and the
same signal band-passed in the 2- to 4-Hz delta band (middle), and in the 30- to 100-Hz gamma band (bottom). Note that each band-passed signal is scaled in a different way, and
the scale of each signal is given by a vertical bar on the right hand side. (B) LFP single-trial traces. Red lines indicate the raw signal (top), and the same signal band-passed in the delta
(middle) and gamma (bottom) bands respectively. Note that each band-passed signal is scaled in a different way, and the scale of each signal is given by a vertical bar on the right
hand side. (C) Spiking activity. Vertical black lines indicate spike times.
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(circular–linear correlation r=0.045 and r=0.065 for movie and
spontaneous condition respectively, both significant at pb0.05). The
main differences between the results with LFPs and EEGs was that
only periods of very high EEG gamma amplitude (2 sd above the
mean) modulated the spike rate in both movie and spontaneous
condition, and that the preferred EEG delta phase of firing and gamma
amplitude was slightly advanced with respect to the LFP case.

Extending the results of Whittingstall and Logothetis (2009) for
the awake monkey, we repeated the same analysis on LFP recordings
from primary visual cortex of anaesthetized macaques. We found a
very similar pattern of dependency between the spike rate and the LFP
delta phase and gamma amplitude (Figs. 2E and F), both during movie

stimulation and spontaneous activity. Spike rate was again signifi-
cantly correlated to gamma amplitude (Pearson correlation r=0.06
and r=0.04 for movie and spontaneous condition respectively, both
significant at pb0.001) and also to delta phase (circular–linear
correlation r=0.04 and r=0.02 respectively for both movie and
spontaneous condition, both significant at pb0.001). Delta phase
significantly modulated gamma amplitude (circular–linear correla-
tion r=0.03 and r=0.04 for movie and spontaneous condition,
significant at pb0.001). Similarly to what was found with awake
monkeys, the highest spike rates (N75% of the maximum rate) were
found in correspondence with values of gamma amplitude above 0.9
sd over the mean combined with a delta phase between 0.9 and 4.3 in

Fig. 2. Dependence of spike rate by the simultaneously observed gamma amplitude and delta phase of EEGs or LFPs in different experimental conditions. All plots report the spike
rate as a function of the concurrent delta phase of and gamma amplitude of either LFPs or EEGs. Data were averaged over all time points, trials and recording sessions. The firing rate
was normalized betweenminimum andmaximum of each session before taking the average over sessions. The gamma amplitude was normalized in units of standard deviation (sd)
within the session (above themean across the session) before taking the session average. Panel A uses LFP and spike data recorded from awakemonkeys duringmovie presentations.
Panel B uses LFP and spike data recorded from awake monkeys during spontaneous activity. Panel C uses EEG and spike data recorded from awake monkeys during movie
presentations. Panel D uses EEG and spike data recorded from awake monkeys during spontaneous activity. Panel E uses LFP and spike data recorded from anaesthetized monkeys
during movie presentations. Panel F uses LFP and spike data recorded from anaesthetized monkeys during spontaneous activity.
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the movie condition and in correspondence with values of gamma
amplitude above 1.8 sd over the mean combined with a delta phase
between 1.5 and 4.5 radians in the spontaneous condition. This
consistency is important both because it shows the robustness of the
phenomenon, and because these anaesthetized data will later be used
for constructing the model.

We note that we reported results of the relationship between spike
rate and the phase of the delta band and the amplitude of the gamma
band because (both during stimulation and during spontaneous
activity) the gamma band was the only band whose amplitude
correlated strongly with the spike rate (results not shown; but see
(Belitski et al., 2008; Rasch et al., 2008; Whittingstall and Logothetis,
2009)), and the delta band was the one whose phase provided the
strongest modulation of spike rate, the latter decreasing fast with the
frequency at which the phase was considered (results not shown; but
see Montemurro et al., 2008; Whittingstall and Logothetis, 2009).

Neural network model—hypothesis and structure

To explain the above empirically measured dependence of the
instantaneous spike rate on the EEG and LFP phase and amplitude,
here we make the hypothesis that the EEG-LFP delta phase reflects
shifts of the cortical excitability arising from slow (delta range)

fluctuations in the strength of the input to the local network, and that
these changes in excitability modulate both the output spike rate and
the engagement of excitatory–inhibitory loops producing gamma-
band oscillations, which in turn leads to the three-way relationships
between spike rate, gamma amplitude and delta phase.

To quantitatively test this hypothesis, we simulated a recurrent
network of spiking neurons with excitatory–inhibitory connections
stimulated with dynamic inputs, similar to the one used in Brunel and
Wang (2003) and Mazzoni et al. (2008). In brief (see Methods for full
details), the model network represented in a simplified way a
recurrent local circuit in primary visual cortex, and was a recurrent
network with sparse random connectivity made of integrate-and-fire
neurons representing inhibitory interneurons and pyramidal neurons
(a schematics is plotted in Fig. 3A). Synaptic currents represented fast
synaptic interactions, with time courses resembling experimentally
measured AMPA currents (for excitatory currents) and GABA currents
(for inhibitory currents). The strength of GABAergic connections was
sufficient to ensure stable activity at low spike rates in the network.
Both populations received an excitatory external input taken to
represent the activity from thalamocortical afferents, with inter-
neurons receiving stronger inputs than pyramidal neurons (Gil and
Amitai, 1996), and an additional excitatory external input taken to
represent the activity from non-local cortical afferents carrying

Fig. 3. Structure and input–output relationships of the simulated local cortical model. (A) Schematic of network structure. The network is composed by 4000 pyramidal neurons and
1000 interneurons. The connectivity is random, a synapse being present between any directed pair of neurons with probability 0.2. The size of the arrows represents schematically
the strength of single synapses: recurrent interactions are dominated by inhibition. In addition to recurrent interactions each neuron receives excitatory inputs from the thalamus
and from non-local and non-specific ongoing cortical activity. (B) Average spike rate of model pyramidal neurons in response to different values of the instantaneous input spike rate.
Lines represent the mean over all 10-ms time windows in the simulations (with sd represented as shaded area). The red and the black line refer to data obtained when using as
inputs LGN activity recorded during movie stimulation or spontaneous activity respectively. Spontaneous input rate never exceeds 2 spikes/ms/cell. The blue line refers to data
obtained using a sinusoidal input with same average of the LGN movie input, 2 Hz frequency and 0.8 spikes/ms/cell amplitude. (C) Gamma amplitude of the LFP of the network for
different values of the input spike rate, with conventions as in (B). The simulated gamma amplitude is expressed on an arbitrary scale which is however the same for all conditions
and input rate values. (D) Delta phase of the LFP of the network for different values of the input spike rate, with lines colour coded as in (B). Phase was normalized as ranging from
anti-preferred to preferred (the ones eliciting the lowest and highest probability of firing on average). In this panel, lines represent the circular mean of the delta phase and areas its
circular standard deviation.
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activity not specific to the particular stimulus shown. Simulated LFPs-
EEGs from the network were computed as the sum of the absolute
values of synaptic currents from synapses of the pyramidal neurons
population (seeMethods for a complete description). This is because a
prominent contribution to both LFPs and EEGs comes from synaptic
activity in apical dendrites of pyramidal neurons. In our simple model
we did not to distinguish between simulated EEGs and simulated LFPs.
This is of course an oversimplification, because EEG and LFPs are signal
which share some similarities but also many differences (for example,
EEGs have a much coarser spatial resolution and their higher
frequencies are attenuated by the skull). However, the EEG and LFP
recordings under naturalistic movie stimulation that we analyzed
were very consistent (see Figs. 1 and 2), suggesting that in these
stimulation conditions a large area was activated in a consistent way,
probably due to the spatial and temporal regularities of the
naturalistic stimulus and to the spatially extended nature of
spontaneous fluctuations. Further, our model was able to replicate
the basic relationship between spiking activity and both LFPs and
EEGs, confirming that it could capture the basic features of both
signals under the specific experimental conditions examined here.

The dynamical input–output properties of the network can account for
cross-frequency modulation of instantaneous spike rates

To gain insights into the mechanisms driving the relationship
between the coupling of oscillations and spiking activity in these
networks, we began by studying how the network behaves when
stimulated with simple inputs, which are either constant in time with
a given mean rate, or inputs which vary sinusoidally in time at a given
frequency. As we will see, the understanding gained in these simple
conditions will be helpful to understand the network responses to
complex broadband inputs such as the inputs to cortex during
stimulation with naturalistic movies or during spontaneous activity.

We first investigated the relationship between the strength of the
input spike rate at a given time and the corresponding network output
spike rate (which was taken by summing the instantaneous spike rate
of all simulated excitatory neuron, because this is comparable to what
would be measured experimentally by placing an extracellular
electrode in visual cortex (Logothetis, 2003)). Fig. 3B (blue line)
shows that in case of a simple sinusoidal input the network output
rate was roughly proportional to the input rate, consistent with
previous studies of recurrent networks of excitatory and inhibitory
neurons in the balanced regime (Brunel, 2000; van Vreeswijk and
Sompolinsky, 1996, 1998). This finding shows that the network
output rate (corresponding to the one measured by electrodes in V1)
is proportional to the input to the network, and therefore the
relationship between measured spiking activity and LFPs and EEGs
can be understood in the simulated network by characterizing the
relationship between the input rate and the EEG and LFP fluctuations.

The most prominent dynamic feature of the network is that it
generates fast oscillations in the gamma [30–100 Hz] range, as widely
documented in previous studies e.g. (Brunel and Wang, 2003;
Mazzoni et al., 2008). Two features of the recurrent connectivity
contribute to the generation of network oscillations: (1) delayed
interactions between interneurons and (2) the excitatory–inhibitory
feedback loops. One crucial property of such excitatory–inhibitory
recurrent networks is that the strength of the population oscillation
strongly depends on external inputs to the network (Brunel and
Wang, 2003). Typically, for low enough external inputs, the network
is in an asynchronous state, with weak and strongly damped
oscillations, while for strong external inputs, the network tends to
settle in a pronounced oscillatory state. This is illustrated in our case in
Figs. 4A, B, which shows that time-independent external stimuli to the
network generate gamma-range LFP responses whose amplitude and
frequency growswith the input rate (see (Brunel andWang, 2003) for
a systematic analysis). The fact that both gamma amplitude and
output spike rate of the network are largely determined by the input

rate explains why gamma amplitude can be used to estimate the
output spike rate. However, it is important to note that we found
(Fig. 3C) that the conversion between input rate and gamma
amplitude is non-linear, as the gamma amplitude tends to increase
almost linearly with the input rate for small values of the latter,
whereas it rapidly saturates to a sublinear growth for higher values of
the input rate. The saturation of gamma amplitude at high rates has
important implications for the problem of estimating spike rates from
EEGs and LFPs, because it suggests that gamma amplitude variations
may better predict variations in spike rates associated with low levels
of input excitation rather than at very high levels of excitation.

When periodic external stimuli with frequency lower than that of
gamma oscillations are presented, the network still generates gamma
fluctuations whose amplitude is proportional to the instantaneous
input rate (see Figs. 4C, D for an illustration, and Fig. 3C for a
quantitative analysis averaged over simulations). However, in
addition, the network generates slower oscillations (Figs. 4C, F)
which reflect entrainment of the network to the time course of the
external stimulus. These slow oscillations reflecting entrainment to
the variations in the input are clearly visible in the accompanying LFP
and in the output rate (see Figs. 4C, F for single-trace examples and
Fig. 3D for a quantitative analysis averaged over simulations). In this
case, troughs of the LFP reflect local maxima of the input rate, and thus
also correspond to peaks of the network output rate and of the gamma
amplitude of LFP (Figs. 4C, F). Thus, when a slow LFP component
reflects entrainment to the fluctuations of the input rate, the phase of
such slow LFP rhythm will modulate both the output spike rate and
the gamma amplitude, in a way resembling that observed in visual
(Montemurro et al., 2008; Rasch et al., 2008; Whittingstall and
Logothetis, 2009) and auditory (Lakatos et al., 2005) cortex.

These considerations can also help to understand the experimental
findings that the combination of EEG or LFP gamma amplitude and
delta phase can predict the output spike rate better than any of the
two variables in isolation. The fact that delta phase alone cannot
predict the rate as well as when delta phase and gamma amplitude are
put together can be explained by taking into account that, under such
entrainment conditions, the delta phase reflects whether the shift in
input excitation reaches a maximum or minimum over time, but does
not tell the actual strength of the input at a given time. Therefore, in
cases when there is a strong modulation of instantaneous input
amplitude, delta phase will be a poor predictor compared to the
gamma amplitude. This is illustrated by Figs. 4E, F. When the periodic
input has no temporal variations in amplitude (Fig. 4E) delta phase
can be used to predict spike rate because spike rate is equally high in
all LFP delta troughs. However, when the periodic input has strong
variations in amplitude (Fig. 4F), then delta phase cannot predict any
more the actual spike rate because spike rate is very different in each
LFP delta trough. In this case, gamma amplitude is the better predictor
of spike rate.

Conversely, the saturation of gamma amplitude at high input rate
(Fig. 3C) explains also why in some circumstances delta phase can
give information about the spike rate not achievable by gamma
amplitude. If the network operates at most times in a high input
regime (such as the case of an oscillating input with high baseline
firing and small amplitude variations over time; Fig. 4H), then the
gamma amplitude is almost constant in time and (unlike delta phase)
does not predict the spike rate as well as it does when the network has
the same amplitude variations over time but a smaller baseline and so
does not operate in the gamma amplitude saturation regime (Fig. 4G).

In summary, when the LFP or EEG delta phase reflects changes in
the network excitability entrained to periodic variations in the
network input, its phase will also modulate the output spike rate
and will modulate the LFP and EEG gamma amplitude. Moreover,
because of nonlinearities in the conversion between the input rate to
the network and the gamma amplitude generated by the network,
and whenever there are significant modulations over time of the
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amplitude of the delta-band input fluctuations, gamma amplitude and
delta phase are expected to have a largely complementary correlation
with the output spike rate, meaning that only the appropriate
combination of delta phase and gamma amplitude will correlate to
very strong spike rates.

Behaviour of the network during naturalistic and spontaneous stimulation
The above results suggest that a dynamic input with a slow

periodic component is able to entrain the simulated network and

generate relationships of modulation of gamma amplitude and spike
rate by the phase of slow input changes which are very similar to
those observed experimentally with respect to the phase of LFPs and
EEGs in the delta frequency range. It is therefore tempting to speculate
that the relationships between delta phase and gamma amplitude and
spike rate observed in visual cortex (Whittingstall and Logothetis,
2009) originate because the input to the local primary cortical
population exhibits the largest temporal variations at temporal scales
roughly in the delta frequency range, both during stimulation with

Fig. 4. Examples of network responses to simple time-dependent thalamic inputs. Each panel displays the time series of single-trial simulated traces of gamma EEG/LFP band activity
(top dark-blue line), delta EEG/LFP band activity total spike rate (computed with 1 ms bin—gray line, and smoothed at 100 ms—black line) produced by the simulated network in
response to a thalamic simulated spike rate whose time course is displayed as the red line (the value of the instantaneous thalamic input rate is represented by the height of the red
line measured form the bottom of the panel). The traces of simulated EEG/LFP bandpassed signals are plotted on an arbitrary scale which is however the same in all cases. (A) Time-
independent input of 0.4 spikes/ms/cell. (B) Time-independent input of 0.8 spikes/ms/cell. The increase in input spike rate with respect to Panel (A) leads to enhanced gamma
amplitude. (C) Sinusoidal input with 4 Hz frequency, 0.8 spikes/ms/cell amplitude. The network LFP is entrained to the input, as in all the following panels. (D, E) Sinusoidal input
with 2 Hz frequency, 0.8 spikes/ms/cell amplitude. (F) Sinusoidal input with 2 Hz frequency, amplitude of 0.4 spikes/ms/cell (left) and 1.2 spikes/ms/cell (right). Due to the change
in amplitude, different output spike rates correspond to the same delta phase. (G) Sinusoidal input with 2 Hz frequency, 0.4 spikes/ms/cell amplitude. (H) Sinusoidal input with 2 Hz
frequency, 0.4 spikes/ms/cell amplitude, and a+0.8 spikes/ms/cell constant term added. Due to the high input spike rate, the LFP gamma amplitude correlates weakly to the output
spike rate.
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naturalistic movies and in absence of stimuli. Indeed, naturalistic
movies (because of strong low-frequency regularities) have most
power in the delta frequency range (Dong and Atick, 1995), and it is
thus likely that (as a result of the stimulus dynamics) thalamic
responses during naturalistic stimulation will also present response
fluctuations with most power in this range. This view is consistent
with the finding that presentation of naturalistic movies induce highly
informative slow (1–8 Hz) LFP fluctuations in V1 (Belitski et al., 2008;
Montemurro et al., 2008), which were not significantly modulated
and informative with static stimuli (Henrie and Shapley, 2005), and
with the finding that stimuli with temporal regularities in this
frequency range easily entrain LFPs and network firing (Lakatos et al.,
2008; Lakatos et al., 2005). Moreover, both during spontaneous
activity and during visual stimulation, a local cortical network is also
likely to receive inputs from other cortical areas which reflect ongoing
activity fluctuations and are not specific to the current stimulus. It is
conceivable that such input contributions from ongoing cortical
activity are more prominent in the slow (delta) frequency range than
at higher frequencies given that spontaneous shifts of excitability also
occur in the slow frequency range (Contreras and Steriade, 1995;
Luczak et al., 2009; Luczak et al., 2007), and because low-frequency
cortical fluctuations have a larger spatial coherence than faster
fluctuations (Goense and Logothetis, 2008) and so their effect on
other areas may summate more prominently than that of faster
fluctuations.

To investigate these hypothesesmore quantitatively, we simulated
these phenomena within our model network (Fig. 3A). We created an
input to the network closely matching the statistics of thalamic firing
during visual stimulation with natural movies (called “naturalistic
movie input” in the following) injecting into the network real LGN
firing patterns recorded during presentation of movies (seeMethods).
We created the spontaneous stimulus-unrelated fluctuations by
injecting into the simulated thalamocortical synapses the LGN firing
patterns recorded during spontaneous activity (this will be called
“spontaneous activity input” in the following). In both conditions the
thalamic input was superimposed to an input from non-local cortical
neurons, injected into the cortico-cortical synapses spikes driven by
slow random fluctuations with most power below 10 Hz (see
Methods), whichmodelled the effect of ongoing non-specific spatially
extended fluctuations of cortical activity (see above). It was apparent
(Supplemental Fig. S2) that also when using such broadband inputs
the low frequency components of simulated LFPs/EEGs entrained to
the peaks and troughs of the simulated thalamic input, both during
naturalistic movie input and spontaneous activity input. In the
following we investigated quantitatively if this entrainment to slow
input fluctuations could reproduce in the simulated network the
details of the experimentally observed relationships between spike
rate, gamma amplitude and delta phase.

We first investigated the spectral properties of the simulated
thalamic input during movie stimulation and during spontaneous
activity. The power spectrum of the simulated input spike train in
both conditions had the highest power in the low frequency range,
and the LFP in the delta range entrained to fluctuations in the input on
the same scales (Supplemental Fig. S3). This is consistent with our
own previous measures of power of the temporal frequencies of
contrast variations in the very same movies used in the experimental
sessions and reported in Belitski et al. (2008) and Montemurro et al.
(2008). Moreover, there was more overall power in the input during
naturalistic movie condition, compatible with the fact that on average
the spike rates recorded in themonkey LGNwere higher duringmovie
presentation than during spontaneous activity (17±6 and 9±4
spikes/s per recording channel respectively).

We then studied the relationship between the instantaneous level
of input spike rate and the associated network response during
simulated “naturalistic movie” stimulation. We found that, as with
simplified input stimuli, the output spike rate remained proportional

to the input rate (Fig. 3B), and the gamma amplitude increased with
the input spike rate and saturated at higher input rates (Fig. 3C). The
input rate modulated the delta phase too (Fig. 3D). In the naturalistic
case the tuning of delta phase to input rate was more linear and more
limited in range than in the sinusoidal case (Fig. 3D), probably
because of themodulations in frequency and instantaneous amplitude
occurring in the naturalistic movie. All in all, these results suggest that
the modulation mechanisms described with simple inputs also hold
when presenting broadband naturalistic inputs.

We then investigated whether the network could reproduce
quantitatively the dependency of spike rates on gamma amplitude
and delta phase of EEGs and LFPs observed in primate V1 during
presentation of naturalistic movies and spontaneous activity. Figs. 5A
and B reports the output spike rate of the simulated network as
function of the concurrent simulated LFP delta phase and gamma
amplitude, and demonstrates that the network reproduces very well
the results obtained inmonkeyV1 and previously summarized in Fig 2,
both with movie stimulation and spontaneous activity. In particular,
also in simulations only the right combination of delta phase at trough
and high enough gamma amplitude elicited a high output spike rate.
Similarly to experimental results, the output spike rate was signifi-
cantly correlated both to gamma amplitude (Pearson correlation
r=0.14 and r=0.22 respectively for movie and spontaneous
condition, both significant at pb0.001) and to delta phase (Figs. 5C,
D, circular–linear correlation r=0.11 for bothmovie and spontaneous
condition; pb0.001). Delta phase significantly modulated gamma
amplitude (Figs. 5E, F, circular–linear correlation r=0.17 for both
movie and spontaneous condition, significant at pb0.001). Moreover,
the simulated network's tuning of gammaamplitude to spike rateswas
narrower during spontaneous activity than during movies, exactly as
observed in real data. Duringmovie input sessions (Fig. 5A) the highest
spike rates (N75% of the maximum spike rate) occurred in correspon-
dence of gamma amplitude values above the mean gamma amplitude
value combined to a delta phase between 2 and 4.3 radians. During
spontaneous input sessions (Fig. 5B) the highest spike rates were
associated to the same delta phase range as with the movie stimulus,
but occurred only at higher gamma amplitude values (0.9 sds above
the mean) than in the movie condition. This difference can be
understood within the model by noting that (as shown in Fig. 3C)
the spontaneous simulated input does not contain input spike rates as
strong as those with the simulated naturalistic movies, and thus the
network operates more in the low-rate linear regime of input rate to
gamma amplitude conversion. This is a possible explanation for the
difference in the dependence of spike rate upon gamma amplitude and
delta phase between experimental movie and spontaneous condition
shown in Fig. 2.

Robustness to parameters changes of the behaviour of the
simulated network

The relationships between spike rate and delta/gamma frequency
bands of a mesoscopic signal based on network activity are expected
to hold qualitatively in any network of spiking neurons, provided the
following conditions are satisfied: (i) the temporal structure of the
inputs to the network (whatever their origin) should contain
significant fluctuations in the delta frequency range (ii) the connec-
tivity of the network is such that the network is able to generate
population oscillations in the gamma frequency range when the
external drive varieswithin thedynamic range characterizing the time-
dependent input to the network. Theoretical work in the last decade
has shown that condition (ii) is generically satisfied in randomly
connected networks of excitatory and inhibitory spiking neurons,
provided that the coupling is strong enough, that recurrent interactions
are dominated by inhibition, and that synapses have appropriate
kinetics. In these networks, strong coupling leads to a balance between
total excitatory and inhibitory currents (Amit andBrunel, 1997; Brunel,
2000; van Vreeswijk and Sompolinsky, 1996, 1998). This balance leads
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to a quasi-linear relationship between external inputs and instanta-
neous network firing rate (Fig. 3B), which ensures that variations of
external inputs lead to a wide range of instantaneous firing rates
(Brunel, 2000; van Vreeswijk and Sompolinsky, 1996). In addition,

these networks generate population oscillations, provided the external
drive is strong enough (Brunel, 2000; Brunel and Wang, 2003; Geisler
et al., 2005; Mazzoni et al., 2008). The frequency of such oscillations
depends on synaptic kinetics and on the balance between recurrent

Fig. 5. Relationships between spike rates, delta phase and gamma amplitude produced by the network model in response to realistic thalamic inputs. (A) Color plot of the output
spike rate of the simulated network as a function of the concurrent delta phase of and gamma amplitude of simulated LFPs/EEGs when the network responds to the thalamic input
simulating realistic responses to movies. Data were averaged over all simulated time points. The spike rate was normalized between minimum and maximum of each simulation
before taking the average over simulations, to allow a direct comparison with Figs. 2A, B. The gamma amplitude was normalized in units of standard deviation (sd) within the
simulation (above the mean across the simulation) before taking the simulation average. (B) Same as panel A, but reporting simulated network responses when the network
responds to the thalamic input simulating spontaneous activity. (C) The modulation of spike rates as a function of the concurrent LFP delta phase recorded from V1 of awake
monkeys (red shaded area represent the mean and SEM across recording sessions) is compared to the modulation of simulated network spike rates obtained in response to
“naturalistic movie” simulated input as function of simulated LFP delta phase (blue lines; average over all simulation points). (D) Same as panel C, but the cortical and simulated data
are obtained during spontaneous activity. (E) Themodulation of LFP gamma amplitude as a function of LFP delta phase recorded fromV1 of awakemonkeys (red line and shaded area
represent the mean and SEM across recording sessions) is compared to the modulation of simulated gamma LFP amplitude obtained in response to a “naturalistic movie” simulated
input as function of simulated LFP delta phase (blue lines; average over all simulation points). (F) Same as in panel E, but the cortical and simulated data are obtained during
spontaneous activity. In panels C–F, modulation of spike rate or gamma amplitude by delta phase was computed as follows. First, we binned into 11 equispaced intervals the range of
delta phase angles from 0 to 2 pi, and then in each phase interval we computed the average spike rate or gamma amplitude across all data points in a given session whose phase
belonged to that phase interval, and we finally normalized this value to the spike rate or gamma amplitude averaged over all data points in the session. The resulting values gave the
modulation curves in panels (C–F).
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excitation and recurrent inhibition, and is typically in the gamma range
for realistic synaptic time constants, provided recurrent excitation is
not too weak. The results have been shown to be robust to changes in
single neuronmodels (Geisler et al., 2005), except that the frequency of
fast oscillations are expected to be smaller when realistic spike
generation is taken into account. However, these effects are expected
to be small for gamma-range oscillations.

Based on the above considerations, we can gain some intuition on
how the various parameters of the network will affect the results.
Synaptic parameters are expected to have a stronger effect. Para-
meters affecting synaptic kinetics have a strong impact on network
frequency. Sufficiently slow (respectively fast) synaptic kinetics will
lead to slower (respectively faster) oscillations. Given that we used a
definition of gamma band as the [30–100] Hz range, modifications of
kinetic synaptic parameters that leave the dominant network
oscillations in this frequency range are not expected to modify the
results substantially. Synaptic conductances are expected to have a
strong impact on oscillations amplitude: the stronger the coupling in
the network, the stronger oscillations. In particular, gamma oscilla-
tions should become negligibly small if the coupling in the network is
very weak. Connection probability will have a similar effect as
synaptic conductances: if connectivity is too sparse, then oscillations
will become negligible.

We verified that these intuitions numerically by modifying in our
network AMPA and GABA synaptic strengths in the range±20%,
GABA and AMPA synaptic rise times in the range±100%, connection
probability in the range±25%. We found that, though naturally those
parameters changed the overall rate and the peak frequency within
the range of gamma oscillations, when injected with movie inputs the
network exhibited robust gamma oscillations in this parameter range
and all the documented relationship between input rate, delta phase,
gamma amplitude and output rate remained valid. Namely, (i) delta
phase and output rate varied linearly with the input rate, while
gamma amplitude varied sublinearly (Figs. 3B, D), (ii) output rate and
gamma amplitude were modulated by delta phase in the way
illustrated in Fig. 5. The most notable effect of parameter variation
was that the preferred delta phase of firing slightly anticipated (bπ/4)
when the strength of excitation was increased and/or connection
probability was increased. This is because in such conditions rising
phases of the input tend to produce a quick growth in the activity of
the excitatory population, which is later suppressed by inhibition.

Using insights from network models to increase the predictability of rate
from EEGs

The relationships between EEGs and spike rate are useful for
practical EEG analysis only if they ultimately lead to simple rules of
prediction of the actual time course of the spike rate from the EEG
measure. A linear and successful EEG-to-spike rate prediction rule,
based on the relationships between spike rate, gamma amplitude and
delta phase reported in Fig. 2, was developed by (Whittingstall and
Logothetis, 2009). Here we investigate whether such linear prediction
of spike rates also works with the simulated model, and whether it is
possible to use the insights into the neural mechanisms of this
relationship gained by the model to improve the prediction of spike
rates from real EEGs and LFPs.

We used the procedures described in Whittingstall and Logothetis
(2009) for reconstructing the spike rate r from EEG with a linear
regression model:

r = βδXδ + βγXγ + k ð1:7Þ

where k is a constant term, the gamma amplitude regressor Xγ is the
gamma amplitude normalized to its peak value and the regressor of
the delta phase Xδ is one minus the normalized angular difference
between the current phase and the preferred one, therefore ranging
from 0 (anti-preferred phase) to 1 (preferred phase). Both rate and

regressors where convolved with a 100-ms Gaussian window, since
we found that, consistent with Rasch et al. (2008), this was the
timescale at which spike rates can be predicted from averaged
extracellular signals. Coefficients R2 for real EEG and LFP data from V1
of the awake macaque (Whittingstall and Logothetis, 2009) were
significant for all recording sessions if either delta phase or gamma
amplitude was used in isolation (F test; pb0.01), and the regression
quality still significantly improved over that of single regression if
both delta phase and gamma amplitude were used in the reconstruc-
tion (F test; pb0.01). Figs. 6A, B displays the R2 coefficients for LFP-
EEG recorded during movie stimulation; coefficients for LFP-EEG
recorded during spontaneous activity (not shown) have very similar
rankings but are reduced on average of 30% for LFP and of 40% for EEG
recordings. Consistent results were found with the network model
(Fig. 6C). Again, delta phase and gamma amplitude gave significant
linear regression when used in isolation, and the quality of regression
too significantly increased using both gamma amplitude and delta
phase (F test; pb0.01). We note that the higher R2 prediction values
obtained with the model when compared to those of LFPs were due to
the fact that the spike rate used by the model was the spike rate of all
4000 pyramidal neurons in the network, whereas the estimation of
spike rate on real data was based on the firing of the (unknown but
surely much smaller) number of pyramidal neurons recorded in each
experiment. We verified that when estimating the spike rate of 5–15
simulated neurons, the R2 values of the simulated rate reconstruction
were in the range of those found for experimental LFPs (0.02–0.05 for
single regressors, 0.05–0.1 for joint regressors).

The effect of combining the two features is further illustrated in
Fig. 6D by showing a single simulated trace during naturalistic movie
simulated stimulation: a linear reconstruction based exclusively on
the gamma amplitude would predict the presence of two peaks at the
time highlighted by the shaded area (upper row), a reconstruction
based exclusively on the delta phasewould predict a single symmetric
peak (intermediate row), while only combining the two features the
real shape of the peak can be reconstructed (lower row). Therefore,
consistent with the above considerations on network dynamics, the
network model correctly predicts the experimental results that
gamma amplitude and delta phase predict the spike rate in a non-
redundant way.

Despite the success of linear rate reconstruction, our previous
results on network dynamics suggest that a linear model may not be
the best way to predict spiking activity. In fact we reported above that
the delta phase in naturalistic conditions relates linearly to the rate,
while the spike rate increased supra-linearly with the gamma
amplitude (or in other words, the gamma amplitude saturated sub-
linearly at increasing rates, Fig. 3C).We investigatedwhether the non-
linear relationship between spike rate and gamma amplitude was
observed also for real data. Fig. 7A reports the relationship between
EEG gamma amplitude and the concurrent spike rate for one
representative recording session in V1 of the awake macaque during
movie stimulation, and it shows that even a quadratic relationship
describes the data much better than a linear fit, in a way that matches
the predictions of the neural network model well (Fig. 7C).

The existence of nonlinearities between spike rate and gamma
amplitude in both real and simulated data suggests that spike rate
predictionmay be improved by introducing in the model higher order
terms to explain the dependence on gamma amplitude, as follows:

r = βδXδ + β 1ð Þ
γ Xγ +

XN
n=2

β nð Þ
γ Xn

γ + k ð1:8Þ

Indeed we found that including a quadratic coefficient (N=2 in Eq.
(1.8)) improved the fit relatively to the linear model in 96% of V1 EEG
recording sessions during movie stimulation and 84% of V1 EEG
sessions during spontaneous activity (F test, pb0.01). The number of
non-linear terms that contributed significantly to the reconstruction
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varied across EEG recordings, and was up to N=6 for 50% of movie
sessions and 35% of spontaneous activity sessions, while simulated
data were optimally reconstructed setting N=4. In 77% of movie
sessions and 62% of spontaneous activity sessions, and in simulated
data, the non-linear contribution to the best fit coefficient was
positive as so the relationship between EEG gamma amplitude and
output spike rate was supralinear (Figs. 7A and C). The gain in R2

between the non-linear and linear regressor of spike rates based on
gamma amplitude during movie stimulation was 33% and 15% for real
EEGs (Fig. 7B) and for the network model, respectively (Fig. 7D). The
gain in R2 between the non-linear and linear regressor of spike rates
based on gamma amplitude during spontaneous activity was less than
the one observed during movie stimulation (15% and 6% for real EEGs
and for the network model respectively). This is consistent with the
predictions of our network model and the mechanisms explained in
the previous sections, because the network is less often in the
nonlinear spike rate to gamma amplitude conversion regime during
spontaneous activity, due to the less sustained input in such a
condition (Fig. 3C).

In sum, the network model gives prediction rules of spike rate
from EEGs and LFPs which are very consistent with the data, and the
investigation of the model dynamics allowed an improvement of the
spike rate prediction from real data.

Dependence of cross frequency modulation of spike rates on the
stimulus dynamics

According to our model, the finding that phase of the same (delta)
slow frequency range is correlated to gamma amplitude and spike
rate both during naturalistic movies and spontaneous activity is
somehow coincidental, and it happens because during movie
stimulation the sensory input fluctuates and entrains the network
mostly in the same (slow) frequency regime over which spontaneous
and ongoing network fluctuations with the highest power and spatial
extent also happen. An important question is how the prediction of
spikes from EEGs and LFPs may change with the dynamics of the
sensory stimulus. Here, we investigated this issue by using the network
model.

We simulated the network responses to a thalamic input with a
sinusoidal time course (baseline and amplitude of these input
oscillations were set to match the same time-average spike rate and
amplitude of peak spectral fluctuation over time of the naturalistic
LGN input). In order to understand the impact on the stimulus
dynamics on the spike rate control of different EEG-LFP frequencies,
we varied the frequency of this input in the range 6–14 Hz. We then
examined how the phase of the simulated LFP at different
frequencies modulated the output spike rate and gamma amplitude
of the simulated network. We found (Fig. 8) that modulation was

Fig. 6. Spike rate reconstruction from real and simulated EEGs/LFPs signals. (A) R2 goodness-of-fit of linear reconstruction of real visual cortical spike rates from the awake monkey
during movie stimulation from the concurrently recorded LFPs. The histograms report (as mean ± SEM over all recording sessions) R2 values of linear reconstruction using as
regressors LFP delta phase (D. Ph.), gamma amplitude (G. Ampl.) and the two features considered together (Joint) respectively. (B) Same as A, but using concurrently recorded EEGs
(rather than LFPs) to estimate visual cortical spike rates. (C) R2 goodness-of-fit of linear reconstruction of the output spike rates of the simulated network responding to “naturalistic
movie” thalamic inputs. The histograms report (as mean±SEM over all simulated data) R2 values of linear reconstruction using as regressors simulated LFP/EEG delta phase (D. Ph.),
gamma amplitude (G. Pow.) and the two features considered together (Joint) respectively. (D) Evolution of simulated spike rate (in black) and reconstruction of the simulated spike
rate from simulated LFP/EEG (in gray) using different regressors: gamma amplitude (top), delta phase ranging between preferred and anti-preferred phase (middle), and both
regressors (bottom). Both rate and regressors were convolved with a 100-ms Gaussian window (see text). The shaded box indicates a time region with a spike rate peak whose
correct reconstruction requires both regressors.
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maximal for LFP phases at the frequency matching that of the
stimulus (because of network entrainment to the simulated thalamic
input). R2 linear regression values obtained using simulated LFP
phase at different frequencies were also maximal at the frequency
matching that of the stimulus (results not shown). In addition, Fig. 8
shows that in all conditions the phase in the delta range also
modulated significantly (though less prominently) the gamma
amplitude and the spike rate, because the ongoing unspecific
fluctuations that we inserted in the model had maximal power in
this low frequency range.

The conclusion of these simulations is that, in addition to the
delta phase modulation which should be present whenever ongoing
activity is most prominent in this frequency range, the phase at
other frequencies may become another prominent correlate of
spiking activity in cases in which the stimulus dynamics has the
most power outside the delta frequency range. This prediction is
easily testable experimentally, and requires a detailed characteriza-
tion of the stimulus variables which can entrain LFPs and EEGs, and
the range of time scales of which this characterization is possible.
We however note that any complex naturalistic stimulus will most
likely have the most power in the slow frequency range, and thus
obtaining a contribution to spike rate predictions from the phase of
higher frequencies as that reported in Fig. 8 may not be easy to
obtain experimentally.

Discussion

EEG is one of the most important techniques to record brain
activity non-invasively and is a fundamental empirical tool to
measure the large-scale dynamics of the human brain during
cognitive and sensory functions; yet the exact relationship between
the dynamics of the EEG signal and the dynamics of the outputs of
local neural computations is still not known. Recently, Whittingstall
and Logothetis (2009) investigated this question directly, by
recording simultaneously EEGs, LFPs and spikes from visual cortex
during naturalistic visual stimulation and in absence of stimuli. They
reported that in all cases the combination of EEG or LFP low-frequency
phase and high-frequency amplitude yield a significant estimate of
real-time spiking activity of cortical neurons. In this article, we
developed and reported a novel model explanation of these empirical
findings, which led to twomain advances: (1) a simple integrate-and-
fire network model can reproduce these experimental findings
obtained in both anaesthetised and awake non-human primate
during naturalistic or spontaneous stimulus conditions. (2) The
model can be used to better understand the physiological basis of
frequency–band coupling, and to therefore better understand the
unifying link between EEG, LFP and spiking activity under different
experimental conditions. The significance of these studies to inves-
tigate brain dynamics is discussed below.

Fig. 7. Non-linear relation between spike rate and gamma amplitude in experiments and simulations. (A) Recorded spike rate as a function of EEG gamma amplitude for a single
representative recording session from V1 of the awake monkey during movie stimulation (green area represents mean±sd range across all intervals for a given gamma amplitude
value). Black lines represent the linear fit (dashed line) and quadratic fit (solid line) of the data. (B) Histograms report (as mean±SEM over all recording sessions) R2 Goodness-of-fit
of the prediction of the time course of primary cortical spike rate during movie stimulation using as regressors different features of the concurrently recorded EEG: linear terms of
gamma amplitude (G. Ampl.); the linear and all significant non linear terms of the gamma amplitude (G. Ampl. Nlin.); the linear term of gamma amplitude and the delta phase
(Joint); and all significant gamma amplitude terms and the delta phase (Joint (G. Ampl. Nlin.)). The inclusion of the nonlinear terms significantly (F test, pb0.01) improved the
reconstruction of the spike rate from the EEG for 25/26 sessions. (C) Output spike rate of the simulated network in response to a “naturalistic movie” thalamic input as a function of
the simulated LFP/EEG gamma amplitude (blue area represents mean±sd range across all intervals for a given gamma amplitude value). Black lines represent the linear fit (dashed
line) and quadratic fit (solid line) of the data. (D) Histograms report (as mean±SEM over all simulated datapoint) R2 Goodness-of-fit of the prediction of the time course of the
simulated output spike rate in response to movie input using as regressors different features of the simulated EEG/LFP. Notations as in Panel (B).
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Implication for analysis of real EEG, LFP and fMRI recordings

These results have obvious implications for the interpretation and
analysis of EEG experiments, and in particular of how time series of
EEG can be used in, for example, deciphering the complex brain
activity recorded during a cognitive task. First our model results
confirm and corroborate empirical findings and indeed suggest how a
reliable estimate of the time course of local spiking activity could be
obtained from the single-trial frequency decomposition of EEGs into
gamma and delta bands, thereby emphasizing the importance of
single-trial frequency analysis in EEGs. Second, our individuation
(both in models and in real data) of the nonlinearity in the conversion
between spike rate and gamma suggests a practical and very simple
way to increase the quality of the estimate of the spike rate by
approximately 30% with a very small computational effort. Third, our
hypothesis that a source of modulation of rate by the delta EEG phase
arises from fluctuations of the input to a local cortical network due to
slow cortical ongoing activity suggests that the phase of the delta
band is likely to be a major contributor to spike rate prediction in all
experimental conditions. Fourth, our hypothesis that modulation of
rate by the EEG phase in slow-frequency bands arise in part from
thalamic inputs fluctuations due to entrainment to the stimulus
dynamics suggests that in some conditions the phase of EEG/LFP
bands other than delta (and whose frequency follows the principal
frequencies of stimulus dynamics) may play a significant additional
role in spike rate reconstruction to that provided by delta-band phase.
This latter point is not only important because it can be helpful to
extend the range of validity and quality of model predictions to a
number of experimental paradigms beyond naturalistic sensory

stimulation and spontaneous activity, but also because it provides
very testable predictions of the model which can serve to validate,
refute or improve the model assumptions.

A further point of interest is that our model is successful is also
predicting spike rate from intracortical LFPs. This point has practical
implications because in some clinical applications (such as recording
brain activity during human surgeries) it is convenient or possible to
record only LFPs and not spiking activity. In such cases, the results
provided here give a guideline to obtain from these LFPs simple online
estimation of the current level of local spiking activity, which has
again very important implications for the clinical evaluation of local
functions.

Finally, there is growing evidence (reviewed in He and Raichle,
2009) that slow cortical potentials (similar to the slow oscillations
reported here) and their ability to modulate higher frequency
oscillations are important neurophysiological correlates of the fMRI
BOLD signal. These facts suggest that the model formalism introduced
here could potentially be further developed to provide quantitative
comparisons to simultaneous recordings of neurophysiological and
BOLD signal, and can thus be used to shed further light on how to
relate BOLD time series to the output of local neural computations.We
plan to pursue this issue in the near future.

Relationship with previous theoretical studies on generation of
cross-frequency coupling

Ourmodel builds on previous theoretical progress on investigating
the cross-frequency coupling between the amplitude of faster LFP/
EEG rhythms and the phase of slower rhythms. Since this cross-

Fig. 8.Modulation of spike rate and gamma amplitude in simulations with high frequency input. (A–D) Simulated spike rate modulation relative to the phase of the delta component
D and the phase of LFP/EEG band-passed at 6, 10, 14 and 18 Hz, when the network receives cortico-cortical inputs superimposed to a constant input of 1.5 spikes/ms/cell (A), and to
sinusoidal inputs of average 1.5 spikes/ms/cell, amplitude 0.8 spikes/ms/cell and frequency 6 Hz (B), 10 Hz (C) and 14 Hz (D). (E, F) Simulated LFP/EEG gamma amplitude
modulation relative to the phase of the delta component D and the phase of the simulated LFP/EEG band-passed at 6, 10, 14 and 18 Hz, when the network is injected with the same
set of stimuli used in (A–D).
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frequency coupling has been first reported in electrophysiological
observations in the hippocampus of freely-moving rats, where gamma
oscillations occur preferentially at the peak of slower theta oscillations
(Bragin et al., 1995; Csicsvari et al., 2003), earlier models of cross-
frequency coupling have focused on the hippocampal formation.
While gamma oscillations are thought to be generated within
hippocampal networks, it is still unclear whether theta oscillations
are generated outside or within the hippocampus. White et al. (2000)
studied a network model composed of two populations of GABAergic
interneurons (expressing GABA receptors with fast and slow kinetics,
respectively) that was able to internally generate a mixed theta-
gamma rhythm. However, cross frequency was much more robust in
the presence of the low-frequency components of the input, which
modulated generation of gamma rhythms in a way compatible with
our proposal. Tsodyks et al. (1997) showed that aWilson–Cowan type
model could generate gamma oscillations that are modulated by a
slower theta oscillation which is imposed to the network by an
external oscillatory input, because the input drives the network
through a Hopf bifurcation, where the network starts to oscillate due
to the excitatory–inhibitory loop. Similar cross-frequency coupling
phenomena across cortical modules were reported in other theo-
retical studies of related neural mass models (Jansen and Rit, 1995),
and have been used successfully to relate the observed EEG dynamics
to the large-scale interactions between brain regions (Chen et al.,
2008; David and Friston, 2003; Deco et al., 2008).

Building on this existing knowledge, the work reported here
provides several advances. First, we individuated two potential
sources of slow modulation of the input and thus excitability to a
cortical primary sensory area, namely slow fluctuations in the sensory
input from the periphery (possibly related to the stimulus dynamics)
and ongoing slow and spatially extended fluctuations of cortical
activity. Second, by injecting realistic inputs time series collected from
the macaque brain during naturalistic stimulation and during periods
of stimulus-free activity into an integrate-and-fire network with
sparse recurrent inhibitory and excitatory connections with realistic
synaptic time constants, we could demonstrate that our hypotheses
about the origin of slow fluctuations of local excitability lead to
predictions quantitatively compatible with observed cross-frequency
modulation of spiking activity in sensory cortex. Third, and unlike
some previous models of generations of oscillations in recurrent
networks (Brunel and Wang, 2003; White et al., 2000), we
computed and distinguished LFPs/EEGs from input and output
spike rates, and this was crucial not only for comparison to
experimental data but also to determine the precise mechanisms
relating the mesoscopic analog neural signals (such as those from an
LFP or an EEG electrode placed near the source of the recorded
spiking activity) to the time course of the spike rate, which is the
local variable carrying out the information resulting from a neural
computation. In particular, we clarified the role of nonlinearities in
the conversion from input rate to gamma amplitude and the
relationship between delta phase and input strength as potential
mechanisms explaining the complementariness in the correlation
that slow and fast LFP/EEG oscillations display with spiking activity
(Lakatos et al., 2005; Whittingstall and Logothetis, 2009).

A current limitation of our local integrate-and-fire network model
is that it may be computationally difficult to extend it in its present
form to the study of very large scale interactions between many areas
(David and Friston, 2003; Friston, 2001; Sotero et al., 2007), which
would allow a study of the role of cross-frequency coupling in
organizing large scale cortical dynamics. On the other hand, as
demonstrated here this level of modelling permits a very detailed
validation against real data of the behaviour of mesoscopic and
microscopic signals generated by visual cortex, and is thus a very
useful intermediate step for constructing credible larger scale models
which can at the same time capture the detailed time course of
computation in each area as well as interaction among areas.

Cross-frequency coupling and sensory function

The coupling of fast gamma oscillations and spike rates with the
phase of slower rhythms has been recently reported in visual (Rasch
et al., 2008;Whittingstall and Logothetis, 2009) and auditory (Lakatos
et al., 2005) cortex, both during spontaneous activity and sensory
stimulation. In particular, it has been suggested that this cross-
frequency coupling plays a very important role in sensory function
and is a crucial aspect of how cortex organizes and groups the
different types of information contained at the multiples time scales
which are simultaneously present in naturalistic stimuli such as e.g.
speech and sound (Kayser et al., 2009; Lakatos et al., 2008; Lakatos
et al., 2005). The fact that this phenomenon has been observed in
more than one area and both in the presence and absence of sensory
stimulation suggests that may reflect a very general feature of cortical
dynamics and very basic properties of cortical circuits. Indeed, the
mechanisms of generation of cross-frequency coupling that we
propose are based on widespread features of cortical circuits and so
are likely to be at work in several areas.

An additional view on the role of slow cortical oscillations is that
inputs that arrive to a cortical module during the high-excitability
delta phase are amplified whereas those arriving during the low-
excitability phase are suppressed, a fact whichwas suggested to play a
role in a number of cognitive functions such as attentional selection
(Schroeder and Lakatos, 2009). This view is supported by a recent
experiment demonstrating that the pre-stimulus phase of ongoing
theta-range EEG oscillation in humans correlates on a trial-by-trial
basis with successful visual perception (Busch et al., 2009). We note
that the mechanisms of cross-frequency modulation of the output
spike rate of a cortical module proposed by our model are in principle
compatible with these findings, because in our model a component of
the LFP delta oscillation reflects and follows ongoing, stimulus
unspecific fluctuations of the cortico-cortical inputs to an area. As a
consequence of this model feature, an input which is just subthresh-
old might become suprathreshold if it arrives at a time when ongoing
activity is in an “excitable” state.
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