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a  b  s  t  r  a  c  t

Local  Field  Potentials  (LFPs)  exhibit  a  broadband  spectral  structure  that  is  traditionally  partitioned  into
distinct  frequency  bands  which  are thought  to originate  from  different  types  of  neural  events  triggered
by  different  processing  pathways.  However,  the  exact  frequency  boundaries  of  these  processes  are  not
known and,  as  a result,  the  frequency  bands  are  often  selected  based  on  intuition,  previous  literature
or  visual  inspection  of the  data. Here,  we address  these  problems  by developing  a  rigorous  method  for
defining  LFP  frequency  bands  and  their  boundaries.  The  criterion  introduced  for determining  the  bound-
aries  delimiting  the  bands  is  to  maximize  the  information  about  an  external  correlate  carried  jointly  by  all
bands in  the  partition.  The  method  first  partitions  the  LFP  frequency  range  into  two  bands  and  then  succes-
sively  increases  the  number  of  bands  in  the  partition.  We  applied  the partitioning  method  to  LFPs  recorded
from  primary  visual  cortex  of anaesthetized  macaques,  and  we  determined  the  optimal  band  partitioning

that  describes  the  encoding  of  naturalistic  visual  stimuli.  The  first  optimal  boundary  partitioned  the  LFP
response  at  60  Hz  into  low  and  high  frequencies,  which  had  been  previously  found  to  convey  independent
information  about  the  natural  movie  correlate.  The  second  optimal  boundary  divided  the  high-frequency
range  at  approximately  100  Hz into  gamma  and  high-gamma  frequencies,  consistent  with  recent  reports
that  these  two  bands  reflect  partly  distinct  neural  processes.  A  third  important  boundary  was  at  25  Hz
and  it  split  the  LFP  range  below  50 Hz into  a stimulus-informative  and  a stimulus-independent  band.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Local Field Potentials (LFPs) are a massed signal which cap-
ures multiple neural contributions, from dendrosomatic dipoles
enerated by synaptic activity to non-synaptic slow activity such
s voltage-dependent membrane oscillations and spike afterpo-
entials (Logothetis, 2003). Since LFPs are sensitive to supra and
ubthreshold processes, investigating stimulus encoding by LFPs
an offer additional insights into sensory representations beyond
hose offered by only measuring neuronal spike trains (Belitski
t al., 2010; Logothetis, 2003; Montemurro et al., 2008; Nicolelis
nd Lebedev, 2009; Ray et al., 2008). Their stimulus tuning has been
ntensively investigated in recent years (Belitski et al., 2008; Berens
t al., 2008; Frien et al., 2000; Kayser and Konig, 2004; Liu and
ewsome, 2006; Siegel and König, 2003). LFPs exhibit a broadband
pectral structure which is traditionally partitioned into distinct
requency bands, initially introduced in the human EEG literature,
hich are thought to originate from different types of neural events

∗ Corresponding author. Tel.: +39 10 70781437.
E-mail address: stefano.panzeri@iit.it (S. Panzeri).

165-0270/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2011.11.005
triggered by different neural processing pathways (Buzsáki, 2006).
However, the exact frequency boundaries of these processes are
not known. Frequency bands are thus often selected based on intu-
ition, previous results in the literature or visual inspection of the
data. As a result, the band boundaries vary greatly across studies.
For example, the gamma  band is sometimes referred to as a narrow
(a few Hz wide) frequency range (Llinas and Ribary, 1993; Miltner
et al., 1999) and other times as a wide interval spanning tens of Hz
(Chrobak and Buzsaki, 1998; Kruse and Eckhorn, 1996).

A rigorous approach to defining the boundaries of a stimulus-
tuned LFP band has been proposed by Siegel and König (2003).  Their
method, based on maximizing an index of selectivity to a stimulus
parameter, allows the identification of both the parts of the fre-
quency spectrum that are best tuned to a specific stimulus, and
of the boundaries that optimize the tuning of a single band to the
stimulus. This approach, which was  successfully applied to identify
the optimal boundaries for orientation tuning of the gamma band
in visual cortex (Siegel and König, 2003), requires a model of a tun-

ing curve describing the relationship between an external correlate
of interest and the induced changes in the LFP band considered.
A complementary approach was developed by our group (Belitski
et al., 2008) for investigating the relationship between the power

dx.doi.org/10.1016/j.jneumeth.2011.11.005
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:stefano.panzeri@iit.it
dx.doi.org/10.1016/j.jneumeth.2011.11.005
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t each frequency in the Fourier decomposition – the smallest fre-
uency element in which we can break the LFP range – and complex
isual stimuli. This analysis revealed which regions in the LFP spec-
rum are informative about naturalistic movie stimuli and which
egions are, instead, stimulus-unrelated. However, these previous
ethods cannot determine how to partition the entire LFP range

n such a way that the bands in the partition collectively carry the
argest possible amount of information about a set of stimuli. In
act, by fine-tuning one band at a time one might fail to take into
ccount the relationships between different frequency regions. For
nstance, tuning one band at a time may  individuate a set of bands

hich are individually highly informative and that all carry very
imilar information, but may  fail to individuate bands that express
omplementary aspects of stimulus tuning and thus carry more
nformation collectively.

Here we introduce a new procedure for partitioning the LFP
esponse into bands that collectively carry maximal mutual infor-
ation about a set of external correlates. This procedure does

ot make any assumption on the type of relationship between
he power in an LFP band and the external correlate of inter-
st. Rather, because of the properties of mutual information, it
aturally takes into account linear and non-linear correlations at
ny order as well as any relationship between the powers in dif-
erent bands. The article is structured as follows. After defining
he procedure, we investigate and address the problems related
o its computational implementation. We  then apply the tech-
ique to the electrophysiological signal recorded from the primary
isual cortex of anesthetized macaques, and we  determine a sta-
le partition of LFPs into bands that carries an optimal amount of

nformation about all visual features in the movie.

. Materials and methods

.1. Recording procedures, sensory stimuli and data extraction

We  analyzed sensory evoked LFPs and MUA  recorded from
rimary visual cortex (V1) of two anaesthetized monkeys. The
ecording procedures and stimulation paradigms for the differ-
nt datasets are described shortly in the following and have been
etailed previously (Belitski et al., 2008; 2010; Montemurro et al.,
008). All experiments were approved by the local authorities
Regierungspräsidium) and were in full compliance with the guide-
ines of the European Community (EUVD 86/609/EEC) for the care
nd use of laboratory animals. Prior to the experiments, form-
tting head posts and recording chambers were implanted during
n aseptic and sterile surgical procedure.

Recordings from V1 of two adult rhesus monkeys (Macaca
ulatta) were obtained while the animals were anaesthetized

remifentanil, 1 �g/kg/min), muscle-relaxed (mivacurium,
 mg/kg/h) and ventilated (end-tidal CO2 33 mmHg, oxygen
aturation > 95%). Body temperature was kept constant and lac-
ated Ringer’s solution supplied (10 ml/kg/h). Vital signs (SpO2,
CG, blood pressure, endtidal CO2) were continuously monitored.
euronal activity was recorded from opercular V1 (foval and
ara-foveal representations) using microelectrodes (FHC Inc.,
owdoinham, Maine, 300–800 k Ohms), signals were high-pass
ltered (1 Hz; digital two pole Butterworth filter), amplified using
n Alpha Omega amplifier system (Alpha Omega Engineering) and
igitized at 20.83 kHz. Binocular visual stimuli were presented at

 resolution of 640 × 480 pixels (field of view: 30◦ × 23◦, 24 bit
rue color, 60 Hz refresh) using a fiberoptic system (Avotec, Silent

ision, Florida). Stimuli consisted of ‘naturalistic’ complex and
ommercially available movies (30 Hz frame rate), from which
.5–4.3 min  long sequences were presented and repeated 30–40
imes. We  confirmed that the receptive fields of all multi-unit
ce Methods 210 (2012) 66– 78 67

activity from each recording site were well within area of visual
stimulation (Rasch et al., 2008).

3. Information theoretic analysis

3.1. Definition of the main information theoretic quantities

To determine how well the power in a given LFP band encodes
the sensory stimulus we computed Shannon’s mutual information
between the stimulus and the power of the LFP band (Shannon,
1948), which is defined as

I(S; B) =
∑
b,s

P(s)P(b|s)log2
P(b|s)
P(b)

(1)

where P(s) is the probability of presenting stimulus s, P(b|s) is the
probability of observing a power value b given presentation of stim-
ulus s, and P(b) is the probability of observing power value b across
all trials to any stimulus. I(S;B) quantifies, in units of bits, the reduc-
tion of uncertainty about the stimulus that can be gained from the
observation of a single-trial power value. One  bit corresponds to a
reduction of uncertainty of a factor of two. I(S;B) is zero only when
the stimulus and the power are statistically independent, indicating
that no knowledge about the stimulus can be gained by observing
the response.

Eq. (1) can be extended to quantify the information about a set
of stimuli gained by the simultaneous observation of the power in
L different LFP bands, as follows:

I(S; B1 . . . BL) =
∑
b,s

P(s)P(b1 . . . bL|s)log2
P(b1 . . . bL|s)
P(b1 . . . bL)

(2)

where in the above P(b1. . .bL|s) is the probability of the joint
observation of observing jointly the power values b1. . .bL in the
considered bands during a single-trial presentation of stimulus s.

3.2. Definition of stimulus set

Computation of information requires the definition of a set of
sensory stimuli S about which the neural response carries informa-
tion. Our dataset was  made of recordings in response to repeated
presentation of the same movie. To quantify the amount of visual
information carried by the LFP power in this experiment, we used
a feature-independent definition of stimulus, described next (de
Ruyter van Steveninck et al., 1997; Strong et al., 1998). The movie
presentation time was  divided into non-overlapping time windows
of length T = 960 ms  and each window was labeled with a stimu-
lus identification number (s = 1, 2, . . .). In this paper we present
results obtained with a window of length T = 960 ms, but results
were qualitatively similar when varying the length of the running
window T in the range 480–1920 ms  (not shown). The LFP power
was  quantified separately in each window (see below) and we  com-
puted the information between the LFP power and the section of the
movie (“stimulus window”) at which the response was collected.
It is important to note that the response collected in the s-th win-
dow is potentially elicited by the whole temporal pattern of visual
stimulation up to the last time point of stimulus window s. There-
fore this definition of information carried by the response about
which stimulus window was being presented takes into account
the potential contributions of all stimulus features at all previous
movie frames as well as the contribution of the visual features in
the current movie frame. As such, the information calculation does
not assume an instantaneous relationship between LFPs and stim-

uli, and takes into account the effects of all time lags between the
neural response and any visual feature that provoked it. This def-
inition of stimulus set has the advantage that it does not make
any assumptions about which stimulus features or combinations of
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hem, either presented at the current time or in the period prior to
he considered neural response, provokes the neuronal response.
his also makes the information value formally invariant to any
igid time shift between stimulus windows and neural response
orresponding to any assumption of a given latency value between
timuli and responses.

.3. Computation of spectral power in each band for information
alculation

Computation of information requires the evaluation of the
ingle-trial spectral power of each band in each of the “stimulus
indows” of length T defined above. Here we computed the single-

rial power in each window using the multitaper method (Percival
nd Walden, 2006) with time-bandwidth parameter NW = 2. This
ethod of spectral estimation was chosen because it gives an excel-

ent trade-off between bias and variance and because it was shown
o work well on LFP data (Belitski et al., 2008; Pesaran et al., 2002).
o compute the power in a given frequency band we integrated the
pectral power between the band boundaries. However, we veri-
ed that the use of alternative methods for band power estimation
ithin a window, such as averaging over the time points within the
indow the instantaneous Hilbert power of a signal band-passed
ithin the defined bound boundaries with a Kaiser filter (as done

.g. in (Belitski et al., 2010; Kayser et al., 2009)), gave results which
ere essentially identical to that obtained with the summation of
ultitaper power used here (see (Magri, 2009) for more details).

.4. Information redundancy

The information redundancy between the power in different LFP
ands was defined as the difference between the information pro-
ided by the joint signals b1, . . .,  bL and the sum of the independent
nformation values (Belitski et al., 2008; Hatsopoulos et al., 1998;
ola et al., 2003; Schneidman et al., 2003):

ed(B1 . . . BL) = I(S; B1 . . . BL) −
L∑

i=1

I(S; Bi) (3)

Positive values of redundancy indicate that the joint knowl-
dge of the power of all bands carries less information than the
um of the information provided by each individual band. Negative
alues of redundancy denote the presence of synergistic interac-
ion between different bands, which make the total information
reater than the sum of the information provided individually by
ach band. We  normalized redundancy expressing it as percentage
f the total information carried by the joint observation of all bands
n the partition. This percentage redundancy was thus defined as

ed(B1 . . . BL) = 100 × Red(B1 . . . BL)
I(S; B1 . . . BL)

(4)

We  also computed the information carried by the power at a sin-
le Fourier coefficient rather within an LFP band. The calculation of
he single frequency bin information was done exactly as described
bove, the only difference being that b was now the power of a
ingle Fourier coefficient.

. Computation of information

The computation of the information with Eqs. (1) and (2)
equires the estimation of stimulus-conditional response probabil-
ties P(b|s) and P(b1, . . .,  bL|s). These probabilities are not known a

riori and must be measured experimentally from a finite number
f trials. In this work we compared two complementary procedures
or measuring the probability distributions and the corresponding
nformation values, namely, the Direct Method and the Gaussian
ce Methods 210 (2012) 66– 78

Method described below. All information analyses were performed
using the Information Breakdown Toolbox (www.ibtb.org; (Magri
et al., 2009)).

4.1. The Direct Method

Computation of information according to the Direct Method
(Strong et al., 1998) was  as follows. We  first discretized the response
space by binning the response power into M equi-populated bins.
The parameter M was  varied between 3 and 32 in order to evaluate
the effect of the discretization on the Direct information esti-
mates. We  then estimated the probabilities of the discrete neural
responses by simply computing the fraction of trials in which each
response value is observed, and then by inserting these response-
probability estimates into the information Eqs. (1) and (2).  The
Direct Method, being based on empirically computing the prob-
ability histograms of discrete or discretized neural responses, does
not make any assumption on the shape of the probability distri-
butions. This makes the Direct Method widely applicable to many
different types of data.

Even when each stimulus is repeated many times, as was the
case here, the estimated probabilities suffer from finite sampling
errors, which induce a systematic error (bias) in information esti-
mates (Panzeri et al., 2007). To correct for the bias, we  used a
quadratic extrapolation procedure (Strong et al., 1998) to estimate
and subtract out the bias of each information quantity. When com-
puting the information conveyed by the joint observation of the LFP
power in more than one band we additionally applied the “shuf-
fling procedure” described in (Montemurro et al., 2007; Panzeri
et al., 2007), which greatly reduces the bias of multidimensional
information estimates and typically makes the residual bias nega-
tive. This implies that our estimates of the joint information carried
by two  signals (and thus of redundancy) tend to be slightly biased
downward.

4.2. The Gaussian Method

An alternative approach to the Direct estimation of informa-
tion is to use analytical models of the probability distributions; fit
these distributions to the data; and then compute the information
from these probability models. The Gaussian Method for comput-
ing information and entropies is the one based on fitting response
probabilities to Gaussian functions.

Under the Gaussian hypothesis, mutual information is given by a
simple function of the trial-to-trial variance of LFP responses (Cover
and Thomas, 2006)

I(S; B) = 1
2

(log2[2�e|�2(B)|] − log2[2�e|�2
s (B)|]) (5)

where |�2(B)| and |�s
2(B)| are the determinants of the matrices of

covariance computed across trials and stimuli, and across trials to
stimulus s, respectively.

The Gaussian Method has two  main advantages: it does not
require data discretization prior to the information calculation, and
it depends only on a few parameters that characterize the neural
response (i.e., the variance and covariance of the responses), which
makes it more data-robust and less prone to sampling bias than the
Direct calculation (Magri et al., 2009; Yu et al., 2010). The poten-
tial danger with this approach is that the estimates provided by Eq.
(2) may  be inaccurate if the underlying distributions are not close

enough to Gaussians.

Although less severe than in the Direct case, the bias of the infor-
mation calculation due to limited sampling is still present when
using the Gaussian Method. When the underlying distributions are

http://www.ibtb.org/
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aussian an exact expression for the bias of I(S;B) can be computed
s follows (Goodman, 1963; Misra et al., 2005; Oyman et al., 2003):

ias[I(S; B)] = gbias(Ntr × Nwin) −
∑

s

p(s)gbias(Ntr) (6)

here Ntr is the number of available trials per stimulus (in our
xperiment the number of movie repetitions) and Nwin is the num-
er of stimuli (in our case the number of windows of length T into
hich the movie presentation time was subdivided). The function

bias(·) is defined as

bias(N) = 1
2 ln 2

⎡
⎣L ln

(
2

N − 1

)
+

L∑
j=1

�
(

N − j

2

)
⎤
⎦ (7)

nd � is the polygamma function and L is the number of bands
onsidered.

When using the Gaussian Method we took the cubic root of
ower; we fitted the distribution of this response to each stimulus
o a Gaussian; and we finally computed the information through
q. (5) subtracting the analytic Gaussian bias correction, Eq. (6).
he reason for applying the cubic root transformation is that mul-
itaper power estimates are asymptotically chi-square distributed
Percival and Walden, 2006) thus their cubic root is approximately
aussian (Wilson and Hilferty, 1931). The cubic root operation,
eing monotonic, does not affect the underlying information values
f the power, but it makes response probabilities much more Gaus-
ian and thus facilitates information estimation with the Gaussian
ethod.

.3. Description of the optimal procedure for partitioning the LFP
esponse

The procedure that we propose for an optimal partition of the
FP range into a given number of bands works as follows. First, we
efine the high and the low cutoffs frequencies that delimit the
art of the spectrum of the extracellular signal which is taken to
e the LFP. The high frequency cutoff, usually taken in the range
etween one and a few hundred Hz, is not consistently defined in
he literature. Our approach here is to consider the effect of different
alues of this parameters upon the band partition. On the other
and, the low frequency cutoff of the LFP is usually constrained only
y the high pass filter of the preamplifier in the recording setup,
hich in our case was 1 Hz (see Section 2). Because the power of

he extracellular signal is negligible below this high-pass value, in
he following for simplicity we will report our results using a low
requency cutoff of 0 Hz. However, the results would have been
dentical had we used a low frequency cutoff of 1 Hz.

Once the LFP cutoff frequencies have been specified, our method
eeks to partition this range into a number of bands chosen to maxi-
ize the information carried by the LFP partition about an external

et of correlates of interest, such as a set of sensory stimuli. This
eans that, among all possible partitions of the LFP range into the

onsidered number of bands, we select the one which extracts the
argest stimulus-information as defined in Eq. (2).  Additionally, we
ropose to implement this procedure in an incremental way, i.e.
e start by partitioning the LFP response into two  bands and we

hen increase the number of bands considered. This is useful for
wo reasons. First, it provides a way to rank the boundaries by
mportance, under the assumption that the boundaries defining
he optimal partition with small number of bands are more funda-

ental than boundaries appearing only in optimal partitions with

 larger number of bands. Second, the incremental procedure per-
its to identify the boundaries that are most stable to the number

f bands considered, i.e. if a boundary identifies an optimal par-
ition into a given number of bands, the same boundary should
ce Methods 210 (2012) 66– 78 69

also belong to the optimal partition with one more band. Indi-
cations that the bands are stable to recursive refinement of the
partition are important to support the notion that the identified
band boundaries are true “separators” of different neural processes,
or at least are stable boundaries of spectral regions which express
complementary information about the stimulus.

5. Results

We recorded LFPs from 23 sites in the primary visual cortex
(V1) from two  anesthetized monkeys, using an array of electrodes,
during the presentation of a 3.5- to 4.3-min-long sequence from
commercially available movies. Each movie extract was repeated
30–40 times. The responses of the same site to different movies
were analyzed separately. In some cases, we were able to measure
the responses of a recording site to repeated presentations of a sec-
ond or third different movie. In such cases, the responses of the
same site to different movies were analyzed separately. This gave
us a total of 57 cases, which we  collected all together in our popu-
lation analysis and we considered each of them, for simplicity, as a
different recording site.

The spectrogram of the LFP (Fig. 1A) was  typical of primary cor-
tical recordings, in that it showed a broad band spectrum with
significant power at frequencies in the whole range 0–100 Hz and
with the power decreasing at higher frequencies after reaching an
initial peak at low frequencies (in this case the peak was at 2 Hz).
Presentation of the movie stimulus induced a marked increase in
spectral power between 40 and 150 Hz over the power observed
during spontaneous activity.

5.1. The information conveyed by single LFP frequencies

The dataset used in this study has been investigated in several
previous works from our group (Belitski et al., 2008, 2010; Magri
et al., 2009). In these studies we investigated the information about
a naturalistic movie stimulus carried jointly by the LFP power at
each frequency of the Fourier spectrum (Belitski et al., 2008; Magri
et al., 2009), and the correlations between LFP power at differ-
ent frequencies (Magri et al., 2009). Here we  briefly summarize
these results from these previous works, with the aim of point-
ing to the attention of the reader the facts and findings that are
most relevant to the analysis presented in this study. We  also facil-
itate the comparison between the present study and our previous
work by re-computing our previously published information quan-
tities with exactly the same information estimation algorithm (the
Gaussian Method) used for the new optimal band partition results.

We begin this summary by reporting the information that LFP
power carries about which scene was being presented. The average
over all recordings is reported in Fig. 1B. We  found two informa-
tive bands in the LFP spectrum: a low frequency range below 12 Hz
(corresponding to the delta and theta bands) and a high frequency
range (above 50 Hz) in the gamma  and high-gamma bands. While
the information at low frequencies was high only over a narrow
band centered around 5 Hz, the information peak at high frequen-
cies was  broad and long-tailed toward frequencies higher than
100 Hz. Intermediate frequencies [12–50 Hz] did not carry much
information.

Having established that both gamma, high-gamma and low LFP
frequencies convey information, the next important question is to
determine whether the different informative frequencies ranges
are redundant or not, i.e. whether or not they carry the same or

different stimulus information. We  computed both the joint infor-
mation carried by the power of pairs of LFP frequencies (Eq. (2)) and
their redundancy (Eq. (3)). The information obtained by the com-
bined knowledge of the power at low frequencies and the power at
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Fig. 1. The information carried by LFP power at single frequencies. Results are aver-
aged over a set of 57 V1 recording sites from anaesthetized macaques. Information
estimates were computed using the Gaussian Method corrected with the Gaussian
bias  correction procedure and using the cube root of the LFP power intensities. (A)
Average power spectrum of the LFPs recorded during the presentation of a naturalis-
tic  movie (solid line) and during spontaneous activity (dashed line). (B) Information
about a naturalistic movie stimulus carried by LFP power at single frequencies.
The  area indicates the SEM. (C) Left: information about a naturalistic movie car-
ried  jointly by the LFP power at two frequencies. Right: inset of the information
values in the region 50–150 Hz indicated by the rectangle in the left panel. (D) Left:
the redundancy between the information carried by the LFP power at two frequen-
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ies.  Right: inset of the redundancy values in the region 50–150 Hz indicated by the
ectangle in the left panel.

amma  frequencies was nearly the sum of the information carried
y the two frequencies separately (Fig. 1C). This means that the
edundancy between the information carried by the power of high
nd low frequencies is nearly zero (Fig. 1D). This zero redundancy
eflected the fact that, as shown in (Belitski et al., 2008; Magri et al.,
009), LFP frequencies below 40 Hz were totally decoupled from
amma  and high-gamma oscillations (both in terms of similarity
f stimulus selectivity (“signal correlations”), and of trial-to-trial
ovariations (“noise correlations”).

In contrast, frequencies in the gamma  band and high-gamma
and were highly redundant between each other (Fig. 1D). This was
ecause (Belitski et al., 2008; Magri et al., 2009) gamma frequen-
ies had a similar response profile across different movie scenes (in
ther words, they had high “signal correlation”). The redundancy

as particularly pronounced between frequencies in the range

0–100 Hz, suggesting that all frequencies in this range reflect to a
arge extent the same network phenomenon. We  found consider-
bly smaller redundancy between frequencies in the gamma range
ce Methods 210 (2012) 66– 78

[50–100 Hz] and those in the high-gamma range, suggesting that
gamma  and high-gamma may  reflect partly different neural phe-
nomena.

5.2. Validation of the methods used to estimate information
carried by the power in the LFP bands

A problem limiting the use of the Direct Method in our study
is that it can only be applied to compute the information car-
ried jointly by one or maximum two  LFP bands. The small number
(30–40) of trials available does not allow an accurate sampling of
the probability distributions required for calculating information
with the Direct Method when several bands are considered. This is
because, as reviewed in (Panzeri et al., 2007), the bias of the direct
method grows exponentially with the number of dimensions of
the response space (which in this case corresponds to the num-
ber L of bands considered in the information calculation). This bias
problem is greatly alleviated by the Gaussian Method, because it
requires extracting only a small number of parameters from the
data. These parameters can be robustly computed using few trials
even when several bands are considered at the same time. Before
applying the Gaussian Method, however, we need to ensure that
method is accurate on the dataset under analysis. To this aim, we
compared information values obtained with the Gaussian and with
the Direct Method when only one or two  LFP bands were consid-
ered. If the two methods return comparable information results we
can conclude that the Gaussian Method can be used safely for com-
puting the information carried by the power of several LFP bands.
The Gaussian Method was previously validated on single frequency
bins (Magri et al., 2009), but not yet on power of extended bands.

We began this check by computing the stimulus-information
carried by the LFP power within a frequency band B = [f–250 Hz]
(for 61 values of f uniformly distributed between 0 and 250 Hz)
using both the Direct and the Gaussian Method. For the computa-
tion with the Direct Method we  varied M,  the number of bins used
for discretizing the neural response, between 3 and 32. The latter
is an upper limit to the number of bins for which we  could still
compute largely unbiased information estimates with the Direct
Method given the available number of trials, see (Panzeri et al.,
2007). We  found (Fig. 2 A) that the relation between the information
values obtained with the two methods was approximately linear.
When few (M = 3, 4, 6) bins were used with the Direct computa-
tion the linear regressor lay below the quadrant diagonal, meaning
that the Direct Method used with small number of bins provides
consistently lower information values than the ones estimated by
the Gaussian Method. This likely happens because the use of coarse
response discretization leads to an information loss. However, the
slope, b, of the linear regressor increased with increasing number
of bins used for the Direct computation, suggesting that the use of
finer bins reduced the information loss of the Direct Method. For
M > 13, the intersect a and the slope b (the parameters of the linear
regressor) reached a plateau at a = 0 and b = 1 (Fig. 2B), demonstrat-
ing that for large number of bins M the Gaussian and the Direct
Methods provide essentially identical results.

Fig. 2B shows what happens when the Gaussian analysis is per-
formed without applying the cube root transformation prior to the
computation of information: independently of the number of bins
used for the Direct Method, the Gaussian and the Direct Method
failed to converge to a common estimation value. This proves that
the cube root transformation is a necessary step for reliably com-
puting the information conveyed by LFP power using the Gaussian
Method.
Finally, we computed the values of the stimulus information
I(S;B1 B2) carried jointly by a partition of the LFP response into
two-bands B1 = [0 Hz–f] and B2 = [f–250 Hz] for all possible values
of the boundary parameter f between 0 and 250 Hz. Again, we
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Fig. 2. Validation of the Gaussian Method to evaluate information. Data were taken
from a representative case (channel 7 of session D04nm1). Unless otherwise stated,
Gaussian information estimates were computed using the Gaussian Method cor-
rected with the Gaussian bias correction procedure and using the cube root of the
power values (see text); the Direct information values were computed after dis-
cretizing the power response into M equi-populated levels. (A) Comparison of the
information values obtained using the Gaussian Method and the Direct Method for
the information about a naturalistic movie stimulus carried by LFP power. The red
scatter plot shows Gaussian and Direct estimates of the stimulus-information car-
ried  by the LFP power in a frequency band of width [f–250 Hz] for different values of
f  between 0 and 250 Hz. The orange scatter plot illustrates the stimulus-information
carried jointly by the LFP power in two frequency bands of width [0 Hz–f] and
[f–250 Hz] for the same values of the parameter f considered for the single-band
case. For both scatter plots, M = 3 bins were used for discretizing the power response
for  the Direct computation. The white solid line and the white dashed line illustrate
the  linear fit to the points in the single-band information and in the two-bands
information scatter plots, respectively. The light grey, the dark grey and the black
lines indicate the linear fit when M = 4, 6 and 16 levels are used for the discretiza-
tion, respectively (the corresponding scatter plots are not shown for these cases).
The  same convention is used as for the white line, with the solid and the dashed
lines indicating the fit for the single-band and for the two-bands information val-
ues, respectively. Note that, due to the limited number of trials available, for M = 16
bins it was  not possible to compute the Direct information for the two-bands case,
therefore only the solid line is shown. The green dashed line indicates the quadrant
diagonal. (B) Asymptotic behavior of the slope parameter, b, and of the intercept
parameter, a, of the linear fit between information values obtained with the Gaussian
and the Direct Methods as a function of the number of bins, M,  used for discretizing
the  power response for the Direct computation (blue line). M was varied between
3  and 32. The cyan lines indicate the values of a and b when no cube root trans-
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Fig. 3. Partitioning the LFP into two bands. Results are averaged over a set of
57  V1 recording sites from anaesthetized macaques. Information estimates were
computed using the Gaussian Method corrected with the Gaussian bias correction
procedure and using the cube root of the power values. (A) The information about
a  naturalistic movie stimulus carried jointly by the power in the two  LFP bands
B1  = [0 Hz–f] and B2 = [f–250 Hz] as a function of the boundary parameter f varied
between 0 and 250 Hz. The grey area indicates the SEM. The dashed and dotted lines
illustrate the information obtained when varying the upper edge of B2 from 250 to
200 and to 300 Hz, respectively. (B) The percentage redundancy between the infor-
mation carried by the power in the two LFP bands B1 and B2 defined as in panel A.
The  grey area indicates the SEM. The dashed and dotted lines illustrate the redun-
dancy obtained when varying the upper edge of B2 from 250 to 200 and to 300 Hz,
respectively. (C) The information about a naturalistic movie stimulus carried indi-
ormation is applied to the LFP power for the computation of information with the

aussian Method.

ound (Fig. 2A) a linear relationship between the information val-
es obtained using the Direct and the Gaussian Method, the slopes
f the linear fitting curves being nearly identical to those obtained
hen only one band was considered. Note, however, that in this

ase we could not compute information for M > 6 using the Direct
ethod because the number of trials available does not allow to

roperly sample the response space for large values of M.
Taken together these results demonstrate that the accuracy

f the Gaussian approximation to compute information from LFP
owers. When computing the information about a movie stimu-

us carried by the power in one or more LFP bands, differences
etween Gaussian and Direct information values arise mainly from
he discretization used for the Direct procedure and that the two

ethods provide comparable results when enough bins are used
or the discretization.

In what follows, unless otherwise stated, we will always use the
aussian Method with the Gaussian bias correction (see Section 2)

or computing information values.

.3. Partitioning of LFP responses into two bands
We began by investigating what is the best way  to partition
he LFP spectrum into two frequency bands. Although the LFP is
onsistently defined in the literature as the low frequency range
f the spectrum of the extracellularly recorded neural signal, there
vidually by LFP power in the band B1 = [0–60 Hz] and by the LFP power in the band
B2  = [60–250 Hz]. The error bars indicate the SEM. The triangle marker indicates the
information conveyed by the unpartitioned [0–250 Hz] LFP range.

is no agreement about the precise frequency range that should be
considered as LFP activity. Some authors include frequencies only
up to 100 Hz, while others include up to several hundred Hz. Here
we  started by assuming the LFP spectrum to range from 0 to 250 Hz.
We later checked for the effect of considering other definitions of
the LFP frequency range.

We  computed the stimulus-information, I(S;B1 B2), carried by
the LFP power when partitioned into the two bands B1 = [0 Hz–f]
and B2 = [f–250 Hz], as a function of the boundary parameter f
(with 0 < f < 250 Hz). We found (Fig. 3A) that the amount of infor-
mation carried jointly by the two  bands was, on average across
the population, maximal when splitting the bands at f = 60 Hz. The
information, was however very high for a broad frequency region,
extending approximately between 50 and 70 Hz. The distribution
across recording sites of the value of the frequency boundary f
at which information was maximal in each recording site had
a median of 62 Hz and an interquartile range of 53–79 Hz. The
information about the movie stimulus obtained after splitting the
[0–250 Hz] LFP range into two  bands at the f = 60 Hz optimal bound-
aries was 1.03 ± 0.05 bits (here and hereafter, and unless otherwise

stated, information values are reported as mean ± SEM over pop-
ulation). In comparison, the information in the un-partitioned
[0–250 Hz] LFP power was  0.30 ± 0.02 bits. Thus, splitting the
LFP response at the optimal boundary f = 60 Hz allowed the
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xtraction of more than three times the information carried by
he un-partitioned LFP power. Taken together, these results clearly
ndicate that the most informative way to partition the LFP response
nto two bands is to separate low and high LFP frequencies with a
oundary placed at approximately 55–65 Hz.

We  noted that the information (Fig. 3A) did not fall monoton-
cally after the maximum at 60 Hz, but rather a second local peak

as present at approximately 105 Hz. Similarly, the redundancy
Fig. 3B) reached a second local minimum in the same frequency
egion.

To understand better the reasons why it was  optimal to par-
ition the LFP range by splitting it at f = 60 Hz, we  investigated
ow the redundancy between the information carried by the bands
epended upon the boundary value f. We  found (Fig. 3B) that the
edundancy between the two bands was in general small and was
inimal in the range 50–60 Hz. The minimum was reached at 53 Hz

nd was −0.05 ± 0.004 bits. This suggests that splitting the LFP at
he optimal boundary range (50–70 Hz) partitions the LFP into two
egions with largely independent (even weakly synergistic) infor-
ation content and stimulus tuning properties. These observations

bout LFP bands are consistent with the results obtained regarding
he information content of the power of single LFP frequencies, see
ig. 1C and (Belitski et al., 2008).

Fig. 3C reports that the information carried by the high-
requency [60–250 Hz] band was 0.69 ± 0.04 bits. In contrast, the
ow frequency [0–60 Hz] band carried much less information
0.29 ± 0.02 bits). This result, together with the above information
edundancy findings, indicate that the large amount of information
ained by partitioning the LFP range into the high and low fre-
uency components arises mostly because this partitioning allows
ccessing the information in the low-power but highly informative
igh-frequency range. In the unpartitioned signal, instead, the rel-
tively low power of the high-frequency range is masked by the
igh power of the less informative but very low-frequency range.

It is interesting to compare the amount of information carried
y the power of an optimally defined LFP band with the amount
f information that can be extracted by the power at a single
requency. We  first compared the information in the entire high
requency band with the information in the individual frequen-
ies in the high-frequency range. Consistent with previous results
Siegel and König, 2003), we observed that integrating LFP power
ver the range [60–250 Hz] greatly increased the total amount
f information (0.69 ± 0.04 bits) compared to the highest infor-
ation carried by a single LFP frequency in the gamma  range

0.31 ± 0.02 bits). This can be understood by the fact that frequen-
ies above 60 Hz carry largely redundant information with largely
imilar stimulus selectivity, high “signal correlation”, and almost
ndependent trial-to-trial variability, i.e. relatively low “noise cor-
elation” (Belitski et al., 2008; Magri et al., 2009). Integrating neural
esponses with similar stimulus selectivity and weakly corre-
ated noise has been demonstrated to greatly increase information
Abbott and Dayan, 1999; Oram et al., 1998; Zohary et al., 1994). We
hen compared the information in the entire low frequency band
0–60 Hz] with the information in the individual frequencies in the
ow-frequency range. We  found (Fig. 3C) that integrating the LFP
ower over the low [0–60 Hz] frequency range provided informa-
ion (0.292 ± 0.015 bits) comparable to the maximum information
btained for single LFP frequencies in this range (0.289 ± 0.017 bits;
ig. 1B). The fact that essentially no information is gained by inte-
rating the power in the low frequencies is likely due to the fact
hat low frequencies have a small redundancy (Fig. 1C) due to a
ery small similarity in their tuning to the movie (Belitski et al.,

008; Magri et al., 2009) and summing differently tuned responses
oes not lead to information gain.

As we mentioned earlier, the upper frequency cutoff defining
he LFP range is an arbitrary parameter not consistently used in
ce Methods 210 (2012) 66– 78

the literature. We  investigated whether the optimal band splitting
depended on the upper frequency cutoff defining the LFP by varying
this parameter in the range 200–300 Hz. We  found (Fig. 3) that both
the value of the optimal frequency cutoff and the amount of infor-
mation obtained from the optimally split LFP were highly stable
when varying this parameter.

5.4. Partitioning of LFP responses into three bands

Next, we considered the problem of finding boundaries f1, f2
that optimally partition the LFPs into three bands, B1 = [0–f1],
B2 = [f1–f2] and B3 = [f2–250 Hz]. Fig. 4A reports the informa-
tion carried jointly by the three frequency ranges, computed as
a function of the two  boundaries parameters f1 and f2 (with
0 Hz < f1 < f2 < 250 Hz) and averaged over the population. The opti-
mal  partition was  found at f1 = 54 Hz and f2 = 97 Hz. As for the case
of two  bands, the position of the information peak was  robust to the
choice of the upper boundary used for defining the LFP range (not
shown). Again, we  found that the redundancy (Fig. 4B) was  negli-
gible for f1 and f2 in the optimally informative region. Across the
population the distribution of the position of the information peaks
was  centered around 52 Hz (median value; interquartile range:
43–57 Hz) for f2 and around 98 Hz (median value; interquartile
range: 92–106 Hz).

The first optimal boundary (at approximately 55 Hz) to split the
LFP range into three bands is essentially coincident with the optimal
boundary for splitting the LFP into two  bands. The second opti-
mal  boundary (at 97 Hz) for the three band partition corresponds
to the local peak (Fig. 3B) observed when partitioning the LFP
response into two  bands. This second optimal boundary separates
the high-frequency range [54–250 Hz] into two ranges [54–97 Hz]
and [97–250 Hz]. The first range corresponds to the frequency range
laying inside what is traditionally called the gamma range, and is
consistent with the optimal gamma  band definition [64–103 Hz]
obtained for the cat visual cortex using an alternative procedure
for functionally defining this band (Siegel and König, 2003). This
also suggests, consistent with (Siegel and König, 2003), that widely
used definition of the gamma  band as the region around 40 Hz (the
frequency at which LFP power peaks in this range, and neural syn-
chronization is usually maximal) may  not to be the optimal choice
when considering stimulus coding. The second range [97–250 Hz]
corresponds to the range which has been termed the “high-gamma”
band, and which was found (Ray and Maunsell, 2011) to correlate
with spiking activity.

The fact that the position of the first optimal boundary is essen-
tially unchanged when partitioning the LFP response into three
bands indicates that this boundary is stable and that it defines bands
which are likely to reflect true distinct neural phenomena. It also
indicates that the most important step, when partitioning the LFP
response according to our procedure, is to separate low and high
LFP frequencies. The significance of this optimal boundary is also
indicated by the extension of the peak of the information curve
averaged over the population (Fig. 4A), which is narrower along
the f1 direction compared to f2, indicating a sharper tuning of the
information curve to the first boundary. Additionally, the broadness
of the f2 peak is consistent with the observation that the boundary
found for delimiting the high gamma  range should not be thought of
as a strict boundary and that the lower and upper frequency limits
of the high-gamma band appear to be somewhat variable depend-
ing on the task, cortical site, and subject (Crone et al., 2006; Ray and
Maunsell, 2010).

We observed that the first optimal boundary was stable in that

it appeared both when partitioning the LFP range into two  or into
three bands. To test for the stability of the second optimal boundary
we  partitioned the range [54–250 Hz] into two bands. The ratio-
nale for considering this range separately from the low frequencies
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Fig. 4. Partitioning of LFP response into three bands. Results are averaged over a set of 57 V1 recording sites from anaesthetized macaques. Information estimates were
computed using the Gaussian Method corrected with the Gaussian bias correction procedure and using the cube root of the power values. (A) The information about a
naturalistic movie stimulus carried jointly by the power in the three LFP bands B1 = [0 Hz–f1], B2 = [f1–f2] and B3 = [f2–250 Hz] as a function of the boundary parameters f1
and  f2 varied between 0 and 250 Hz with f1 < f2. The dashed rectangle indicates the interquartile range for the position of the information peaks across the population. (B) The
percentage redundancy between the LFP power in the three LFP ranges B1, B2 and B3. The dashed rectangle indicate the same region boxed in panel A. (C) The information
about  a naturalistic movie stimulus carried individually by the LFP power in the band B1 = [0–54 Hz], in the band B2 = [54–97 Hz] and in the band B3 = [97–250 Hz]. The error
bars  indicate the SEM. (D) Top: the information about a naturalistic movie stimulus carried jointly by the power in the two  LFP bands B1 = [54 Hz–f] and B2 = [f–250 Hz] as a
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unction  of the parameter f varied between 54 and 250 Hz. Bottom: the redundancy
he  SEM.

s that we have observed (Figs. 1D and 3B)  that LFP power below
4 Hz conveys information which is independent from that of the
igher frequencies. We  found (Fig. 4D) that the information was
aximal for f again in the range [90–110 Hz]. We  also found that

he redundancy between the information conveyed by the gamma
nd the high-gamma bands was positive but very small (reaching

 minimum of 3% ± 2% at 99 Hz) consistent with the low values
f the redundancy (Fig. 1C) observed between single gamma  and
igh-gamma frequencies.

Among the bands in the optimal three-band partition, the opti-
al  gamma band [54–100 Hz] was the one carrying the largest

ingle-band stimulus information (0.66 ± 0.03 bits; Fig. 4C). The
econd most informative range was [97–250 Hz] (0.61 ± 0.04 bits)
ollowed by the low (<54 Hz) LFP frequencies (0.29 ± 0.02 bits).

.5. Determining additional optimal boundaries

An issue with the method proposed for determining the opti-
al  boundaries is that the parameter space in which to search for
he optimal boundaries increases exponentially with the number
f boundaries considered. For example, a spectral window of length

 = 960 ms  has 241 Fourier coefficients between 0 and 250 Hz with
ur sampling rate. Identifying the optimal partition of the LFP into
een the information carried by the LFP power in B1 and B2. The grey area indicates

three bands thus requires computing information for several hun-
dred thousand possible combinations of the boundary parameters
for each recorded channel. This is difficult to perform systematically
with current computational means. Downsampling the frequency
space is also not a solution to this problem, as a high frequency res-
olution becomes more and more crucial when considering many
bands, since the optimal boundaries become closer and thus harder
to discriminate.

In order to assess the utility of a further partition of the LFP spec-
trum into four bands, we  followed a slightly different approach:
we fixed the two  previously obtained principal band boundaries
and we computed the optimal way to further split each of the
three principal bands, rather than performing a brute-force search
across the entire four-dimensional frequency space. This choice
was  justified by our findings that the optimal boundaries at 54
and 97 Hz (which we call the principal boundaries) are stable with
respect both to changes in the parameters of the analysis and to
a refinement of the partition, and that the three principal bands
([0–54 Hz], [54–97 Hz] and [97–250 Hz]) convey largely indepen-

dent information and, consequently, their further refining can be
studied independently of the others. In what follows, the infor-
mation gained by further splitting a band was quantified as the
difference between the information carried by the partition of the
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Fig. 5. Partitioning the LFP into four bands. Results are averaged over a set of
57  V1 recording sites from anaesthetized macaques. Information estimates were
computed using the Gaussian Method corrected with the Gaussian bias correction
procedure and using the cube root of the power values. The solid lines indicate the
average over all available recordings and the grey areas indicates the SEM. (A) The
information gain about a naturalistic movie stimulus obtained when partitioning
the  LFP range [0–54 Hz] into two bands B1 = [0 Hz–f] and B2 = [f–54 Hz] as a function
of  the boundary parameter f. The right y-axis expresses the gain as the percentage
of  the information conveyed by the un-partitioned band. (B) The percentage redun-
dancy between the information carried by the power in the LFP bands B1 = [0 Hz–f]
and B2 = [f–54 Hz] as a function of the boundary parameter f. (C) Same plot as in
panel A but for a partition of the band [54–97 Hz]. (D) Same plot as in panel B but
for  a partition of the band [54–97 Hz]. (E) Same plot as in panel A but for a partition
o
[

s
b
d
a
u

r
w
1
o
o
p
t
[
b
F
i
b
t

[
o
m
w
i
w

second boundary was between 79 and 147 Hz (median of 127 Hz).
f  the band [97–250 Hz]. (F) Same plot as in panel B but for a partition of the band
97–250 Hz].

elected band and the information carried by the un-partitioned
and. This information gain was expressed either as an absolute
ifference (in bits) between these two terms, or was  normalized
s percentage gain with respect to the information carried by the
n-partitioned band.

We first considered how to split the [0–54 Hz] low-frequency
ange. We  found (Fig. 5A) that the information gain was small
hen the boundary between the two sub-bands was set below

5 Hz but that it increased rapidly reaching a global maximum
f 0.32 ± 0.03 bits at 27 Hz, corresponding to an information gain
f 111% ± 11% with respect to the information carried by the un-
artitioned band. This optimal split at 27 Hz corresponds roughly
o partitioning the low frequency range into a stimulus-informative
0–27 Hz] and to the stimulus-unrelated frequencies [27–50 Hz]
and (see the single frequency information analysis reported in
ig. 1B and in (Belitski et al., 2008; Magri et al., 2009)). The overall
nformation gain of the further partition of the [0–54 Hz] band can
e conceptualized as helping isolating the “noisy” frequencies from
he stimulus-evoked ones.

We  then considered how best to sub-partition the gamma
54–97 Hz] band into two sub-bands. Fig. 5C shows that the
ptimal split was obtained using a boundary at 73 Hz. The infor-
ation gain of this optimal split over the information in the

hole band was 0.35 ± 0.06 bits (corresponding to 53% ± 8% more

nformation). Thus, a further split of the gamma  range was worth-
hile because it increased the information, although with a less
ce Methods 210 (2012) 66– 78

important proportional gain with respect to the one obtained by
further partitioning the low frequency range. The fact that the par-
tition of the gamma  range gave a lower proportional increase can be
understood by observing that the optimally split sub-ranges within
the gamma  frequency domain were still almost 18% redundant
(Fig. 5D), suggesting that the division at 73 Hz separates simi-
lar frequency regions with a slightly different tuning rather than
identifying regions which qualitatively different stimulus coding
properties.

The smallest information gain (both in absolute and in pro-
portional terms) was  obtained when partitioning the high-gamma
[97–250 Hz] range, Fig. 5E. The optimal split of the high-gamma
range was  achieved with a boundary at 111 Hz, but it led to only
a small (0.16 ± 0.05 bits, corresponding to 26% ± 8%) information
gain, indicating that little additional information can be gained
by additionally partitioning the high frequencies. This finding is
further supported by the very high values of redundancy (Fig. 5F)
obtained for any choice of the boundary.

These results suggest that the most convenient way  of adding
a third optimal boundary is to partition the low frequency range
into a [0–27 Hz] band and a [27–54 Hz range] since considering
these two bands separately provides a proportionally large gain in
information and it separates regions with a qualitatively different
relation to the visual stimulus.

5.6. Distribution of optimal band boundaries across sites and
animals

In the above sections we  partitioned the LFPs into optimal bands
using information values averaged over all available sites and mon-
keys. Previous work has shown that the LFP spectrum can change
depending on factors such as the details of the stimulus used (Ray
and Maunsell, 2010), the task (Fries et al., 2001) or recording depth
(Maier et al., 2011). In particular, it was  shown that gamma activity
can vary significantly in power and peak frequency across subjects
and recording site (Lima et al., 2010; Muthukumaraswamy et al.,
2010). Here we  investigate the results obtained by applying our
partitioning technique independently for each recording channel
and for each monkey.

Results of the single-site two-bands optimal partition are
reported in Fig. 6B. We  found that the method was  able to find
optimal boundaries also at the single channel level. The position of
the optimal boundary for the two-bands partition had a median of
62 Hz (range 45–100 Hz) for the first monkey and of 45 Hz (range
33–69 Hz) for the second monkey. The distribution of the bound-
aries in the first monkey was significantly higher than that of the
second monkey (p < 0.05; Wilcoxon rank sum test). Although the
limited number of subjects used in the study does not allow to
perform an exhaustive analysis of the dependency of the band
boundaries on the spectral properties of each animal, it is tempt-
ing to suggest that the difference in the distribution of the first
optimal boundary between the two  monkeys may  be attributed to
the much larger gamma  power observed in spectrum of the first
monkey (Fig. 6A).

Furthermore, when partitioning the LFP range into three bands
independently for each site of the first monkey, we found that
the first optimal boundary was  distributed between 32 and 63 Hz
with a median of 54 Hz and that the second optimal boundary was
between 74 and 118 Hz with a median of 98 Hz. For the second
monkey the first boundary was between 32 and 49 Hz (median of
38 Hz), comparable to the range obtained when partitioning the
LFPs recorded from this monkey into two  bands (Fig. 6B), and the
It is important to note that the partitioning algorithm determined
that the first boundary was  preserved when refining the partition
from two to three bands even at the single recording site level, and
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Fig. 6. Distribution of the optimal boundaries across sites and animals. Results are shown for each of the two monkeys used in this study. Quantities plotted in grey refer to
monkey 1, quantities plotted in black to monkey 2. (A) Average power spectrum of the LFPs recorded during the presentation of a naturalistic movie. (B) Distribution of the
optimal  boundaries obtained for each recording site when partitioning the LFPs into two  bands. (C) Distribution of the first and second optimal boundaries obtained for each
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ecording site when partitioning the LFPs into three bands.

ot only at the population level. This suggests that our algorithm is
obust enough to analyze and partition single cases, and not only
rand population averages.

. Discussion

We developed a new procedure for partitioning the LFP response
nto a specified number of bands, which opens the way for a more
bjective, semi-automatic analysis of the role of cortical oscilla-
ory activity in sensory function. The method selects the band
oundaries that maximize the information about a set of exter-
al correlates carried jointly by all bands in the partition. We  used
his procedure to determine a maximally informative partitioning
f primary visual cortical LFPs into two to four bands, and iden-
ified band boundaries which are compatible with our knowledge
nd intuition about the functional LFP spectrum in visual cortex. It
s important to note that our method, though exemplified for LFPs,
an be readily applied to a variety of broad-band neural signals,
rom intracellular recordings of membrane potential fluctuations to
opulation spiking activity or to non-invasive neuroimaging signals
uch as EEG, magneto encephalography (MEG) and functional mag-
etic resonance imaging (fMRI). Our method can therefore become

 useful tool for the endeavor of extracting information from these

ignals (Alenda et al., 2010; Fuhrmann Alpert et al., 2007; Ostwald
t al., 2010; Panzeri et al., 2008; Quiroga and Panzeri, 2009; Schyns
t al., 2011).

The implications of both the methodological advances and of
he neurophysiological results are discussed in the following.
6.1. Potential applications of methods for partitioning neural
responses into maximally informative bands

As illustrated by our application to visual cortical LFPs, our
method is potentially relevant for sensory physiology. The spec-
trum of LFP oscillations and fluctuations in response to a stimulus
is often broad and lacks a clear separation between spectral regions
tuned to different stimulus features. The relationship between LFPs
and stimuli is particularly difficult to untangle when considering
complex stimuli made of many features varying at different time
scales, such as for example naturalistic movies or natural sounds
(Kayser and Konig, 2004; Kayser et al., 2009). Understanding how
to partition the LFP into a specific number of bands that are col-
lectively maximally informative about the stimulus sheds light on
differences in stimulus tuning of distinct LFP frequency regions, and
helps individuating frequency regions that must be considered sep-
arately because they carry complementary information about the
external correlates. Being able to individuate objectively and almost
automatically the optimal definitions of such bands will also facil-
itate homogeneity of analysis across future studies and will make
it is easier and more meaningful to compare different studies or
preparations.

Although here we focused on maximizing the information about
an external correlate, our method could be readily used to deter-
mine the optimal partition of broadband neural signals into bands

which are maximally informative about internal (rather than exter-
nal) correlates. For example, our procedure could be used to
determine a set of LFP regressors providing an optimal prediction
of the BOLD fMRI.
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Finally, determining the partitions of the LFP spectra which
re maximally informative about sensory stimuli is crucial for the
evelopment of brain machine interfaces (Andersen et al., 2004;
onoghue et al., 1998). The LFP is a particularly suited neural sig-
al for BMIs because they have the potential to prolong the lifetime
f electrode implants and to improve decoding performance when
ombined with spikes (Andersen et al., 2004; Belitski et al., 2008). It
s widely recognized that the main bottleneck to the performance of
MIs is the relatively small amount of information that we are cur-
ently able to extract from neural activity (Donoghue et al., 1998).
ur method provides a tool for maximizing the information about
xternal correlates (such as, for example, movement direction) thus
otentially enlarging bottlenecks in performance.

.2. Significance of the methodological advances

One main advantage of using information as a measure of the
elationship between the power of the band partition and the exter-
al correlate is that information captures all types of relationships
linear and non-linear and of any order). Additionally, by consider-
ng the information conveyed simultaneously by the power in all
ands, our method does not only take into account the relation-
hip between each individual band and the external correlate, but
lso the relationship between the different bands in the partition.
hese factors cannot be taken into account by single-frequency or
ingle-band analyses.

We  also considered the practical problems involved in the appli-
ation of our method to empirical neurophysiological datasets.
o alleviate the bias problem arising from the limited size of
he datasets that it is normally possible to collect, we  proposed

 Gaussian Method and Gaussian bias correction for computing
nformation. We  validated this method on visual cortical LFPs and
emonstrated that, when one or two bands are considered, dif-
erences between the information estimates obtained using the
aussian Method and those obtained with the Direct Method stem

rom the discretization used for the Direct Method. This result indi-
ates that the Gaussian Method-based procedure that we  propose
an be successfully applied to compute the information conveyed
y the power in the partition of the LFP response. A second prac-
ical problem is that of implementing the bias corrections and
stimation procedure required for the proper estimation of infor-
ation from the data. We  developed a fast toolbox (Magri et al.,

009), which included both Direct Method and Gaussian compu-
ation and can thus be used to implement and to validate our
rocedure, and made it publicly available (www.ibtb.org). A third
ractical problem is that of computational time. Besides imple-
enting a fast toolbox, we addressed this problem by proposing a

rocedure for incrementally refining the partition based on further
plitting optimal bands. This can save a great deal of computing
ime when needing to partition the LFP into a large number of
ands. This approach is justified by two key findings: the princi-
al band boundaries are stable to refinement of the partition, and
ptimal partitions in most cases correspond to splits into largely
ndependent bands.

The partitioning method proposed in this work also provides a
traightforward way to quantitatively evaluate the relative gain of
dding extra bands to the partition. This can be done by comparing
he information obtained for a given number of bands with that
ained by introducing one extra band. By evaluating the statistical
ignificance of the information increase when adding extra bands,
his method could be extended to determine the smallest number

f bands that need to be used to describe all stimulus information
vailable in the LFP. However, given the richness and complex-
ty of LFPs recorded in response to complex naturalistic stimuli,

e feel that it may  not be possible to describe all the information
ce Methods 210 (2012) 66– 78

content of LFPs using only a very small number of bands such as
that considered in the above analysis.

The above considerations, as well as the large number of differ-
ent bands and partitions proposed in the neurophysiological and in
the neuroimaging literature, raise the question of how to evaluate
the information content of a number of bands much larger than the
handful considered here. Both the bias of the information calcu-
lation and the difficulty of the evaluation of its significance grow
rapidly with the cardinality of the space in which the stimulus-
response probabilities are defined, in this study with the number
of bands included in the analysis (Ince et al., in press). Evaluation
of the exact information content of a large number of bands (of the
order of ten or more) requires either collecting larger datasets or
developing accurate stimulus response models described by even
less parameters than the ones considered here. We  note, how-
ever, that the information bias of the method considered here (Eqs.
(6) and (7))  depends upon the number of bands but is largely
independent of the exact band boundaries. This means that the
partitioning method considered here may  be still useful to deter-
mine the boundaries for optimal partition into larger number of
bands, although in such case it may  not allow to evaluate the precise
information content of the optimal partition.

6.3. The optimal band partitions describing visual primary
cortical encoding of naturalistic information

We used our method to compute the optimally informative band
partitions of LFPs recorded in V1 of anesthetized during presenta-
tion of naturalistic movies.

The first, and most important, optimal boundary that appeared
in our partition was  at approximately 60 Hz, and separated low
[0–60 Hz] and a high [60–250 Hz] LFP frequencies. The finding that
this is the chief boundary is consistent with previous analyses
(Belitski et al., 2008; Magri et al., 2009) reporting that the fre-
quencies above 50–60 Hz are almost completely uncorrelated in
both signal and noise to frequencies below this cutoff. The large
amount of information gained over the unpartitioned LFP when
splitting the LFPs at this frequency lends support to the hypothesis
that the low- and the high-frequency ranges convey independent
information about the stimulus because they originate from dif-
ferent neural pathways. In particular, theoretical and experimental
studies suggested that low LFP frequencies reflect entrainment of
local neural activity to the low frequency components in the input
(Chandrasekaran et al., 2010; Lakatos et al., 2008; Mazzoni et al.,
2008) whereas high LFP frequencies in the gamma  range and above
convey information about the strength of the input because the lat-
ter modulates the locally generated rhythms (Brunel and Wang,
2003; Henrie and Shapley, 2005; Mazzoni et al., 2008; Ray and
Maunsell, 2010).

We found a second optimal boundary at approximately 100 Hz
separating the high-frequency LFP band into two  ranges cor-
responding to the gamma  [60–100 Hz] and to the high-gamma
[100–250 Hz] band, leading to a large increase (approx. 30%) in
the amount of information that we  can extract about the movie
stimulus compared to the case in which only two  bands are con-
sidered. Gamma  oscillations are thought to originate to a large
extent from the recurrent interactions among inhibitory neurons
and among excitatory and inhibitory neurons (Bartos et al., 2007;
Brunel and Wang, 2003). High-gamma power has been proposed
to originate partly from broadband LFP activity and partly from
brief bursts of power associated with spikes generated near the
electrode (the so called “spike bleed-through”). In some condi-

tions, for example when varying contrast, gamma, high-gamma and
spiking activity are largely correlated and carry similar informa-
tion about the stimulus parameters. However, in other conditions,
for example when varying the stimulus size, gamma  activity is

http://www.ibtb.org/
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artially decoupled and has a different stimulus selectivity than
hat of high gamma and spiking activity, which remain highly cor-
elated in most conditions (Gieselmann and Thiele, 2008; Ray and
aunsell, 2011). Our finding that the split between gamma and

igh gamma  frequencies at approximately 100 Hz is the second
ost important split to maximize information extraction from the

ata, supports the hypothesis that gamma  rhythm and high-gamma
ctivity reflect partly different neural phenomena, and highlights
he importance of distinguishing and studying separately these two
requency ranges when investigating stimulus selectivity of cortical
ctivity.

We also found that adding a third boundary at approximately
5 Hz led to a considerable gain in the stimulus-information that
ould be extracted from the low LFP frequencies. This split divides
he low frequency LFP range into two qualitatively different parts:

 stimulus-modulated part and a stimulus independent part. A
igh information gain was obtained also when further splitting
he gamma  range [50–100 Hz] at approximately 70 Hz. In this case,
owever, the redundancy between the two sub-bands was  still
onsiderable. This suggests that the information gained by finer
artition of the gamma range results from isolating part of the
pectrum originating from the same neural phenomenon (most
ikely recurrent inhibitory–inhibitory and excitatory–inhibitory
nteractions) with slightly different tuning to the stimulus. This is
ompatible with theoretical models that predict that the peak fre-
uency, the width and the stimulus modulation of the oscillation
pectrum all change with the strength of the input to the network
Brunel and Wang, 2003; Mazzoni et al., 2008). According to this

odel, further partitioning the gamma  range would allow discrim-
nating these finer changes in LFPs in response to the stimuli, hence
he information increase despite the presence of redundancy.
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