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ABSTRACT 
This paper introduces a novel architecture of Wave Energy 

Converter (WEC) provided with a Dielectric Elastomer (DE) 

Power Take–Off (PTO) system. The device, named Poly–Buoy, 

includes a heaving buoy as primary interface, that captures the 

mechanical energy from waves, and a DE Generator (DEG), 

made by stacked layers of silicone elastomer, that converts 

mechanical energy into electricity. 

A mathematical model of the Poly–Buoy is proposed, which 

includes analytical electro–hyperlastic equations for the DEG 

and a linear model for wave-buoy hydrodynamics. 

Procedures for the design and optimization of different layouts 

and control strategies for the DE–PTO are introduced that 

specifically consider single–DEG and dual–DEG architectures. 

A numerical case study is also reported for specific geometrical 

dimensions of the buoy and specific wave climate data.  

INTRODUCTION 
Energy carried by ocean waves is an interesting kind of 

renewable resource because of its wide and abundant 

availability (3.7 TW of worldwide usable power [1]) and its 

high spatial density (an average density of 2-8 kW/m2 [2], with 

respect to few hundreds W/m2 for the solar radiation). Devices 

that are conceived to scavenge this kind of energy are named 

Wave Energy Converters (WECs). To date, a quite large 

number of them has been proposed and tested [2,3].  

WEC architectures are based on a combination of two main 

mechanical sub–systems: 1) a primary interface (buoy, flap, 

floating cylinders etc.) that is a body that moves under the 

forces of waves; 2) a Power Take-Off system (PTO), usually 

employing a combination of hydraulic machinery and 

electromechanical generators, which converts the mechanical 

power captured by the primary interface into electricity. To 

date, current WEC systems are exhibiting a number of technical 

criticalities that are impeding their practical exploitation: 1) 

they include a large number of heavy, expensive and corrosion 

sensitive components; 2) they present complex architectures 

with high failure probability; 3) traditional PTOs do not adapt 

easily to the sea environment and do not operate well at the low 

characteristic frequencies of sea waves ( ~ 0.1 Hz).  

Recently, PTO systems based on Dielectric Elastomers 

(DEs) have been proposed [4-8] for WECs. DEs are highly 

compliant incompressible polymeric materials that are 

electrically non-conductive and can be employed to conceive 

electromechanical transducers. The most well-known DE 

materials are silicone, acrylic and natural rubbers. DE 

transducers are made by one or multiple layers of dielectric 

material coated by compliant electrodes [9]. Their operating 

principle is that of a deformable electric capacitor, which 

directly converts the mechanical energy that is spent for the 

deformation into electricity. 

 

 
a) b) 
Figure 1. Schematic of Poly–Buoy: a) with single DEG, b) with 
agonist–antagonist DEG 

 

The employment of DE Generators (DEG) as alternative 

PTOs for WECs may bring a number advantages, since: 1) they 
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exploit lightweight and low–cost materials; 2) their working 

principle is intrinsically adaptable to the low frequencies of 

waves; 3) their architecture requires a reduced number of 

moving parts and, thus, is quite simplified with respect to that 

of traditional systems.  

This paper analyzes the application of DEGs to buoy-based 

WECs. Buoy-based systems are a rather simple and interesting 

type of WEC. They belong to a class of deep–water devices, 

which employ heaving buoys for the primary interface and 

hydraulic rams or linear electric generators for the PTO system 

[3,23,24]. The considered architecture, herein referred to as 

Poly–Buoy (see Figure 1), is characterized by using a Stacked 

DEG (S–DEG) for the PTO system. In Poly-Buoy, cyclical 

deformation of the S–DEG is induced by a plate (or piston) that 

is rigidly connected to the heaving buoy. Two layouts are 

analyzed for the polymeric PTO: the single–DEG architecture 

(depicted in Figure 1.a); the dual–DEG architecture (depicted in 

Figure 1.b). The single–DEG layout includes one PTO only, 

which is constituted by a cylindrical S–DEG having the lower 

base attached to the moving plate and the upper base attached 

to a hull that is fixed to the seabed. A similar concept is 

investigated in the context of EPoSil project, carried out by a 

German consortium of companies and universities [6]. The 

Dual–DEG agonist–antagonist [10] layout is obtained by the 

former one by adding a second identical S–DEG, with the 

upper base connected to the moving plate and the lower base 

attached to the fixed hull.  

In the paper, the analytical model of the S–DEG and the 

hydrodynamic analysis of the buoy-based WEC are first 

introduced. Second, a design approach for the polymeric PTO 

is proposed, which considers both single–DEG and dual–DEG 

architectures. Finally, a numerical case study is presented, 

which uses a commercial silicone rubber (TC–5005 A/B, BJB 

Enterprises Inc., USA) as reference DE material. Results 

demonstrate that, for the same power output, the dual–DEG 

architecture brings to considerable savings in DE material 

usage as compared to the single–DEG solution. 

STACKED DIELECTRIC ELASTOMER GENERATOR 
 The Stacked DEG (S–DEG) is constituted by a number of 

layers of DE membranes coated with compliant electrodes that 

are piled–up to form a stack. Typically, successive membranes 

are electrically connected in parallel with alternating polarities 

of adjacent layers [11]. A scheme of the S–DEG with external 

electrical circuit is shown in Figure 2. 

The multi-layered architecture of S–DEG allows to 

compactly arrange a large amount of material while 

guaranteeing homogeneous stretches and electric field within 

the layers [12].  

Stacked generators and actuators are usually operated in 

compression only [13-15] (i.e. layers are always compressed by 

external forces). However, bidirectional operation is possible 

using special designed electrodes based on nano–scale carbon 

powder as proposed by Kovacs et al. [11]. In the present article, 

we suppose that the employed S–DEG can operate both in 

compression and in tension.  

This section introduces a mathematical model of the S–

DEG which makes it possible to predict (1) the amount of 

electrical energy that can be converted and (2) the force-stroke 

response of the generator that is fundamental to assess how the 

device can interact dynamically with the primary interface (the 

buoy) of the WEC. 

 
Figure 2. Schematic of the stacked DEG. 
 

A cylindrically shaped S–DEG is considered that, during its 

operation, is stretched along the longitudinal direction (i.e. 

along the axis of its cylindrical shape). In term of dimensions, 

the S–DEG is characterized by the height h0 and radius r0, 

which are measured in the undeformed state. 

 For simplicity, constraining effects at the cylinder bases are 

neglected so that the deformation state of the S–DEG is 

considered as being uniform and equi-biaxial. Of course, the 

presence of rigid connection ends at the S-DEG bases is likely 

to provoke more complex states deformations (with the central 

layers of the stack undergoing larger surface expansion than the 

peripheral layers [13,16]), but the simplification is deemed 

sufficient for the purpose of this study. 

 The coordinate x (see Figure 3) identifies the position of 

the moving plate that is connected to the S-DEG. For x = 0 the 

stack is subjected to a longitudinal pre–stretch λp. 

 

 
Figure 3. Stacked DEG in reference configuration a) and with a 
positive displacement x with respect to the reference configuration. 
 

Figure 3 represents the cylindrical stack in the reference 

undeformed configuration (Figure 3.a) and in a generic 

deformed configuration (Figure 3.b). 

For a given x, the principal stretch of the S-DEG in the 

longitudinal direction reads as 

1 0p x h     . (1) 

Besides, due to DE material incompressibility [17], namely 

1 2 3 1    , (2) 
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the principal transversal stretches follow as 

2 3 1 .      (3) 

The force-stroke response of the S-DEG is calculated by 

means of an energy balance. The state of the generator in any 

generic configuration is described by two variables: the 

longitudinal coordinate x and the electric field E acting within 

the DE layers. The total charge Q on the electrodes or the 

electric potential difference V between the terminals could be 

alternatively chosen as electrical state variables. 

The energy balance for the S-DEG is expressed in 

differential form as 

e m e m
dU dU dW dW   , (4)

 

where Ue and Um are the electrostatic and elastic potential 

energies stored in the S-DEG, and We and Wm are the electrical 

and mechanical works done on the S-DEG by external means.  

The electrostatic potential energy is calculated as  

2
2

e
U E  , (5) 

where Ω and ε are the volume and dielectric constant of the 

employed DE material. 

The elastic potential energy depends on the stretch field in 

the material and can be written as 

 
m

U x  , (6) 

where Ψ is the strain-energy function (or Helmholtz function) 

of the considered DE material. In this article, a Gent 

hyperelastic form is used for Ψ [17], namely 

2 2 2

1 2 3I
log

I 3

m

m

a
     

    
 

, (7) 

where Im and a are the material constitutive parameters. 

The infinitesimal electrical work done by the external 

electrical circuit connected to the S-DEG is calculated as  

e
dW VdQ , (8)  

that can be expressed as a function of x and E as 

2
2

0

e

p

E
dW E dE dx

h x







 


. (9) 

The infinitesimal mechanical work performed by the 

external force applied to the DE stack is calculated as 

m DEG
dW F dx  , (10) 

where FDEG is the force exerted by the S-DEG on the external 

environment.  

In balance (4) and in the successive equations, the 

following aspects have been neglected: 1) visco-elastic losses 

of the polymeric material; 2) inertial and gravitational forces 

acting on the polymer; 3) leakage currents through the 

dielectric medium; 4) electric losses due to the conditioning 

circuit and to charge dispersion from the electrodes. 

Combining equation (4) with equations (5), (6), (9) and (10) 

yields the force provided by the S-DEG, that is 

, ,DEG DEG e DEG m
F F F  , (11) 

where FDEG,e and FDEG,m are the following electrostatic and 

mechanical contributions 

2

,

0

DEG e

p

E
F

h x









, 

,DEG m

d
F

dx


  . (12) 

Besides, based on the same equations, the amount of 

electrical energy produced/spent by the S-DEG for an 

infinitesimal deformation dx is 

2

0

e e

p

E
dU dW dx

h x






  


. (13) 

From equation (13), it is clear that the S-DEG generates 

electrical energy only when E ≠ 0 and dx < 0; that is, when the 

S-DEG capacitance decreases. 

OPERATION CONSTRAINTS 
 S-DEG design and operation is subjected to restrictions 

determined by the following set of failure conditions [18]: 

Electric Break–down: the maximum value of electric field 

in the dielectric membranes must be smaller than the dielectric 

strength, EBD, of the dielectric material; namely E ≤ EBD. 

Mechanical Rupture: the maximum reachable stretch is set 

to a limit value, λu. This condition must apply for λ1, λ2 and λ3. 

This results in a constraint on the longitudinal stretch, namely 

2

u u     . (14) 

Compression buckling: when the S-DEG is compressed, it 

may be subjected to instability (namely, buckling). A criterion 

that can be used to approximate the arising of buckling in S-

DEGs is provided by Haringx formula [19] [20], which derives 

from the extension of Euler’s theory to the study of the 

buckling of rubber blocks. Haringx formula estimates the first 

critical load as  

4
1 1

2

E
cr

PGA
F

GA

 
   

 
, (15) 

where A is the actual cross section of the rubber block, G is the 

shear modulus of the material and PE is Euler’s critical load. 

Considering a cylindrical beam with guided ends, Euler's load 

follows as 

3 4 24EP Er h , (16) 

where r and h are the actual radius and height of the rubber 

block, while E is Young's elasticity modulus. For hyperelastic 

materials having a strain-energy function given by equation (7), 
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G and E are not constant and depend on the state of 

deformation that is described by λ. Here, G and E are evaluated 

from (7) at λ = 1, which yields 

 2 3mG a I  , (17) 

3E G . (18)  

Notice that this is a strong assumption, which may lead to a 

very approximated estimation of the buckling load. 

Nonetheless, the approximation is considered sufficient for the 

purpose of this study. 

The condition described by equations (15)–(16) is used to 

determine a minimum allowed value for the longitudinal 

stretch, λcr, that prevents the S-DEG from buckling. In order to 

calculate λcr, Fcr in (15) is replaced by the magnitude of the 

mechanical part of the S-DEG force (that is, FDEG,m given by 

equation (12)), which yields the following equation in the 

single variable λ 

2
2

0

3

0

1 3
1 1

2

r

G h

  

 

 
       

   
 

. (19) 

Solution of (19) provides the critical buckling stretch λcr.  

For a given geometry of the S–DEG, the failure conditions 

described above restrict the operating range of the generator. In 

particular, the combination of mechanical rupture and buckling 

establishes that the minimum allowed longitudinal stretch is 

 2

min max ; u cr   . (20) 

Overall, the considered set of limitations provides an upper 

bound to the amount of energy that the S-DEG can convert in a 

cycle. Specifically, the maximum energy per unit volume can 

be calculated from (13) by imposing E = EBD, thereby obtaining 

 2

max minlogBD uE E   . (21) 

THE HEAVING BUOY WEC 
 In this section, a hydrodynamic model for a heaving buoy 

WEC is described and possible control strategies for an ideal 

PTO are examined. An analysis of a particular numerical case is 

also provided to set a reference for the design of the S-DEG 

PTO that is conducted in the subsequent section.  

The buoy WEC considered in this article is a floating vertical 

cylinder that oscillates along its axial direction under wave 

forces and generates electrical energy by means of a proper 

PTO system.  

In order to gain an accurate understanding of the dynamics 

of a floater driven by sea waves, the usage of sophisticated 

tools (like CFD codes) would be required, but this implies 

complex and time–consuming calculations. A preliminary but 

sufficiently accurate estimation of a WEC dynamics can be 

obtained using potential flow and linear water wave theory 

[24]. Under these hypotheses, the general equation of motion of 

a heaving buoy WEC takes the form below: 

         
0

t

b exc PTOM M x K t x d k x F t F t        , (22) 

where  

- M is the mass of the floater and M∞ is the added mass at 

infinite frequency; 

- kb = ρgS is the hydrostatic stiffness coefficient with ρ being 

the water density and S being the buoy transversal section;  

- the integral term in equation (22) is a convolution integral 

which represents the effect of the radiated waves generated 

by the buoy motion; 

- Fexc(t) is the wave excitation force;  

- FPTO(t) is the force supplied by the PTO. 

In this study, regular waves are considered, so that the exciting 

force takes the form  

  sinexcF t t  . (23) 

Note that using regular monochromatic waves leads to an 

overestimation of the WEC power output [25]. Nonetheless, 

this hypothesis allows the simplification of the mathematical 

analysis and is deemed sufficiently adequate for a preliminary 

evaluation of the WEC performance. 

Although the hydrodynamics in equation (22) are linear, 

the PTO response FPTO can be, in general, non linear. In this 

article, for simplicity, it is assumed that FPTO is linear, having 

the form 
 

( )PTO PTO PTOF k x B x ,  (24) 

where kPTO and BPTO are the stiffness and the damping provided 

by the PTO. This is a rather common assumption in the study of 

WECs and makes it possible to solve analytically the dynamics 

of the floater using a frequency–domain approach instead of a 

time–domain analysis [25]. 

Under the hypothesis of monochromatic waves and linear PTO 

(that is, due to equations (23) and (24)), the convolution term in 

(22) simplifies, resulting in an added–mass term plus a 

radiation damping effect [3]: 

        
0

t

add r
x K t d M M x B x    


    , (25) 

where Madd(ω) and Br(ω) are the added mass and the radiation 

damping coefficients, which depend on the excitation 

frequency. 

The quantities Madd(ω), M∞, Br(ω) and Γ are obtained using a 

boundary element code (WAMIT [26]) for different choices of 

the incident wave frequency. 

Based on the above, the average power that can be 

extracted by the WEC in a generic monochromatic sea state 

results as [8] 

 
2

2 2 2 2 22

2
0.5

T

PTO
PTOP x dt

B
B k I B       

   , (26) 

where k and B are defined as 
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b PTO
k k k  , (27) 

r PTO
B B B  . (28) 

By adjusting the parameters kPTO and BPTO to the different sea 

state conditions, the PTO can maximize the captured energy. 

Among the possible strategies, two of the most 

representative types of controllers are considered: linear 

suboptimal control and linear optimal control. For both the 

controllers the following motion constraint on the oscillation 

amplitude of the WEC is introduced  

maxx X .
 

(29) 

Imposition of this constraint is advisable since: 1) large 

oscillations (with resulting large velocities) provoke vortex–

shedding phenomena, that are not accounted in the model and 

lead to severe energetic losses; 2) the oscillation of the buoy is 

intrinsically limited by the non–linear hydrodynamics that are 

not included in the considered model.  

Linear suboptimal control 
The reactive term governed by the coefficient kPTO in 

equation (24) is very difficult to implement in practice [28]. 

Thus, the simplest mathematically linear PTO provides a 

controllable damping effect only (that is known under the name 

of “linear suboptimal control”). Assuming kPTO = 0, 

maximization of WEC power output only requires the tunable 

parameter BPTO to be adjusted according to the wave excitation 

frequency. 

The analytical optimum value for BPTO is [8] 

  

  

2
2

2

max2

2
2

2

max2

max

  if  

1
  if   

add

r

PTO

add r

k M M
B x X

B

k M M B x X
X









 

 


 
 

    


, (30) 

where x ,   2 2 2 2( )addx M Mk B     , is the 

unbounded oscillation amplitude of the buoy.  

Linear optimal control 
In the best case, both kPTO and BPTO can be tuned for 

different sea states. In this circumstance, the maximum power 

output of the WEC is achieved when [8] 

  2

PTO add b
k M M k   , (31) 

 
   

max

max max

    if    2

  if  2

r r

PTO

r r

B B X
B

X B B X



 

  
 

   
. (32) 

Analysis of a reference case 
In this section, the typical characteristic responses of a 

generic PTO that are required for the implementation of linear 

optimal and suboptimal controllers are presented via a specific 

case study. As regards reference sea states, the wave data 

provided in [27] are considered. The twenty most probable sea 

conditions, among those reported in that paper, are used as 

target for the present analysis. Specifically, the reference 

polychromatic sea states are converted into regular 

monochromatic sea conditions using the procedure described in 

[8]. Each Sea State (SS) is identified by two wave variables: 

period T and height, H, that are shown in Table 1. 

As regards the primary interface, the physical dimensions, 

properties and displacement limit assumed for the buoy are 

shown in Table 2.  

 

SS T [s] H [m] # T [s] H [m] 

1 12.4 1.2 11 11.7 1.2 

2 8.7 2.5 12 7.1 1.2 

3 9.9 3.4 13 8.8 2.4 

4 10.5 2.4 14 8.4 2.3 

5 8.4 2.3 15 7.2 1.5 

6 10.0 3.6 16 8.9 1.6 

7 10.0 3.4 17 7.2 1.5 

8 10.5 2.2 18 9.0 1.3 

9 11.9 3.1 19 7.2 1.3 

10 11.5 3.1 20 8.9 1.4 
Table 1. Wave period and height for the 20 reference sea states. 

 
Diameter 10 m 

Draft 9.4m 

Mass 738 × 103 kg 

Displacement limits (Xmax) ±8m 
Table 2 . Properties of the reference buoy. 

 

 
Figure 4. Elliptical trajectories for the linear suboptimal case. 

 

 
Figure 5. Elliptical trajectories for linear optimal case. 
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The resulting force-displacement responses are shown in 

Figures 4 and 5 for suboptimal and optimal linear controllers, 

respectively. As shown, in the plane x–FPTO, trajectories 

determined by equation (24) represent ellipses (each ellipses 

being for a specific sea state). This type of graphical 

representation is fundamental for the design of DEG PTOs, for 

which the force characteristic is naturally expressed as a 

function of position. 

Specifically, Figure 4 highlights that the response of linear 

suboptimal control is characterized by ellipses with principal 

directions aligned to the horizontal and vertical axes, and 

requires a PTO featuring a peak power of 267kW and a 

maximum stroke of about 3m. 

Besides, Figure 5 shows that the optimal controller is 

characterized by elliptical trajectories whose principal 

directions do not coincide with the coordinate axes (this is due 

to the stiffness compensation introduced by kPTO), and requires 

a PTO featuring a peak power of 1.75MW and a maximum 

stroke of 8m (that equals the imposed displacement limit). 

CASE STUDY OF PTO DESIGN 
This section is dedicated to a case study in which a 

cylindrical S-DEG is dimensioned to be used as PTO for the 

Poly-Buoy system with the specific properties and sea state 

conditions described in the previous section. In particular, the 

proposed design procedure aims at identifying the properties of 

the S-DEG PTO that enable the implementation of the optimal 

and suboptimal controllers introduced before. 

Dielectric elastomer properties 
As regards the S–DEG material, a reference silicone 

elastomer (TC-5005 A/B-C by BJB Enterprises Inc., USA) is 

considered whose properties are summarized in Table 1 [21]. 

Based on (21), the related maximum convertible energy density 

is 1.69 × 106 J/m3. In the following, it will be shown that this 

theoretical value cannot be reached when using S-DEGs as 

PTO for Poly-Buoys, specifically if one seeks to maximize the 

overall system power extraction. 

 

E
le
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EBD 100 MV/m 

εr 4.6  

M
ec

h
a
n

ic
a
l 

p
ro

p
er

ti
es

 a 8.17 × 105 Pa 

Im 72.58 

λu 4 

Table 3. Electro-mechanical properties of TC-5005 A/B. 

S-DEG dimensioning 
To implement either the suboptimal or the optimal control 

in the considered Poly-Buoy system, the S-DEG to be designed 

is required to have an operational space in the x–FPTO plane that 

must envelope all the ellipses (for all the considered sea states) 

reported either in Figure 4 or in Figure 5. 

Based on equations (11) and (12), for the single–DEG 

architecture, the PTO force reads as 

FPTO = FDEG(x,E). (33) 

This constrains the force-displacement response of the PTO to 

lie anywhere within two curves: a lower one obtained for E = 0 

and an upper one obtained for E = EBD.  

For the double–DEG architecture, the PTO force reads as 

FPTO = FDEG(x,Eup)-FDEG(-x,Edown),  (34) 

with Eup and Edown respectively indicating the electric fields to 

be controlled in the upper and lower parts of the agonist-

antagonist generator. In this case, the force-displacement 

response of the PTO is constrained to lie anywhere within the 

two curves that are obtained for the reciprocal activation 

(namely, either [Eup = EBD & Edown = 0] or [Eup = 0 & Edown = 

EBD]) of the upper and lower parts of the generator. 

In the following, different S-DEG designs are reported 

which exhibit operational spaces that entirely include the set of 

control trajectories depicted in Figure 4 and Figure 5 (that is, all 

the points in the x-FPTO plane that are required to be reached for 

the implementation of the suboptimal and optimal controllers). 

For each case, the considered design variables are: the overall 

DE material volume, Ω; the undeformed height of the stack, h0; 

the longitudinal pre-stretch, λp. Reported designs are for these 

variables optimized in order to minimize the amount of DE 

material employed while respecting the operational constraints 

that are required to prevent S-DEG failure (namely, dielectric 

strength, mechanical rupture and buckling). 

Specifically, three variants are distinguished and analyzed in all 

the various combinations:  

1) Linear suboptimal or optimal control; 

2) Single-DEG or Dual-DEG PTO; 

3) Presence or absence of an additional passive mechanical 

component (namely, a mechanical spring) that is placed in 

parallel to the S-DEG.  

The addition of a mechanical spring with stiffness ks (that can 

be positive or negative) is considered to provide a means to 

shift the natural resonance frequency of the overall system. 

When included, the value of ks is an additional parameter to be 

optimized. 

Table 4 and Table 5 provide the results for the linear 

suboptimal and optimal control, respectively. Tables report the 

optimal geometric parameters for the S-DEGs together with the 

related force-displacement curves. As shown, for all cases, the 

operational space of the S-DEG fully envelopes the control 

ellipses. When the mechanical spring is present, the curves 

representing the S-DEG response are calculated including the 

force contribution provided by ks. The value for the converted 

energy density of the S-DEG is calculated with reference to the 

peak energy captured by the WEC in a wave period. 
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Linear Suboptimal Control 

Single-DEG Single DEG + Mechanical Compensator 

Ω = 115 m3 

h0 = 7.43 m   ;   r0 = 2.22 m 

λp = 0.58   ;   λmin = 0.17   ;   λmax = 0.99 

 

Energy density = 2.32 × 104 J/m3 

Ω = 84 m3 

h0 = 6.66 m   ;   r0=2.00 m 

λp = 0.62   ;   λmin = 0.17   ;   λmax = 1.08 

ks = 4.0× 105 N/m 

Energy density = 3.18 × 104 J/m3 

  

Dual-DEG Dual-DEG + Mechanical Compensator 

Ω = 28 m3 (overall) 

h0 = 6.51 m   ;   r0 = 0.83 m 

λp = 1.50   ;   λmin = 1.03   ;   λmax = 1.97 

 

Energy density = 9.53 × 104 J/m3 

Ω = 28 m3 (overall) 

h0 = 6.51 m   ;   r0 = 0.83 m 

λp = 1.50   ;   λmin = 1.03   ;   λmax = 1.97 

ks = 0 N/m 

Energy density = 9.53 × 104 J/m3 

  

Table 4. PTO design for the linear suboptimal control: single/double DEG with/without compensation spring. 
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Linear Optimal Control 

Single-DEG Single DEG + Mechanical Compensator 

Ω = 5460 m3 

h0 = 26.64 m   ;   r0 = 8.08 m 

λp = 0.48   ;   λmin = 0.18   ;   λmax = 0.78 

 

Energy density = 3.22 × 103 J/m3 

Ω = 539 m3 

h0 = 12.32 m   ;   r0 = 3.73 m 

λp = 0.80    ;   λmin = 0.15   ;   λmax = 1.45 

ks = 9.0 × 105  N/m 

Energy density = 3.26 × 104 J/m3 

  

Dual-DEG Dual-DEG + Mechanical Compensator 

Ω = 384 m3 (overall) 

h0 = 17.07 m   ;   r0 = 1.89 m 

λp = 1.44   ;   λmin = 0.97   ;   λmax = 1.91 

 

Energy density = 4.58 × 104 J/m3 

Ω = 174 m3 (overall) 

h0 = 17.08 m   ;   r0 = 1.27 m 

λp = 1.46   ;   λmin = 0.99   ;   λmax = 1.92 

ks = 3× 105 N/m 

Energy density = 1.01 × 105 J/m3 

  

Table 5. PTO design for the linear optimal control: single/double DEG with/without compensation spring. 
 

 

The results in Table 4 and Table 5 show that: 

- In most of the considered cases, the optimal value of ks is 

different from zero and is negative. The effect of the 

external passive spring-like component is in general 

beneficial, allowing to save a large amount of DE material. 

Nonetheless, the introduction of a mechanical spring may 

be technically difficult since: 1) it requires further metallic 

material to be added for the spring; 2) springs with negative 

stiffness may be difficult to realize. 

- The single-DEG layout requires larger quantities of DE 

material than the dual-DEG solution. Indeed, to cover the 

whole operating space identified by the elliptical 

trajectories, the S-DEG must be able to provide negative 

forces. That is, the S-DEG must be compressed for large 

part of its operation. Since the operation of the DEG in 

compression is strongly affected by the buckling limit, this 

results in an increase in the amount of DE material needed. 

- In order to envelop the elliptical trajectories in the x–FPTO 

plane, the electric field controller is required to activate the 

S-DEG also when its capacitance is increasing (which 

requires the S-DEG to be used also as an actuator and not as 

a generator only).  

- The assessed operational energy density for the reference 

silicone is significantly lower than the maximal theoretical 
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value given by equation (21). This demonstrates that it is 

rather difficult to fit the optimal control curves of a Poly-

Buoy with a S-DEG; that is, the maximization of the energy 

extraction of the overall Poly-Buoy system implies a non-

optimal exploitation of the DE material. 

- Although the linear optimal control allows to obtain larger 

power outputs than the linear suboptimal control, its 

implementation requires a larger amounts of DE material. In 

particular, the implementation of a linear control strategy 

using a single-DEG layout requires unreasonable amounts 

of DE material, leading to unfeasible technical solutions. In 

practice, a compromise has to be found between the cost of 

DE material and the amount of electricity produced. 

CONCLUSIONS 
 In this article, a novel concept of Wave Energy Converter 

(WEC) with Dielectric Elastomer (DE) Power Take-Off (PTO) 

system has been investigated. The considered device, named 

Poly-Buoy, has a heaving buoy as primary mechanical interface 

and a cylindrical Stacked DE Generator (S–DEG) as PTO.  

An analytical model of the S–DEG has been proposed to 

describe the force response of the device and to evaluate the 

energy that can be converted. The limits of operation for the S-

DEG are determined by imposing a set of failure conditions 

that includes electric break-down, mechanical rupture and 

compression buckling.  

A hydrodynamic model of the buoy–type WEC has been 

described, which is based on linear potential theory. 

A numerical case study has been presented considering a 

buoy with 10m diameter and 9.4m draft, and operating in a 

reference wave climate. Different cases have been studied:  

- Linear optimal and suboptimal control strategies, that are a 

standard in WEC control theory; 

- Single- and dual-DEG agonist-antagonist architectures; 

- S-DEG with mechanical compensation obtained by means 

of a passive negative spring. 

Numerical calculations showed that, under the assumed 

simplifications, the amount of volume necessary to achieve the 

mentioned control laws is at least 28m3 for the linear 

suboptimal control (which makes it possible to capture an 

average power of 267kW for the best sea state) and 174m3 for 

the linear optimal case (which makes it possible to capture an 

average power of 1.75MW for the best sea state).  

The use of an agonist–antagonist dual-DEG architecture 

significantly reduces the amount of DE material needed. 

It should be remarked that the design of a complex system, 

like the Poly–Buoy, requires to find a compromise between 

different factors, which depend on both the dynamics of the 

floating WEC and on the operation of the DEG PTO. 

Maximization of the captured energy by the Poly-Buoy leads to 

a sub-optimal utilization of the DE material (that is, at energy 

densities that are very far from the maximum theoretical value).  

For a more in-depth study of Poly–Buoy systems, techno–

economic considerations should be included in the analysis.  
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