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mmmﬁsm between causes and proba-

ities: the use of graphical models in
nometrics

5310 MONETA

ABSTRACT. The development of macro-econometrics has been per-
sistently fraught with a tension between “deductivist” and “induc-
tivist” approaches to causal inference. The former conceives causes
as something that economic theory must provide and that statistical
methods must measure. The latter opens the possibility of inferring
caiiges from statistical properties of the data alone. 1 argue that
these conceptions can be interpreted as two opposite responses to the
problem of under-determination of theoretical causal relations by sta-
tistical properties (the problem of identification). Econometrics offers
4 clear example as to how the general problem of causal inference can
be solved only by delicately mediating between background knowl-
. edge and the statistical properties of the data. 1 show how graphical
causal models, appropriately interpreted, can serve this purpose.

Introduction

onometrics represents a privileged locus for studying both the problem
atisal inference from observational data and for verifying to what extent
losophical theories about causation apply to special sciences. Indeed,
any well-studied problems in the philosophy of science—such as that the
oblem of underdetermination of causal theoretical models by data, of
entifying causal relationships that are invariant under intervention, of dif-
entiating between causation and correlation—have all been rigorously
dressed by econometricians. The aim of this paper is to show that the
bate about causal inference in econometrics contains some useful lessons
t the philosophy of science.’

1The focus of this paper is on macro-econometrics, which originally coincided with
nometrics itself, but which should now be distinguished by the parallel discipline of
icroseconometrics, that is econometrics applied to microeconomic data. This is also a
cipline in which the problem of causal inference is crucial, but the nature of data is quite
ifferent between the two sub-disciplines. While micro-econometrics deals with cross-
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Causal inference in macro-econometrics

Eeonometric Society was founded in 1933 with the aim of unifying two
roaches to economic problems that divided {and perhaps still divide)
omists into those devoted to develop formalised theory without mea-
ement and those devoted to develop measurement without theory. In
, although Frisch (1933, p. 2) advocated a “mutual penetration of quan-
tive economic theory and statistical observation,” it is possible to iden-
& similar tension inside econometrics itself. This is the tension between
snometrics as an instrument of empirical application of theory and econo-
tics as an instrument of discovery of theoretical economic relationships.
also reflected on the debate on causal inference in macro-econometrics.
he basic ingredients of any econometric study are data and models.
he role of an econometric model, which is usually an algebraic model, is
abstract particular features of the world by means of a system of equa-
ns {Intriligator, 1983). An actual process or phenomenon is represented
the model for the sake of forecasting, explanation (understanding), and
tervention. For each of these purposes econometricians have implicitly
sidered and sometimes made explicit a notion of causation. For ex-
sle, if macroeconomists use the model to advise policymakers, they are
ng for causal relations invariant under intervention. If they are just
ing macroeconomic forecasts, perhaps a weaker notion of causation is
ient. There are, in other words, different ontological conceptions of
sation involved in macro-econometrics, but I am not facing this issue
re (the reader is referred to Moneta 2005). The focus here is on the
erent epistemological strategies for causal inference.

he typical macroeconometric model consists of a system of equations
volvitig a number of endogenous variables (whose values depend upon
values of the other variables in the model), exogenous variables (whose
tes are determined outside the system but which influence it by affecting
values of the endogenous variables), and random shocks (which account
lie omission of relevant variables, specification and measurement errors,
). The idea is to use the data to estimate {or fit) the model. The typical
ar macroeconometric model takes the following form:?

The development of methods for causal inference in macro-econometrics
has been fraught with a tension between what I call a “deductivist” ap-
proach and an “inductivist” approach. The first conceives of causes as
something that economic theory must provide and that statistical methods
must measure. The second considers economic theory a not very reliable
source of causal knowledge and opens the possibility of inferring causes from
statistical properties of the data “without pretending to have too much a
priori theory” {(Sargent and Sims, 1977). The first conception was advo-
cated by some exponents of the Cowles Commission during 1950s and is
fashionable among the calibration approach to econometrics. The second
conception was formalised by Granger’s (1969) test of causality and by Sims
(1980) vector autoregressive models, methods which are still very popular
in econometrics.

These conceptions can be interpreted as two opposite solutions to the
same problem of underdetermination of theoretical causal relations. In
econometrics this is called the problem of identification. This first approach
risks the commitment to an apriorist strategy, while the second approach is
impeded by the well-known difficulties of the probabilistic theories of causal-
ity. I argue that econometrics offers a clear example of how only a delicate
mediation between background knowledge and the statistical properties of
data can solve the general problem of causal inference. The methods for
this careful handling are much dependent upon the discipline considered.

With respect to macro-econometrics, graphical models, that is the meth-
ods for causal inference developed by Pearl (2000) and Spirtes et al. (2000),
can be very useful in mediating between probabilistic and causal knowl-
edge. Indeed, graphical models permit us to take into account the max-
imum amount of probabilistic information (partial correlations of all pos-
sible orders), which can be used to exclude false causal relations. Partial
correlations, however, are never sufficient to isolate the unique true causal
relations, except in very exceptional circumstances. Indeed, background
knowledge always has to be incorporated and this approach permits the use
of background causal knowledge in a very efficient way.

In the next section I consider the tension associated with the problem of
causal inference in macro-econometrics; in the third section I discuss how
the use of graphical models can mediate such tension; in the fourth section I
present an empirical example that shows how graphical models can perform
that task; the fifth section concludes.

A+ A Y+ ALY B X By X+ A B Xy =,

‘m Y: is a (I x 1) vector of endogenous variables, X; is a (k x 1) vector
xogenous variables, and € is a vector of stochastic disturbances. The
trices A;’s are each (I x [); the B;’s are (I x k). The vector ¢ is a white

See, for example, Intriligator (1983, pp. 187-195). A more complicated model would
ne with shocks entering in the equation with lags, or a non-linear model. But this
Id not change the substance of the present discussion.

section or panel data, macro-econometrics prevalently deals with time series variables in
which experiments (or quasi-experiments) are not feasible.
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ompatible with the original theory but equally compatible with the cur-
ntly available data. This problem is particularly relevant in econometrics
two reasons. First, theoretical relations in economics are always approx-
ste and “the error in approximation constitutes an auxiliary hypothesis
ypically unknown dimension” (Sawyer et al., 1997, p. 21). Second, and
cially connected with the topic of this chapter, econometricians try to

irm causal relations using statistical properties (like correlations). This
ses the problem of differentiating between an asymmetric relation like
usation and a symmetric relation like correlation. Econometricians have
ected on this problem for a long time and indeed “la]n important contri-
ion of econometric thought was the formalization of the notion developed
hilosophy that many different causal interpretations may be consistent
) the same data” (Heckman, 2000, p. 47 )3

noise, which means that is serially uncorrelated with a mean of zero and
variance-covariance matrix Y. Moreover, by definition of exogeneity, X; is
uncorrelated with e, for every t and s.

The model (1) is a system of | equations (equal to the number of en-
dogenous variables) in which the relationships are interpreted as causal and
invariant under intervention for the sake of policy evaluation. It can easily
be normalised so that one is able to write each equation which specifies one
endogenous variable as a function of other endogenous variables, exogenous
variables, and a stochastic disturbance term, with a unique such endogenous
variable for each equation:

Y1t = Filyot, -« Uit Y1(e—1)s - - s Yt —m)» L1t -+ - s Ti(t—m)> €1t)
Yar = 2(Y1ts Usty - - o Yt Y1(t—1)2 - - - > Yl(t—m)s T1ts -+ <5 Tl(t—m)> €2t)
i = filUie - Y- Yig—1)s -+ - Yl(t—m)> Tlts - - - s Bi(t—rm)s €lt) Deductivist Approaches
aavelmo (1944) presents some algebraic conditions that a system of equa-~
ns like (1) must satisfy to be identifiable. These conditions refer to the
mber of endogenous variables relative to the number of exogenous vari-
es (“order condition for identification”) and to the rank of the reduced
matrix P’s and Q’s (“rank condition for identification™). I am not
to go into details of these conditions: it is important here to highlight
act that structural parameters (coefficients of equation 1) are identi-
w the imposition of several types of a priori restrictions on the A’s
B’s. In the so-called Cowles Commission approach to econometrics, of
} Haavelmo was one of the founders, these restrictions consist in a priori
ing of many of the elements of A’s and B’s (in equation 1) to zero, and
priori classifying of variables as exogenous and endogenous (considering
act that a relatively high number of exogenous variables aids identifica-
. It is important to notice that these restrictions correspond to causal
liary hypotheses. Indeed, setting a priori some structural coefficients to
in equation (1) corresponds to a priori assuming that a particular vari-
s not causally influencing a particular endogenous variable. Moreover,
ri assuming that a particular variable is exogenous corresponds to a
assuming that that variable is not causally influenced by any other
able in the systeni.
he solution pursued by the Haavelmo-Cowles program was that these
al restrictions had to be derived from economic theory. The theory in
sideration was Keynes's macroeconomics, but filtered by the neoclassi-

This normalised system of equations, however, cannot be estimated via
ordinary least squares regression, because the €’s are in general correlated
with some of the endogenous variables entering in the equation, since some
right hand side variables can be caused by some left hand side variables.

In general, the structural model (1) can be solved for Y; in terms of lagged
Y’s, X’s, and current €’s. Multiplying (1) by Ay ! and solving for Y; yields

(2) Mwwlsm;:xwﬁf:xmmcrpV§|>m;&Xﬁ::|>m;rxfs+
\wm €.

Introducing the matrices F; = —Ag 14, and Q; = —Aj 1B;, and the vector
of disturbances u; = Ag Le,, equation (2) can be re-written

(3) Yi=PYii+...+PnYiom+QoXe+ ..+ @nXy + .

Equation (3) is called the reduced form and can be estimated consistently
using least squares regression, because it is clear that the left hand side
variables cannot cause anyone of the right side variables, which are either
exogenous or lagged variables (and it is assumed that the future cannot
cause the past).

In general, it is not possible to deduce the estimates of the structural pa-
rameters A’s and B’s from the estimates of P’s and Q’s, because there are
infinitely many matrices like A’s and B’s which are compatible with a single
set of P’s and Q’s. This is what econometricians call the problem of identi-
fication. It corresponds to what philosophers of science call “the problem of
under-determination of theory by data”: any theory that makes reference
to unobservable features of the world will always encounter rival theories

; %3@5 the econometric literature on structural analysis and the problem of iden-
tion was in part anticipated by the work of the geneticist Sewall Wright on path
alysie in the 1920s.
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cal synthesis, which introduced the Walrasian notion of general equilibrium.
However, the object of the Haavelmo-Cowles program was more general: it
was not explicitly specified which theory one had to use in order to get
restrictions. The crucial issue was that restrictions had to be derived from
economic theory. Once the model was identified, it could be estimated using
sound statistical methods and tested against the empirical evidence. But
hoth the problem of confirming theoretical causal models and of choosing
between competing models are not central issues in the Cowles Commis-
sion methodology. Statistical techniques such as regression analysis are
mainly designed to estimate the importance of each causal factor that is
dictated by economic theory, and only to a lesser degree to perforin empiri-
cal validation. However, as Hoover (1994 and 2006) points out, the Cowles
Commission methodology is subject to alternative interpretations. Koop-
mans in his debate with Vining about the possibility (denied by Koopmans)
of “measurement without theory” demonstrated what Hoover (1994) calls
a strong apriorist view. This corresponds to considering theory prior to
data and to denying the possibility of interpreting data without theoretical
presuppositions. According to this view, econometric models have to be
built imposing restrictions derived from a well-articulated theory accepted
a priori. Thus, the object of econometrics would be one of measurement of
causal relationships and not of validation or discovery of causal hypothe-
ses. This view would correspond to a very strong interpretation of the
under-determination thesis denying the possibility of any induction from
correlations to causation. But the problem with Koopmans’ position is, as
argued by Hoover (2006, p. 74), that it “places the empiricist in a vicious
circle: how do we obtain empirically justified theory if empirical observation
-an only take place on the supposition of a true background theory?”

ce. However, the research program pursued by Lucas with his critique,
h shaped the basis of the “New Classical Macroeconomics,” yielded
_and alternative econometric methodologies for causal inference. The
1t raised by the Lucas critique was, in few words, the following: large-
le econometric models based on the Cowles Commission methodology
| using restrictions derived by Keynesian macroeconomic theory (filtered
the neoclassical synthesis) could not be used for policy evaluation. This
cause the estimated coefficients of such models were unlikely to remain
fant to the policy interventions that are object of evaluation. In other
s, the causal relationships identified by the Haavelmo-Cowles method-
y were not invariant under intervention, according to Lucas. They were
nvariant, or stable, because the standard macroeconometric models in-
ed by the Haavelmo-Cowles approach did not take into account the fact
people have forward-looking behaviour (rational expectations) which
npts them to change behaviour as soon as the intervention takes place,
der to take advantage of the new policy regime associated with the
rvention.

hus, the object of Lucas’s attack was not the general deductivist ap-
ach in which causal relations are identified in the Cowles Commission
odology, but the lack of foundation of the a priori theoretical restric-
used to identify the models. Moving from this criticism, Lucas focused
icro-founded theoretical assumptions that were able, in his view, to dic-
, structural (causal) relations invariant to changes in policy. The first
nption was the rational expectations hypothesis mentioned above: indi-
al agents have forward-looking and perfectly rational behaviour, which
its them to take the maximum advantage of the available information,
hout making any systematic error. The second principle was that, in
~with the Walrasian tradition, markets continuously clear, so that all
erved output are the results of a continuous state of (short and long-
equilibrium. Moreover, theoretical models do not need to formalize
ehaviour of every agent, but, thanks to the homogeneity of individual
nality, just the behaviour of typically one representative agent, which
ds in for the behaviour of all agents. In other words, the problem of
egation of the causal relations among microeconomic agents into causal
ons among macroeconomic aggregates is simply bypassed (Moneta,
i

first response to the Lucas critique was completely consistent with the
velmo-Cowles methodology. The idea was to supplement economic the-
with the rational expectation hypothesis, from which it could be possible
erive cross-equations restrictions on the matrices A’s and B’s in equation
1 order to identify the structural model (Hansen and Sargent, 1980).

The position of Haavelmo, however, was quite different from Koopmans’s
one. Although also Haavelmo maintained that empirical investigations were
to be founded on a priori theoretical restrictions, he favored statistical test-
ing of causal hypotheses. Thus he endorsed a view of econometrics, called
by Hoover (1994) weak apriorism, which recognizes the need for an interplay
of theoretical models with empirical results. This permits one to partially
avoid the danger, implicit in the strong apriorist view, of being committed
to a set of a priori causal assumptions without having the possibility of
empirically confirm them.

Lucas’s (1976) article, “Econometric Policy Evaluation: A Critique,” isa
crucial step in the development of causal inference in econometrics. In fact,
the Lucas critique was an attack more directed to the economic theory com-
monly used to derive the a priory restrictions necessary for the identification
of the model, than the general Haavelmo-Cowles methodology for causal in-
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anty causal impact on income, in the long-run), which also need some
ori assumptions to be identified. ‘Second, equilibrium business cycle
1s, for which the calibration approach has been developed, are based
e simplification of the representative agent. Thus, when the models are
ated using parameters derived from microeconomic investigations, it
tly assumed that aggregation does not fundamentally alter the struc-
{ the aggregate model. Such assumption is hardly defensible, as Forni
Lippt (1997) and Kirman (1992), among others, have shown.
s, the main characteristic of the calibration methodology is a strong
itment to economic theory (with the typical new classical features:
| equilibrium, rational expectations, perfect aggregation), taken for
ed a priori. This is a form of apriorism even stronger than Koopman’s
because it rules out likelihood-based statistical estimates of model pa-
bers, which are standard in any version of the Cowles Commission
odology. This raises the question as to how to judge between com-
g calibrated models. And, more important: is there any possibility
with of knowledge at all, if the hard core of the new classical theory,
s to the protection of the calibration methodology, is immune from
n? (Hoover, 1995a).
 conclude, all the approaches just presented share several features
mmon with the hypotetico-deductive method for causal confirmation.
retical statements about causal relations together with the data (which
thought as initial conditions) imply the event to be explained. Haa-
s methodology is quite well in tune with Popper’s falsificationism: a
tical causal statement is hypothesised, from which consequences are
d, and if these consequences do not fit the data, the theoretical causal
ent is re-formulated. In fact, the Haavelmo’s apparent falsification-
+ beset with the problem of under-determination of theory by data,
aavelmo, as mentioned above, recognizes the fundamental importance
empirical testing of causal hypotheses. The other approaches, Koop-
1s's one and calibration in particular, represent a deductivist approach
it falsificationism. The possibility of rejecting theoretical causal state-
are reduced to the minimum.?
general, all these approaches share the difficulties of the hypothetico-
ive approaches to causal discovery (Williamson, 2005), which amount
g to explain how causal relationships are to be hypothesised (to what
1 is.economic theory a reliable source of causal hypotheses?), and to
to explain how predictions can be reliably deduced from the causal

Thus causal relations are inferred, once again, in a general methodological
approach in which theory is prior to data. Although testing of a theoret-
ical causal hypothesis is still pursued, the theoretical assumptions used to
restrict the estimatable equations are not questioned. Therefore, this ap-
proach shares with all the forms of apriorism the problem of obstructing an
empirically disciplined knowledge of causal relations.

Even more apriorist and deductivist approaches to causal inference, how-
ever, have been developed in the wake of the Lucas critique. I am referring
to the calibration approach that has been developed as the method of em-
pirical assessment of equilibrium real business cycle models (see Kydland
and Prescott, 1982). But its roots are in the method proposed by Lucas
(1980): “lo]ne of the functions of theoretical economics is to provide fully
articulated, artificial economic systems that can serve as laboratories in
which policies that would be prohibitively expensive to experiment with in
actual economies can be tested out at much lower cost. ... Any model that
is well articulated to give clear answers to the questions we put to it will
necessarily be artificial, abstract, patently ‘unreal’ 7 (Lucas, 1980, p. 271).

A theoretical model, which can be thought as representing a set of causal
relations invariant under interventions, need not fit the data according cri-
teria dictated by statistical theory, according to the calibration approach.
Indeed, it would be easily rejected, since it is built upon very idealised as-
sumptions that do not take into account all the contingencies, which are not
related with the deep structure, whose knowledge is essential to answer a
limited set of policy questions. Then, such disturbing factors, unaccounted
in the model, but present in the reality, would deform parameter estimates.
Thus, the model has to be calibrated, instead. A model is calibrated when
its parameters are not estimated in the context of their own model, but are
picked in micro-econometric unrelated empirical investigations, or are cho-
sen to guarantee that the simulated model matches some particular and un-
related features of the historical data, drawn from considerations of national
accounting, etc. Once calibrated, the model is validated via simulation. The
model is validated if it matches moments of the data or reproduces some
stylised facts obtained by independent empirical analysis of the data. In
fact, this approach seems to appeal to the sound principle that a theory is
better supported when validated on information not used in the formulation
{Hoover, 1995a). But the acceptance of this principle is not clear, at least
in two respects. First, the collection of stylised facts through statistical
analysis of data is only partially an independent exercise. Indeed the so-
called stylised facts express more or less implicitly causal relations (saying,
for example, that a monetary shock is neutral, which means that it does not

stiong apriorist approach corresponds very closely to a scientific research pro-
s defined by Lakatos, in which a large set of assumptions, constituting the hard
never confronted with the data.
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dims (1980), mentioned above, corresponds to impose on the system a
ly recursive causal structure among the contemporaneous variables.®
ms’ method is atheoretical and inductivist: the idea is to impose the
comimon and most simple causal structure in order to obtain identi-
ion, and to learn causal relationships directly from data. The causal
onships that are objects of interest in this method are the relationships
eent ‘exogenous shocks and the components of Y; at any lead and lag,
it the relationships among the components of Y; as in the Haavelmo-
es framework. But Sims (1980) solution to the VAR identification
lem is highly arbitrary because he picks up a very mcmow& causal struc-
he recursive causal ordering) among a very big number (I!) of possible
structures.

s so-called structural VAR literature recognizes this arbitrariness and
5 its efforts on the imposition of restrictions on the contemporaneous
structure, derived, entirely consistently with the Cowles Commission
bodology, from economic theory or institutional knowledge. However,
ot clear to what extent the restrictions suggested by economic theory
liable. Thus, the structural VAR approach recovers some issues of
eductivist methodology, included some of its problems. In the next
1 I will show how such problems can be faced using graphical causal
In general, the VAR approach is atheoretical, in the sense of let-
1e data speak as much as possible, and so at odds with an apriorist
dology. But the problems of the other approach are replicated here
w form: since measurement without theory (because of the under-
hination problem mentioned above) is very a difficult task, strong a
assumptions turn out to be hidden behind implicit (but often arbi-
ssutptions.

is general framework Granger’s conception of causality has flour-
Granger (1969, 1980) defined causal relationships in the following
ime series variable x; causes prima facie another time series vari-
; if the probability of y; conditioned on its own past values and the
alues of z; (besides the set 0 of the relevant information) does not
he probability of y; conditional on its own past history alone (and
re formally, x; Granger-causes y; if and only if:

statements in spite of the under-determination (identification) problem.

2.2 Inductivist Approaches
Sims’ (1980) article, “Macroeconomics and Reality,” pursued the criticism
of traditional macroeconometric models in another direction, with respect
to Lucas (1976). Sims claimed that econometricians inspired by the Cowles
Commission methodology “imposed large numbers of restrictions that were
incredible in the sense that they did not arise from sound economic the-
ory or institutional or factual knowledge, but simply from the need of the
econometrician to have enough restrictions to secure identification” (Hoover,
1995b, p. 6). But the reaction is different to the rational-expectations econo-
metrics approach. While Hansen and Sargent (1980), as mentioned in the
last section, continued to pursue identification of structural models, by us-
ing restrictions grounded in individual decision-making, Sims argued that
economic relations are in principle not identifiable. “Sims proposed that
macroeconometrics give up the impossible task of seeking identification of
structural models and instead ask only what could be learned from macroe-
conomic data without imposing restrictions” (Hoover, 1995b, p. 6). The
approach proposed by Sims deals with unrestricted reduced form equations,
namely vector autoregressive models (VARs). Each variable is considered as
endogenous and it is regressed on lagged values of itself and of all the other
variables. This corresponds to the reduced form considered in equation (3),
devoid of the exogenous variables X’s:

(4) Yi=PYia+.. .+ PnYim +u

Once the model (4) is estimated, it is possible to study the dynamic causal
effect of a single shock on each variable of Y;. However, it is not possible
to isolate the effect of a single shock uj¢, since uj, is in general correlated
with the other components of u;. Sims (1980) proposed to orthogonalize
the residuals u; by multiplying both sides of equation (4) by a particular
matrix T, obtained by the Choleski factorization of the covariance matrix
of the residuals u,. Indeed this is one of the most simple ways to transfor
equation (4) into another equation in which the shocks are orthogonal, lik

the following:
(5) AgYi=AYi_1+ ...+ AnYim + &

But there are many ways of obtaining equation (5), and the one with
Ap is just a particular case. In other words, the problem of identificatio
reappears. Indeed, the transformation of equation (4) in another equatior
in which residuals are orthogonal—residuals orthogonalization, in short—

strictly recursive causal structure, I mean a causal chain among the components

is equivalent to imposing a contemporaneous causal structure on the vari e T o w
. . ing to which the on au i re:
ables (Stock and Watson, 2001). The method of orthogonalization proposge S@m@me y causal connections are: yi Causes ya¢, Yzt CAUSES ¥at,

ﬂ@i@u!r@niwq BEER TN P i, P .,gv * wﬁﬁﬁ—@slf Y12y 0o ,bv

ition behind this definition is that x; renders y; more likely, or, in
epistemological sense, x; contains some special information which
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helps predict y;. Indeed, another way of reading (6) is that x; Granger- ‘ﬁwﬁmﬁwmoa models
causes y; if the knowledge of the past and present values of x; contributes to
forecasting y;. Based on this idea and definition, Granger was able to devise
very simple tests of this conception of causality. Indeed, the “incremental
predictability” of a variable is easily measured as a reduction of the variance
of the prediction error. In the VAR framework it is straightforward to test
the absence of Granger causality. In order to test the Granger non-causality
from yir to yjt, it is sufficient to test that the (j,4) entries of the matrices
Pi,..., P, in equation (4) are significantly close to zero.

deductivist and inductivist approaches can be thought as two opposite
nses to the problem of under-determination or problem of identifica-
The risk of the first approach is the commitment to an apriorist strat-
while the second approach is impeded by the typical difficulties of the
abilistic theories of causality. I suggest that econometrics offers a clear
1ple as to how the general problem of causal inference can be solved
by delicately mediating between background knowledge and statistical
erties of the data. I want to argue that graphical causal models can be
pful for this purpose.®

-aphical causal models developed by Pearl (2000) and Spirtes et al.
0) are a suitable tool for the task of mediating between causes and
bilities. These techniques (I refer in particular to Spirtes et al. (2000))
been shown to be very useful to infer partial information about causal
ctures from observational data. A graphical causal model consists of a
17 whose vertices are random variables with a joint probability distribu-
ubject to some restrictions. The graph is given a causal interpretation
itected link from A to B means that A causes B) and in many cases
assumed that the graph is a directed acyclic graph (DAG), excluding
backs and loops. In the DAG case, the restriction on the probabil-
istribution is the causal Markouv condition, which limits the pairing
DAGs and probabilities: each variable is independent of its graphical
fescendants given its graphical parents. A second assumption that is
for the sake of causal discovery is the faithfulness condition: all of
onditional independence relations in the probability distribution follow
he causal Markov condition. Based upon these two conditions, Spirtes
(2000) provide some algorithms (operationalised in a computer pro-
called TETRAD) that identify the causal graph which has generated
ata from tests on conditional independence relationships. Often this
is not a unique DAG, but a set of Markov equivalent DAGs, i.e., a set
phs which'share the same conditional independence relations among
iables. Variants of these algorithms are given for environments where
possibility of latent variables is allowed (Spirtes et al., 2000, chap. 6).
rdson and Spirtes (1999) extend the procedure to situations involving

In fact, Granger causality was devised before the formulation of the VAR
approach. Moreover, Hansen and Sargent (1980) claimed that Granger
causality played a “natural role” in rational expectations models. Never-
theless, the methodological approach behind Granger causality is extremely
inductivist and is well in tune with the VAR framework.

The closeness of Granger causality with probabilistic theories of causal-
ity developed in the philosophy of science is evident. In particular, Spohn
(1984) highlights the closeness with Suppes (1970) account. Indeed, Granger
causality shares with any other probabilistic account of causality all its diffis
culties, well studied in the philosophy of science. First, merely probabilistic
accounts are not able to identify causation as an asymmetric relation. This
is because if A renders B more likely (P(B|A) > P(B)), the probability cal-
culus implies that also B renders A more likely (P(A|B) > P(A)). Granger
(like Suppes and Hume) solves this difficulty imposing the condition that
causes must temporally precede the effect. But this is not sufficient to solve
the second difficulty: mere probabilistic accounts are not able to distinguish
between statistical association and direct causation. The typical example
is that the barometer helps predict the weather, but is not causing it. This
problem can be solved assuming a common cause (e.g. pressure) which is
causing both the barometer index and the weather, but how does one know
that all possible common causes are included in the set Q7 Thus, unless
one can appeal to some hackground knowledge of the causal structure, the
dependence on the set © of all relevant information makes the concept of
Granger causality non operational.

m niot denying, however, that there are other econometric approaches that also per-
ry well in the task of mediating between deductivist and inductivist approaches.

oferring in particular to the London School of Economics approach to econometrics

by, 1995) and to the “extreme bound analysis” of Leamer (1983). But in these two

sches the issue of causal inference is not as central as in graphical models.

graph can be thought as a pair (V, E), where V is a nonempty set of vertices, and
ubset of the set V x V of ordered pair of vertices, called edges. For a more detailed

ieal model terminology see Spirtes et al. (2000, p. 5-17).

In sum, the VAR approach and Granger causality share all the difficulties
of the inductivist approaches to causal learning: either they are not able
to identify a causal structure under-determined by the statistical properties
of the data (that is, there may be other causal structures observationally
equivalent), or they are able to do that with implicit background assump-
tions, which are typically not validated.
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ound knowledge based on independent statistical techniques (besides
cal knowledge). Graphical models permit one to take into account
ximum amount of probabilistic information (partial correlations of all
e orders), which can be used to exclude false causal relations. Partial
tions, however, are never sufficient to isolate the unique true causal
ons, except in very exceptional circumstances. Background knowledge
be incorporated and this approach permits the use of background
knowledge in a very efficient way.

view I am proposing here is much in the spirit of the synthetic ap-
proposed by Williamson (2002). As Williamson (2002, p. 10) argues,
he causal Markov condition may fail it remains a good default as-
on, in the sense that if one knows of the causal relationships amongst
 variables, and one knows of no counterexample to the causal Markov
on amongst those variables, then one’s subjective probabilities ought
ty the condition.”

eyeles and feedbacks.

This opens up the possibility of a logic of scientific discovery, which was
explicitly denied in the philosophy of science for many years, from Hempel
onwards. However, I want to argue here that graphical models need not
to be interpreted or used as instruments of pure inductive learning. To
begin with, both the causal Markov and the faithfulness condition should be
taken with caution, because, although in general statistical models for social
sciences with a causal significance satisfy these conditions (Spirtes et al.,
2000, p. 29), there are still several environments in which these conditions
are usually violated. ,

In general, the causal Markov condition does not hold if variables rele-
vant to the causal structure are not included in the set V of the vertices
(although it is possible to test for latent variables), if probabilistic depen ‘
dencies are drawn from non-homogenous populations, if variables are no
properly distinct from one another, or if causality cannot be assumed to b
local in time and space (for example in quantum mechanical experiments)
In macroeconomics the problem is compounded by the problem of aggrega
tion: causal structures may be effective at a low level of aggregation (at th
micro level), but variables are measured at a high level of aggregation (at
the macro level). ;

The faithfulness condition can also be thought as claiming that the prob-
ability distribution on V' embodies only independence relations that can'b
represented in a causal graph (through the Markov condition}, excludin
independence relations that are sensitive to particular values of the param
eters and vanish when such parameters are slightly modified. Pearl (2000
p. 48) calls this assumption stability, because it corresponds to assumin
that all the E%vm.w:%:am relations remain invariant when the cmgamnw iz AYi +.. 4+ ALY +e
values change. This means that external influence (exogenous shocks) wi
tend to change parameter values and not the causal structures (from whig
all the independence relations derive). In economics this concept reca
Simon’s (1953) characterization of causal relations as invariant under inter
ventions, and Frisch and Haavelmo’s concept of “autonomy” or “structur
invariance” (Aldrich, 1989). _

Thus, it is important to stress the fact that causal Markov and faithf
ness are a priori assumptions. In a macroeconometric framework, cau
Markov and faithfulness condition should be taken as working assumption
Indeed, it is important to be aware that the results may depend on th
choice of variables, level of aggregation and presence of structural change
Econometric tests are available for many of these specification issues (Al
criterion, Chow test, etc.) and should be taken into account before applying
the algorithm. In other words, graphical causal models should be based

aphical models and structural VARs

section, I show how the task of mediating between a deductivist and
uctivist approach can be put forward, through graphical models, in
ecial context of structural VAR. In section (2.2), I have shown how
sion between a deductivist and inductivist approach emerges again
entification of a structural VAR. I want to show here how graphical
ls can be useful in mediating between an inductivist and deductivist
h to impose the restrictions to identify a structural VAR. Recall that
blem of identification, in the VAR framework, consists in recovering
uetural equation

e estimate of the reduced form equation
=PY, +oo A PpYiom + u,

yP; = A; (for j = 1,...,m) and Agus = €. These systems of equa-
att be solved only by imposing restrictions on the matrix Ag. The
of Ay, appropriately normalised, can be thought as the coefficient
ession equations:

it . oge e €
tUie + . b 1)Ul €2t

e+ oo nug-De T+ e,
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where some of the a’s may be zero, but we do not know a priori which
ones. But looking at the equation (7), it is straightforward to see that Agp
incorporates the structural relations, that is causal relations, among the
contemporaneous elements of Y;. Thus, there is an isomorphism between
the causal relation among the residual variables wis, ..., Wy and the con-
temporaneous variable yi¢, ..., Y.

The idea of Swanson and Granger (1997), Reale and Wilson (20013,
Blesser and Lee (2002), Demiralp and Hoover (2003), Moneta (2003) is
to use graphical causal models to infer the causal relationships among the
elements of u; (equivalent to the causal relationships among the element
of Y;) from the estimate of vanishing partial correlations among u.® This
allows the imposition of enough zero-restrictions on the elements of Ay (i.e;,
on the &’s) in order to get the model identified. A zero on Ag corresponds
to a lack of causality among two elements of u;.

I will clarify this approach through an empirical example.® An important
question in macroeconomics is which shocks are the main causes of income
fuctuations. This is not only an important question per se, but it is cru-
cial to assess a theoretical hypothesis, like, for example, the Real Business
Cycle hypothesis, which claims that shocks to real variables (consumption
investment, income) are the dominant sources of income fluctuations and
that shocks to nominal variables (money, interest rates) play an insignifi-
cant role in determining the long-run behaviour of real variables. To address
this question, I estimate a VAR very similar to the one used by King et al.
(1991). Let Y; = (C, I, M, Y, R, APY, where C denotes per capita consump-
tion expenditure, I per capita investment, M the real balances, that is the
ratio hetween money and price level, Y per capita gross national product
R nominal interest rate, and AP inflation. The data are six quarterly u.s
macro variables for the period 1947:2 to 1994:1 (188 observations).

A series of specification tests (cointegration, number of lags, structura
change, etc.) confirmed the possibility of a stable causal structure for these
years. Thus, assuming causal Markov and faithfulness condition, a modified
version of the PC algorithm incorporated in TETRAD could be applied
using as input the tests on vanishing partial correlations among the elements
of u;. The resulting graph is displayed in Figure 1.

Figure 1. Output of the search algorithm.

ce that the algorithm does not direct any causal relationship because
dification that I made to the PC algorithm rendered directing edges
evere. The set of DAGs for this pattern consists of 24 elements.
of these 24 causal structures corresponds to overidentifying restric-
i the matrix Ag, i.e., restrictions such that the model has a number
wn parameters (estimated coefficients and estimated covariance ma-
eater than the number of unknown parameters (parameters of the
ral model). This constitutes an advantage with respect to the stan-
ecursive VARs identified using the Choleski factorization of residuals
ance matrix (Sims, 1980), which are just-identified, because overiden-
models can be tested using a x? test statistic (see Doan, 2000). It
out that some DAGs do not pass this test, in particular the DAGs
contain one or both of the following configurations: B — I « Y
5] « C. The number of DAGs ruled out is 8. Thus there are 16
s left. The number of DAGs left is narrow enough to check if there are
about the effects of shocks on output (Y') fluctuations which are ro-
sross the different specifications of the models. I will show the results
ing another a priori specification. Among the 16 models considered,
e consistent with the conjecture that interest rate and investment are
ig indicator for output. Although this is an hypothesis which is well
e with much economic theory and empirical stylised facts, it has not
aken for granted: it is always possible to check whether the results
e dropping this hypothesis. In Figure 2 two of the causal graphs for
four models are displayed. I call model 1 and model 3 the models cor-
ding to the causal graphs displayed in Figure 2. Model 2 and model 4
causal graphs equal to model 1 and model 3, respectively, except that
usal relationship between M and AP runs in the opposite direction.

8Swanson and Granger (1997) apply a technique which assumes the Markov condition
but not the Faithfulness condition; Reale and Wilson (2001) apply conditional indepen
dence graphs; Blesser and Lee (2002) and Demiralp and Hoover (2003) apply the PO
algorithm incorporated in TETRAD; Moneta (2003) applies a modified version of the
PC algorithm which is more severe in orienting edges.

9This empirical example is drawn from Moneta (2003). The reader is referred to thig
paper for more details.

ite 3 shows the calculations of the dynamic responses of output (im-
response functions) to the shocks to consumption, investment, money
sterest rates for the 4 different model specifications. The results point
hat not only shocks associated to real macroeconomic variables (out-




19 Alessio Moneta Mediating between causes and probabilities 127
Amv Responses of Yo C Responses of Y to |
R T .Y M AP T T Modat 11— 25 T T Model 1 and 2 ——
Model 2 ~------ 7 2r Model 3 and 4 ~------ b
Modei 3 ---- - E
Model 4 - ] :
.. T T
(ii) . -
R iy LY M AP L T
‘ . 8 @ 12 15 18 21 24 27 o a3 & 9 12 15 18 21 24 27
: lags lags
Responses of Y to M Responses of Y to R
2.5
T T Model 1, 2and 3 — LT "Model 1 and 2 ——
Model 4 -—=---~ e Modet 3 and 4 == b

Figure 2. (i) Causal graph for model 1. (ii) Causal graph for model 3. ‘
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put, consumption and investment) but also shocks associated to nominal
variables (money, inflation and interest rates) have a considerable effec
on macroeconomic fluctuations (at all frequencies). This result shows ho
US data are not consistent with the Real Business Cycle hypothesis, whic!
claims that a single productivity shock is driving output fluctuations. Th
general results are robust across different specifications of the other 12 mod
els. 10

4. Iimpulse response functions of income to consumption, investment,
and interest rates shocks.

ound knowledge are not at odds with the hypothesis of a stable causal
re generating the data. Thus, both the inductive stage carried over
graphical algorithms, and the deductive stage are equally important.
sne should view the inferred causal structures as a set of hypotheses
to be tested independently. Moreover, since the set of inferred
elationships is only in exceptional cases a unique causal structure,
nal information about the causal structure has to be derived from
ound or theoretical knowledge. The advantage of using graphical
s that they express such a priori assumptions in an explicit causal
ge, which helps in testing their validity.

5 Concluding remarks

The aim of this paper was to show how graphical models can help to a
proach the problem of causal inference mediating between deductive afic
inductive learning. Indeed, these techniques are very powerful in genera
ing causal models starting from a probability distribution, but the genera
assumptions which permit them to work are not innocuous. I propose to use
the causal Markov and faithfulness conditions as working assumptions to b
used in a certain temporal window, when empirical evidence and theoretic
Moneta

nck Institute of Economics, Jena, Germany.
s@econ.mpg.de

10T hese results are not reported here for limits of space. There are also several othel
tests that could be run to know how results are robust to change of number of lags [z
main problem also in Granger-causality tests), significance level, and across sub-samples
However, a careful analysis of the epistemic virtues of robustness for each of this case has
yet to be done for the methods presented in this paper. Another important issue is the
exclusion of feedbacks and loops in the DAGs. This is a very useful simplification, but i .
is not always reliable in aggregated data. In another paper (Moneta, 2004) I have relax A IOGRAPHY
this restriction for a similar macroeconomic data set, but it remains an open questio
how two interpret similarities and differences between the results with and the resul
without the acycilicity condition.
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