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Abstract This paper assesses the empirical plausibility of the real business cycle
view that shocks to real variables are the dominant sources of economic fluctuations
and that monetary policy shocks play an insignificant role in determining the behavior
of real variables. I reconsider the vector autoregressive model of King et al. (Am Econ
Rev 81:819–840, 1991), but propose an alternative identification method, based on
graphical causal models. This method selects the contemporaneous causal structure
using the information incorporated in the partial correlations among the residuals.
The residuals orthogonalization which follows and the study of the impulse response
functions confirm the results of King et al. (Am Econ Rev 81:819–840, 1991): per-
manent productivity shocks are not the dominant sources of aggregate fluctuations in
US economy.
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276 A. Moneta

1 Introduction

Vector autoregressive models (VARs) have been extensively used in macroecono-
metrics to empirically assess theoretical hypotheses. In particular, they have proven
to be very suitable to evaluate the impact of economic shocks on key variables.
Macroeconomic variables can be represented as driven by serially uncorrelated shocks,
each having a different source, like “productivity shock”, “investment shock”, “con-
sumption shock”, “monetary shock” and so on. From the analysis of the so-called
“impulse response functions” of the VAR, one can study how each variable reacts to
a particular shock and compare such responses with the theoretical hypotheses. An
advantage of VARs is that estimation, apart from problems of over-parameterization,
is straightforward. However, in order to give economic interpretations to the shocks
incorporated in the VAR, one has to impose identification restrictions. How to impose
such restrictions remains controversial in the literature.

In this paper, I assess the real business cycle (RBC) hypothesis that real shocks,
that is shocks to tastes or technology, are the dominant sources of business cycle fluc-
tuations. Moreover, the RBC hypothesis denies that nominal shocks (to the money
supply, for example) have a comparable significance in the determination of real fluc-
tuations. VARs have already been used to test this hypothesis (King et al. 1991), but
the standard methods used for identification have been seriously criticized (see, for
example, Bernanke 1986; Faust and Leeper 1997). In this paper, I reconsider the VAR
formulated by King et al. (1991), but propose an alternative method to impose the
restrictions necessary to identify the model.

The problem of identification can be interpreted as a problem of differentiating
between correlation and causation (Stock and Watson 2001). The method proposed
here makes use of graphical causal models to infer those causal structures among con-
temporaneous variables which are consistent with the statistical properties of the data.
The idea is that the connections between causal relations and partial correlations are
constrained by some general conditions. Thus, from tests on vanishing partial correla-
tions among the VAR residuals I will be able to reduce the class of admissible causal
structures among contemporaneous variables. Each causal structure implies a set of
overidentifying restrictions. This constitutes an advantage with respect to the standard
recursive VARs identified using the Choleski factorization of residuals covariance
matrix (Sims 1980), which are just-identified, because overidentified models can be
tested using a χ2 test statistic.

The method for identification discussed in this paper represents a further develop-
ment of a literature on the graph-theoretic analysis of causality applied to the determi-
nation of the contemporaneous causal ordering of the structural VAR. These techniques
have been developed by Spirtes et al. (2000) and Pearl (2000) to a high level in arti-
ficial intelligence, but the number of applications to economics, although it is rapidly
increasing, has been quite limited so far. This is quite surprising, because Swanson
and Granger (1997), Hoover (2001), Reale and Tunnicliffe Wilson (2001), Bessler
and Lee (2002), Awokuse and Bessler (2003), Bessler and Yang (2003), Demiralp and
Hoover (2003), Haigh and Bessler (2004) have proven the reliability of this method.

The identification method proposed in this paper is in the spirit of the works of
Bessler and Hoover and their respective co-authors. These works apply a graph-based
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search procedure—the PC algorithm—developed by Spirtes et al. (2000) and embed-
ded in the various versions of software Tetrad (see Scheines et al. 1994; Spirtes et al.
1996), with the aim of identifying the contemporaneous causal structure of a structural
VAR. I also use a graph-based search procedure derived from Spirtes et al. (2000), but
this paper makes the following advances over the previous studies.

First, there is an important difference in the testing procedure. The works of Bessler
and Hoover and their respective co-authors test vanishing partial correlations among
the VAR residuals using Fisher’s z statistic, suggested by Spirtes et al. (2000: 94)
and incorporated in the Tetrad program. This procedure, however, is aimed to test
vanishing partial correlations using population partial correlations, while the men-
tioned works use partial correlations among estimated residuals, rather than between
the “true” residuals. In practice, these studies use estimated residuals as if they were
population residuals and the asymptotic distribution of the test statistic is not made
explicit. The test I develop in this paper (Appendix B), based on a Wald statistic, is, on
the contrary, more appropriate when the correlations are between estimated residuals
than the actual errors of the original variables.

Second, there is an important difference in the search algorithm used. I make a
modification of the PC algorithm to adapt it to the peculiarities of the VAR. Spirtes,
Glymour and Scheines, in developing the PC algorithm, were concerned with com-
putational complexity issues, as witnessed by the discussion in Spirtes et al. (2000:
85–86). In order to avoid a computationally inefficient search, they structure the algo-
rithm so that the number of conditional independence tests is bounded by a certain
polynomial, which is function of the number of variables object of investigations. The
idea is that one does not need to test all the possible independence relations, because
the number of such tests increases exponentially with the number of variables. Thus,
with the PC algorithm, “it is possible to recover sparse graphs with as many as a
hundred variables” (Spirtes et al. 2000: 87). But one should not be much concerned
with such computational issues, when considers the case of VARs. Indeed VARs of
macroeconomic time series, for well-known reasons related to the number of param-
eters to be estimated, deals with a very limited number of variables. The typical VAR,
indeed, is constituted by a number of variables between 4 and 7. With such a number
of variables, it is computationally feasible to perform even all the possible conditional
independence tests. I modify the algorithm (Sect. 2.3, Table 1) allowing a larger num-
ber of conditional independence tests than the original PC algorithm. In doing that,
the algorithm gains stability, in the sense that small errors in the input of the algorithm
(conditionally independence tests) are likely to produce less errors in the output of the
algorithm (causal relationships), with respect to the original PC algorithm.

Third, I present some graph-based results (Sect. 2.3), which are complementary
with respect to the Swanson and Granger’s (1997) analysis of how causally ordering
the estimated residuals from the reduced-form VAR is equivalent to causally ordering
the contemporaneous terms in the structural VAR.

The empirical results show that this method permits the orthogonalization of the
VAR residuals in a way consistent with the statistical properties of the data. The anal-
ysis of the impulse response functions confirm the conclusion of King et al. (1991)
that US data do not support “the view that a single permanent shock is the dominant
source of business cycle fluctuations.”
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278 A. Moneta

The next section discusses the method, based on graphical models, for the VAR
identification. Section 3 presents the empirical results. Section 4 concludes.

2 VAR identification with graphical models

2.1 The problem of identification

A zero-mean stationary VAR can be written as

Yt = A1Yt−1 + · · · + ApYt−p + ut , (1)

where Yt = (y1t , . . . , ykt )
′, ut = (u1t , . . . , ukt )

′, and A1, . . . , Ap are (k × k) matri-
ces. The components of ut are white noise innovation terms, that is E(ut ) = 0, and
ut and ut+h are independent for h �= 0. The matrix �u = E(ut u′t ) is in general
nondiagonal. The relations among the contemporaneous components of Yt , instead of
appearing in the functional form (as in simultaneous equation models), are embedded
in the covariance matrix of the innovations. If one neglects, as I do for the scope of this
paper, problems of overparameterization, estimation of (1) by OLS is straightforward
and the estimates coincide with MLE (under normality of the errors) and the SURE
method introduced by Zellner (1962).

Major problems arise when discussing how to transform Eq. (1) in order to orthogo-
nalize the matrix of the innovations and to study the evolution of the system caused by
a single innovation using impulse response functions or forecast error variance decom-
position. A way to orthogonalize the matrix of the innovations is premultiplying each
member of (1) by a matrix W such that E[W ut u′t W ′] is diagonal. A typical practice
(Sims 1980) is to decompose the matrix �u according to the Choleski factorization,
so that �u = P P ′, where P is lower-triangular, to define a diagonal matrix D with
the same diagonal as P and to multiply both sides of (1) by W = D P−1, so that the
covariance matrix of the transformed residuals turns out to be equal to � = DD′,
which is diagonal. A problem with this method is that W changes if the ordering on
the variables of the system changes and, in general, there are infinitely many matrices
W for which E[W ut u′t W ′] is diagonal. The matrix W introduces relations among
the contemporaneous components of Yt in the functional form. Such relations should
be consistent with the causal structure among the variables, although causal relations
among contemporaneous economic variables have been sometimes considered a con-
troversial issue (Granger 1988). The conventional approach has been criticized as
arbitrary, since it “restricts attention to recursive models, which (roughly speaking)
occupy a set of measure zero” within the set of linear models (Bernanke 1986: 55).

Thus the literature on structural VAR deals with an identification problem for many
respects analogous to the one considered by standard simultaneous equation models:
how to recover an economic model from a set of reduced form equations. The main
difference is that restrictions are imposed in a second stage, after estimation. The
structural equation considered is of the form

Yt = B0Yt + B1Yt−1 + · · · + BpYt−p + Cvt , (2)
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where vt is a (k× 1) vector of serially uncorrelated structural disturbances with mean
zero and diagonal covariance matrix �v . I denote with � the matrix (I−B0). The iden-
tification problem consists in finding a way to infer the unobserved parameters in (2)
from the estimated form (1), where Ai = �−1 Bi for i = 1, . . . , p, and ut = �−1Cvt .
The problem is that at most k(k+1)/2 unique, non-zero elements can be obtained from
�̂u . On the other hand, there are k(k + 1) parameters in � and �v and k2 parameters
to be identified in C . Even if it is assumed C = I and the diagonal elements of � are
normalized to 1, as it is typically done in the literature, at least k(k− 1)/2 restrictions
are required to satisfy the order condition for identification.

The idea here is to use graphical models to strongly reduce the number of admissible
contemporaneous causal structures. One can further discriminate using background
knowledge, jointly with χ2 tests on overidentifying restrictions. The advantage of this
method with respect of the standard structural VAR approach is that eliminating the
implausible causal structures significantly lowers the degree of arbitrariness.

2.2 Graphical models

Statistical models represented by graphs, in particular directed acyclic graphs
(DAGs),—the reader is referred to Appendix A for a definition of graphs and DAGs—
have proved to be useful to represent causal hypotheses and to encode independence
and conditional independence constraints implied by those hypotheses (Pearl 2000;
Spirtes et al. 2000; Lauritzen 2001; Lauritzen and Richardson 2002). In this frame-
work, algorithms have been developed to recover some features of the unobserved
causal structure, represented by a graph, from conditional independence relations
among the variables. If it is assumed that a causal structure can be represented by a
DAG, feedbacks and loops among variables are ruled out a priori.1 This may con-
stitute a simplification in some cases, but it permits to deal with a narrower number
of causal structures. The most used algorithm in the DAG case is the PC algorithm
(Spirtes et al. 2000), which has been applied to the VAR identification by Demiralp
and Hoover (2003) and Bessler and Lee (2002).

A graphical model is a graph (a DAG in the case considered here) whose nodes
(or vertices) are random variables with a joint probability distribution subject to a
restriction. That restriction is incorporated in the so-called Causal Markov Condition,
which states that any vertex in a DAG is independent of its graphical non-descendants
(excluding its parents) conditional on its graphical parents.

A graphical procedure introduced by Pearl (1988) and called d-separation (see
Appendix A) permits to check whether or not any variable (in a DAG representing
a probability distribution according to the Markov Condition) is independent of any
other variable conditional on any set of variables included in the DAG, simply looking
at the paths that connect the two variables.

Besides the Causal Markov Condition, the search for causal structure is based on
a second assumption: the Faithfulness Condition. Let G be a DAG with vertex set V

1 For an extension of the search procedure for VAR identification in which feedback loops and latent
variables are allowed see Moneta (2004b).
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280 A. Moneta

and P be a probability distribution over the vertices in V such that G and P satisfy
the Causal Markov Condition. G and P satisfy the Faithfulness Condition if and only
if every conditional independence relation true in P is entailed by the Causal Markov
Condition applied to G.

Causal Markov and Faithfulness Condition together entail a reciprocal implication
between the causal graph G that (it is assumed) has generated the data and the joint dis-
tribution P of a set X of random variable, whose realizations constitute the data. The
constraint-based approach to causal discovery takes place in a framework in which
the conditional independence relations among the variables are known, whereas the
causal graph G is unknown.

2.3 Recovering the structural model

This section presents an algorithm to identify the causal graph among the contempo-
raneous variables of Eq. (1). In empirical applications the output of the algorithm is a
unique DAG only in very rare cases. In most cases the algorithm reduces significantly
the number of acceptable DAGs, so that the output of the algorithm is indeed a set of
DAGs. Background knowledge may be useful to further reduce the set of acceptable
DAGs.

Before describing the algorithm, some preliminary results are needed, which are
presented here only in an informal way.2

To begin with, if one considers only multivariate normal distributions, zero partial
correlations and conditional independence relationships are equivalent. Therefore, if
one considers a DAG with set of vertices X = {X1, . . . , Xn} and a normal proba-
bility distribution P(X) that satisfy Markov and Faithfulness condition, it holds that:
corr(Xi , X j |X (h)) = 0 if and only if Xi is independent from X j given X (h) if and
only if Xi and X j are d-separated by X (h), where X (h) is any subset of X\{Xi , X j }
and i �= j .3

Another important result is that partial correlations among the VAR residuals ut are
tied to partial correlations among the contemporaneous components of Yt . Indeed, from
well-known properties of linear least square residuals (Whittaker 1990: 125–132), it
follows that the partial correlation between any two elements uit and u jt conditioned on
any other elements ukt , . . . , uht of ut is equal to the partial correlation between yit and
y jt conditioned on the corresponding elements ykt , . . . , yht plus the past values of yt .

2 For a more rigorous exposition the reader is referred to Moneta (2003).
3 However, some results of Spirtes et al. (2000: 47) show that assuming the Faithfulness Condition for
linear systems is equivalent to assume that in a graph G the vertices A and B are d-separated given a subset
C of the vertices of G if and only if corr(A, B|C) = 0, without any normality assumption.
With “independence” I refer to “stochastic independence” to be distinguished by “casual independence”
(see Spohn 1980). In fact vanishing partial correlations may not imply causal independence in cases of
violation of Faithfulness. These cases arise in particular choices of parameters, which Spirtes et al. (2000:
41) prove (assuming linearity) to form a real space having Lebesgue measure zero. However, Hoover (2001:
170) argues that in macroeconomics the Faithfulness condition should be assumed with caution, because
such parameter choices may arise naturally as the result of optimal policy control. A solution of this problem
could be to check the stability of the inferred causal relations under sub-samples, corresponding to different
policy regimes. I leave this issue out for future research.
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Table 1 Search algorithm (adapted from the PC algorithm of Spirtes et al. (2000: 84-85); in bold character
the modifications)

(A)
Form the complete undirected graph C on the vertex set y1t , . . . , ykt . Let Adjacencies(C, yit ) be
the set of vertices adjacent to yit in C; let GYt be the (unobservable) causal structure among the k
elements of Yt ; and let Sepset (yht , yit ) be the set of sets of vertices S so that yht and yit are
d-separated given S in GYt .
(B)
n = 0
repeat :

repeat :
select an ordered pairs of variables yht and yit that are adjacent in C such that
Adjacencies(C, yht )\{yit } has cardinality greater than or equal to n, and a subset
S of Adjacencies(C, yht )\{yit } of cardinality n, and if yht and yit are d-separated
given S in GYt delete edge yht — yit from C;

until all ordered pairs of adjacent variables yht and yit such that Adjacencies(C, yht )\{yit }
has cardinality greater than or equal to n and all subsets S of Adjacencies(C, yht ) \{yit }
of cardinality n have been tested for d-separation;
n = n + 1;

until for each ordered pair of adjacent variables yht , yit , Adjacencies(C, yht )\{yit } is of
cardinality less than n;
(C)
for each triple of vertices yht , yit , y jt such that the pair yht , yit and the pair yit , y jt are each adja-
cent in C but the pair yht , y jt is not adjacent in C, orient yht — yit — y jt as yht −→ yit ←− y jt
if and only if yit does not belong to any set of Sepset (yht , y jt );
(D)
repeat :

if yat −→ ybt , ybt and yct are adjacent, yat and yct are not adjacent and ybt belongs to
every set of Sepset (yat , yct ), then orient ybt — yct as ybt −→ yct ;
if there is a directed path from yat to ybt , and an edge between yat and ybt , then orient
yat — ybt as yat −→ ybt ;

until no more edges can be oriented.

Therefore, a test on vanishing partial correlation between uit and u jt conditioned on
ukt , . . . , uht is equivalent to a test on vanishing partial correlation between yit and
y jt given yht , . . . , ykt and (y1(t−1), . . . , yk(t−1), ... , y1(t−p), . . . , yk(t−p)). Thus, from
tests on partial correlations among the components of ut one obtains the d-separation
relations for the graphical causal model representing the structural equation.4

To test vanishing partial correlations among the elements of ut , I propose the Wald
test procedure described in Appendix B, which is alternative to the Fisher’s z-statistic
suggested by Spirtes et al. (2000) for cross-section data.

The goal of the algorithm described in Table 1 is to obtain a (possibly narrow) set
of DAGs, which contains the (unobservable) causal structure GYt among the contem-
poraneous variables y1t , . . . , ykt (elements of Yt in Eqs. 1 and 2). The algorithm starts
from a complete undirected graph C between the elements of Yt (in which every vertex
is connected with everything else) and uses d-separation relations (derived from tests
on vanishing partial correlations) to eliminate and orient as many edges as possible.

4 See Propositions 3.1, 3.2, and 3.3 in Moneta (2003).
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Fig. 1 Unobserved causal
structure

The modifications, anticipated in the introduction, I made to the PC algorithm of
Spirtes et. al. (2000: 84–85) are the following. The first important difference is the def-
inition of Sepset (step A of the algorithm). I define Sepset (yht , yit ) at the beginning,
and once for all, as the set of sets of vertices S so that yht and yit are d-separated by S.
In contrast, in Spirtes et al. (2000: 84), Sepset is defined in the step B of the algorithm
and contains only one set of vertices S so that yht and yit are d-separated by S.

Indeed, if I were using the original formulation of the PC algorithm the middle part
of step B would have been written as: “...and if yht and yit are d-separated by S in GYt

delete edge yht — yit from C and record S in Sepset(yht , yit ) and Sepset(yit , yht )”.
The second change I made with respect to the PC algorithm is at the end of step C.

My formulation: “... orient yht — yit — y jt as yht −→ yit ←− y jt if and only if yit

does not belong to any set of Sepset(yht , y jt )”. Following the original PC algorithm
I would have written: “... orient yht — yit — y jt as yht −→ yit ←− y jt if and only
if yit is not in Sepset (yht , y jt )”.5

The third change is in step D. My formulation: “...and ybt belongs to every set of
Sepset (yat , yct ), then orient ybt — yct as ybt −→ yct ”. The original PC algorithm
formulation would be: “...and there is no arrowhead at ybt , then orient ybt — yct as
ybt −→ yct ”.

These modifications of the original formulation of the PC algorithm have simply one
goal: providing more stability to the algorithm’s task of orienting edges. The original
PC algorithm is very efficient from a computational point of view, since it minimizes
the number of conditional independence relations to be tested, but it is quite unsta-
ble, in the sense that small errors of input can produce large errors of output (wrong
direction of edges). It works very well when the number of variables is high and the
vanishing partial correlations are “faithful”, that is generated by the causal structure.
But, as the empirical application will show, in the case of contemporaneous causal
structure in a VAR, it is likely to have a small number of vanishing partial correlations
which are “unfaithful”. that is unrelated to the causal structure. This may be due to
the problem of temporal aggregation, latent variables or feedbacks. In this case one
has to be very cautious in the task of orienting edges.

Suppose, for example, that the unobserved causal structure is described by the DAG
in Fig. 1. Suppose also that the results of the tests on vanishing partial correlation say
that all the d-separation relations are the following: y1t and y3t are d-separated by y2t ;
y1t and y3t are d-separated by y4t ; y2t and y4t are d-separated by {y1t , y3t }. Then, the

5 Step C of the algorithm presented in Table 1 thus coincides with step C of the SGS algorithm (Spirtes
et al. 2000: 82), which is a computational more complex version of the PC algorithm. I keep the step B
identical to the PC algorithm to preserve some computational efficiency of the PC algorithm. On the contrary
step C and D of my algorithm result computationally more complex than step C and D of the PC algorithm.
Step D of the PC and SGS algorithm are identical.
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d-separation between y1t and y3t given y2t is wrong, due to an error in the vanishing
partial correlation test, or to the presence of an unfaithful vanishing partial correla-
tion. Suppose that one uses the original PC algorithm to infer the causal DAG and
that the algorithm selects in the step B the pair of variables y1t and y3t and S = {y2t }.
Then, the algorithm would correctly delete the edge between y1t and y3t and record
S in Sepset(y1t , y3t ). But in the step C it would wrongly orient y1t — y4t — y3t as
y1t −→ y4t←− y3t , since y4t was not recorded in Sepset(y1t , y3t ). In step D the
algorithm would not produce any orientation.

In this example, my version of the algorithm would not produce any orientation in
step C and D, leaving this task to background knowledge or to simply rules of thumbs
such as: in y1t and y3t cannot be any collider, so it has to be either in y2t or y4t , but
looking at all the d-separation relations, it seems to be more likely that the collider is
in y2t , etc.

Thus, the ultimate reason in changing the algorithm is that in VARs there is no
computational constraint in testing a large set of vanishing partial correlation. In the
case of six time series variables, for example, one may look even at all the possi-
ble vanishing partial correlation tests. The criterion of orienting edges is more severe
in the version of the algorithm I propose, taking into account the fact that errors in
conditional independence tests are always possible.

3 Real business cycles reconsidered

3.1 The case of cointegrated data

I reconsider empirical evidence on the dynamic response of real macroeconomic vari-
ables to real shocks, estimating the six-variables VAR used by King et al. (1991),
but using the graph-based identification method proposed in the last section. While
the identification method proposed by King et al. (1991) is based on some properties
related to the fact that the time series considered are cointegrated, I make here use of
cointegrating relationships only for the sake of estimation. Cointegration does not play
any role in the identification procedure used here. Indeed, the procedure to recover
the structural model, presented so far for the case of stationary data, is also applicable
to cointegrated data. Suppose Yt is a Gaussian k-dimensional VAR(p) process, whose
components y1t , . . . , ykt are I (1), and suppose there are r linearly independent (k×1)

vectors ci such that c′i Yt ∼ I (0), for i = 1, . . . , r . In this case, it is well known that
it is possible to reparameterize the model in level

Yt = A1Yt−1 + · · · + ApYt−p + ut (3)

as
�Yt = D1�Yt−1 + · · · + Dp−1�Yt−p+1 −�Yt−p + ut , (4)

where Di = −(Ik− A1−· · ·− Ai ), for i = 1, . . . , p−1 and � = Ik− A1−· · ·− Ap.
The (k × k) matrix � has rank r and thus � can be written as HC with H and C ′ of
dimension (k × r) and of rank r . C ≡ [c1, . . . , cr ]′ is called the cointegrating matrix.
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284 A. Moneta

Is is also well known (see Lütkepohl 1991: 356-358) that, if C̃, H̃ and D̃ are the
maximum likelihood estimator of C , H , according to Johansen’s (1988, 1991) approach,
then the asymptotic distribution of �̃u , that is the maximum likelihood estimator of
the covariance matrix of ut , is

√
T vech(�̃u −�u)

d−→ N (0, 2D+k (�u ⊗�u)D+
′

k ), (5)

where D+
′

k ≡ (D′kDk)
−1D′k and Dk is the duplication matrix. Comparing Eq. (5) with

Eq. (8) in Appendix B, it turns out that the asymptotic distribution of �̃u is the same
as in the case of a stationary VAR.

Thus, the application of the method described so far to cointegrated data is straight-
forward. The model can, in this case, be estimated as an error correction model using
Johansen’s (1988, 1991) approach, and then, since the asymptotic distribution of �̃u

is the same as in the stationary case, one can apply the testing procedure described in
Appendix C to obtain the set of vanishing partial correlations among the residuals.

The results obtained in the last section hold also for nonstationary time series.
Thus, vanishing partial correlations among residuals are equivalent to d-separation
relations among contemporaneous variables and the search algorithm of Table 1 is
applicable.

3.2 Data

The data set used is an updated version of the data set used by King et al. (1991).
The data are six quarterly US macro variables for the period 1947:2 to 1994:1 (188
observations): C denotes the real 1987 per capita consumption expenditures (in log-
arithms); I denotes the real 1987 per capita investment (in logarithms); M denotes
the real balances, the logarithm of per capita M2 minus the logarithm of the implicit
price deflator; Y denotes the real 1987 per capita “private” gross national product
(total GNP less real total government purchases of goods and services, in logarithms);
R denotes the nominal interest rate, 3-month US. Treasury bill rate; �P denotes the
price inflation, log of the implicit price deflator at the time t minus log of the implicit
price deflator at the time t − 1.

3.3 Results

The model is estimated in the ECM formulation of Eq. (4), where Yt =(Ct , It ,

Mt , Yt , Rt , �Pt ), with the addition of an intercept term ν. In accordance with the
model and estimation of King et al. (1991), eight lags of the first differences are used
and three cointegrating relationships are imposed. The cointegrating relationships are
between Ct and Yt , between It and Yt and among Mt , Yt and Rt . The maximum likeli-
hood estimation of the matrix of variance and covariance among the error terms turns
out to be:
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�̃u =

⎡
⎢⎢⎢⎢⎢⎢⎣

322 557 103 298 8418 −663
557 2942 416 958 37101 5368
103 416 4896 11 −5152 −77904
298 958 11 631 16688 18496

8418 37101 −5152 16688 3156879 84176
−663 5368 −77904 18496 84176 26282024

⎤
⎥⎥⎥⎥⎥⎥⎦
× 10−7.

Using the test procedure described in Appendix B, all the possible partial correla-
tions among the error terms uCt , uIt , uMt , uYt , u Rt , u�Pt , which determine a class
of d-separation relations among contemporaneous variables, are estimated. In Ta-
ble 2 d-separation relations between each couple of contemporaneous variables are
shown.

Applying the search algorithm described in Table 1 to d-separation relations among
the error terms tested at 0.05 level of significance, the pattern of DAGs shown in
Fig. 2 is obtained, where C, I, M, Y, R,�P correspond to y1t , y2t , y3t , y4t , y5t , y6t

respectively.
The set of DAGs for this pattern consists of 24 elements, which are all testable

through Likelihood Ratio test, because they imply overidentifying constraints (see
Doan 2000:287; Sims 1980:17). As a consequence of this test, the eight DAGs con-
taining at least one of the following configurations: R → I ← Y and R → I ← C
are rejected at the 0.05 level of significance. The results of this test are not displayed
here for reason of space. However, looking at Table 2, one notes that I is contained in
almost all d-separation sets of (C, R) and (Y, R). In other words, I is not rendering the
partial correlation between R and Y or between R and C non-zero, as it would happen
(following the Faithfulness condition), if one of the configurations (R→ I ← Y and
R → I ← C) were true. This confirms the exclusion of the DAGs containing those
configurations.

Sixteen DAGs are left. Figure 3 displays two DAGs in which two edges are directed
a priori: the edge between M and �P (towards �P) and the edge between R and I
(towards I ). The direction of the other edges (between I and Y , between Y and C ,
and between I and C) is a consequence of the exclusion of the two configurations
mentioned above and of the a-cyclicity condition. Moreover, the DAGs displayed in
Fig. 3 are consistent with the theoretical hypothesis (often assumed in the literature;
see e.g. Bernanke 1986) that interest rate and investment are leading indicator for
output, and money is a leading indicator for inflation. I proceed to estimate the model
associated with graph (i) of Fig. 3, which I call model 1, and to calculate the impulse
response functions associated with it. Then I explore the sensitivity of the results to
changes in the direction of the edges.

It should be noted, however, that not all the d-separation relations that were found
to hold in the data, are implied by the sixteen DAGs output by the search procedure.
In particular, C and R were found to be d-separated by the sets {Y }, {Y, M}, {Y,�P},
{Y, M,�P} according to a Wald test of 0.05 level of significance (see Table 2).
I interpret this deficiency as being caused by the presence of some “unfaithful” partial
correlations, i.e. vanishing partial correlations which are not tied to the causal struc-
ture generating the data and could be connected with some misspecification of the
model.
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Table 2 d-separation relations

Sepset (1) Sepset (2) Sepset (3) Sepset (4)

C I

C M
{∅}{Y }
{R}{I }
{�P}

{I, Y }{I, R}
{I,�P}{Y, R}
{Y,�P} {R, �P}

{I, Y, R} {I, R, �P}
{I, Y,�P}
{Y, R, �P}

{I, Y, R, �P}

C Y

C R
{I }{Y } {I, M}{I, Y }

{I,�P} {M, Y }
{Y,�P}

{I, M, Y }
{I, M, �P}
{I, Y,�P}{M, Y,�P}

{I, M, Y, �P}

C �P
{∅} {I }
{M} {Y }
{R}

{I, M}{I, Y }
{I, R}{M, Y }
{M, R}{Y, R}

{I, M, Y } {I, M, R}
{I, Y, R}{M, Y, R}

{I, M, Y, R}

I M
{∅}{C}
{Y }{R}
{�P}

{C, Y }{C, R}
{C, �P}{Y,�P}
{R, �P}

{C, Y, R}{C, Y,�P}
{C, R,�P}{Y, R, �P}

{C, Y, R, �P}

I Y

I R

I �P
{∅}{C}
{M}{Y }
{R}

{C, M}{C, Y }
{C, R}{M, Y }
{M, R}{Y, R}

{C, M, Y }{C, M, R}
{M, Y, R}{C, Y, R}

{C, M, Y, R}

M Y
{∅}{C}
{I }{R}
{�P}

{C, I }{C, R}
{C, �P}{I, R}
{I,�P}{R,�P}

{C, I, R}{C, I, �P}
{C, R,�P}{I, R,�P}

{C, Y, R, �P}

M R {∅}{C}
{I }{Y }
{�P}

{C, I }{C, Y }
{C, �P}{I, Y }
{I,�P} {Y,�P}

{C, I, Y }{C, I, �P}
{C, Y,�P}{I, Y, �P}

{C, I, Y,�P}

M �P

Y R {C, I } {I, M} {C, I, M}
{C, I,�P}
{I, M, �P}

{C, I, M, �P}

Y �P {∅}{M}{R}

R �P
{∅}{C}
{I }{M}
{Y }

{C, I }{C, M}
{C, Y }{I, M}
{I, Y }{M, Y }

{C, I, M}{C, I, Y }
{C, M, Y }{I, M, Y }

{C, I, M, Y }

C, I, M, Y, R, �P correspond to y1t , y2t , y3t , y4t , y5t , y6t . For each couple of error terms, the Table shows
the separation sets of cardinality 1,2,3,4. D-separation relations are derived by Wald tests on vanishing partial
correlations at 0.05 level of significance (for the testing procedure see Appendix B)

From each of the two graphical causal models among the error terms it is possible
to derive the zeros in the matrix B0 of Eq. (2). The matrix B0 corresponding to model
1 of Figure 3 is
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Fig. 2 Output of the search algorithm

Fig. 3 (i) Causal graph for model 1. (ii) Causal graph for model 3

B0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 b1 0 b2 0 0
0 0 0 0 b3 0
0 0 0 0 0 0
0 b4 0 0 0 0
0 0 0 0 0 0
0 0 b5 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The results of the maximum likelihood estimates of the nonzero coefficients of B0,
using the RATS procedure illustrated in Doan (2000: 295), are shown in Table 3.

The impulse response functions are calculated considering the system in levels.
The forecast error of the h-step forecast of Yt is

Yt+h − Yt (h) = ut+h +�1ut+h−1 + · · · +�h−1ut+1. (6)

The �i are obtained from the Ai recursively by

�i =
i∑

j=1

�i− j A j , i = 1, 2, . . .
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Table 3 Estimation of model 1

Coeff Estimate Std Error T-Statistic Significance

b1 0.0706 0.0266 −2.6491 0.0080

b2 0.3650 0.0589 −6.1897 0.0000

b3 0.0117 0.0021 −5.3460 0.0000

b4 0.3257 0.0259 −12.5531 0.0000

b5 −15.9090 5.4233 2.9334 0.0033

Log Likelihood 3371.3585
Log Likelihood Unrestricted 3380.5104
χ2(10) 18.3038
Significance Level 0.0500
The header displays the log likelihood of the estimated model 1, and the log likelihood of an unrestricted
model. The likelihood ratio test for the overidentifying restrictions is based on a χ2 with degrees of freedom
equal to the number of overidentifying restrictions. The estimation is performed using the BFGS method
in RATS (for details see Doan 2000)

with �0 = Ik . Since vt = (I − B0)ut , Eq. (6) can be rewritten as

Yt+h − Yt (h) = 	0vt+h +	1vt+h−1 + · · · +	h−1vt+1, (7)

where 	i = �i (I − B0)
−1. The element ( j, k) of 	i represents the response of the

variable y j to a unit shock in the variable yk , i periods ago. The response to one stan-
dard deviation innovation is obtained by multiplying the element ( j, k) of 	i by the
standard deviation of the k-th element of vt . Since the variables are I (1), as i goes to
infinity the responses do not necessarily taper off as in a stable system. Figures 4, 5,
6, 7, 8 and 9 describe the responses of the three real flow variables (C ,I ,Y ) for lags
0 − 26, calculated using model 1. The graphs includes also 95% confidence bands,
calculated using a bootstrap procedure (as suggested by Doan 2000: 300) with 1,000
iterations.

Figure 4 shows the responses to one-standard-deviation shocks in consumption.
The estimated standard deviation of consumption shock is 0.0042 per quarter.
The response of consumption to consumption shock is constantly positive. Invest-
ment responds slightly negatively over the first few quarters, then increases and ends
up having a slightly positive permanent response. The response of output is slightly
positive initially, then it ends up being permanently positive in a similar way to the
response of consumption.

Figure 5 shows the responses of the variables to one-standard-deviation shocks
in investment. The estimated standard deviation of investment shock is 0.0159. The
response of consumption is positive over the first 6–9 quarters, then turns out to be
negligible. Investment, on the other hand, shows a large positive response for the first
6–9 quarters, then turns negative after the 12th quarter and eventually shows a positive
response. The response of output is considerably positive over the first 10 quarters,
then is negligible.

Figure 6 is the most relevant for the study of the effects of monetary shocks. The
figure shows the responses to one-standard-deviation shocks in real balance. The esti-
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Fig. 4 Responses of consumption, investment and output to one-standard-deviation shock in consumption
with 95% confidence bands

mated standard deviation of this shock is 0.0222. The real balance shock has largely
positive and permanent effects on all flow real variables, but over the first three years
the effects are smaller than in the long-run. Consumption has a negligible positive
response in the first three years, then the response increases. Investment has also a
slightly positive response in the first five quarters. Then, for the next seven quarters,
the response turns out to be negative. Eventually the response is largely positive.
The response of output is very similar to the consumption one: negligible for the first
three years, then increasing and eventually largely positive.

Figure 7 shows the responses of the variables to one-standard-deviation percent
impulse in the output shock. The estimated standard deviation of output shock is
0.0057. The response of consumption is not very large and is quite constant over time.
Investment responds considerably around the fourth quarter, but around the 10th quar-
ter the response is negative. Eventually the response is positive. Output has a quite
large response in the short-run, then the response decreases and is eventually slightly
positive.

Figure 8 shows the responses to one-standard-deviation percent impulse in the
interest rate shock. The estimated standard deviation of interest rate shock is 0.5634.
The responses of consumption, investment and output are similar: positive in the first
quarters, negative in the second and third year, eventually positive. The response of
investment is particularly large in the long-run.
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Fig. 5 Responses of consumption, investment, and output to one-standard-deviation shock in investment
with 95% confidence bands

Figure 9 shows the responses to one-standard-deviation percent impulse in the
inflation shock. The estimated standard deviation of interest rate shock is 1.5869. The
eventual effect of an inflationary shock to consumption, investment and output is neg-
ligibly negative. Consumption is moving down in the second year after the shock. The
response of investment is particularly negative in the second and third year, but the
shock does not have permanent effects. The response of output is slightly positive in
the first year, but it ends up having an almost negligible negative effect.

Several qualitative features of the impulse response functions carry over into all the
other 15 specifications output by the search procedure. I focus the sensitivity analysis
on the models in which interest rate precedes investment and output. I call model 2 the
model which is equal to model 1, except that the relation between real balances and
inflation is inverted (we have M ← �P), I call model 3 the model, which corresponds
to graph (ii) of Fig. 3 and I call model 4 which is equal to model 3, except that the rela-
tion between real balances and inflation is M ← �P . Figure 10 shows those impulse
response functions of the four models which present most evident differences. There
are no relevant differences between the impulse response functions derived by model
1 and 2, except for minor differences in the response of I to the real balance shock.

The impulse response functions calculated using model 3 present some relevant
differences with respect to the response functions calculated using the other models.
The responses of C to I using model 3 have a shape similar to the responses using 1,
except that the former are much lower than the latter: model 3 yields responses of C to I
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Fig. 6 Responses of consumption, investment, and output to one-standard-deviation shock in real balances
with 95% confidence bands

negative in the long-run. The same evidence holds for the responses of Y to I . These
differences make model 1 more consistent with broadly accepted stylized facts. There
are also quantitative differences as far as responses of I to Y and R are concerned. In
particular the responses of I to R are negative for the first three years.

Model 4 yields responses which also present some important differences with
respect to the other models. The shape of the responses of I and Y to consumption
shocks are quite different from the shape of the responses derived from the other mod-
els. The responses of C to output shock are almost null (while in the other models
result slightly positive), the responses of I and Y to output shock are also mostly below
the other responses. In the other cases, the responses of model 4 are very similar to
the responses of model 3.

The sensitivity analysis can be straightforwardly extended to the other 12 models
in which interest rate does not causally precede investment and output. I do not report
these results here, which do not change the substance of the main conclusions.6

The results presented here confirm to a large extent the conclusion of King et al.
(1991) that postwar US macroeconomic data do not support the core assumption of
the standard RBC model that permanent productivity shocks are the dominant source
of economic fluctuations. Indeed it turns out that monetary shocks and interest rate

6 Results on the other specifications are available from the author on request.
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Fig. 7 Responses of consumption, investment, and output to one-standard-deviation shock in output with
95% confidence bands

shocks play a role not inferior to the one played by shocks associated with con-
sumption, investment and output. The present analysis is different from the one of
King et al. (1991) because these authors impose long-run restrictions in order to obtain
three permanent shocks (associated with the common stochastic trends) and three tran-
sitory shocks (associated with the cointegrating relationships).7 In my analysis each
of the six shocks (each of them associated with a particular variable) has, at least
theoretically, permanent effects. Thus, it is possible to distinguish among the three
real flow variables shocks. Among C , I and Y shocks, the shock associated with
investment play the largest role in the short-run. In the long-run a larger role is played
by shocks associated with consumption and output. An interesting result of the pres-
ent analysis is the major role played by the monetary shock, as I interpret the shock
associated with M . In the medium-run the effect is non-monotonic, but the permanent
effect is largely positive. This result is consistent with the the claim that monetary
shocks, not only productivity shocks, are the sources of macroeconomic fluctuations.
An important role is also played by the shock associated with the interest rate. Here
the responses are much more fluctuating than the case of M shock: positive in the
short-run, considerably negative in the medium-run and positive in the long-run. The
effect of this shock on investment is particularly large in the short and in the long-run.

7 For a criticism of the use of long-run restrictions to identify a VAR, see Faust and Leeper (1997).
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Fig. 8 Responses of consumption, investment, and output, to one-standard-deviation shock in interest rate
with 95% confidence bands

Thus an important source of economic fluctuations is associated with this shock, in
accordance with the results of King et al. (1991). But, as these authors point out, it
is somewhat difficult to interpret this shock with standard macroeconomic models.
The results also confirm the small role played by inflation on output in the long-run.
Although it has a larger role in explaining investment movements, this result seems at
odds with a monetarist perspective.

It is also useful to compare the impulse responses functions obtained in this anal-
ysis with the impulse responses functions obtained by King et al. (1991). Figure 11
replicates the impulse response functions obtained by King et al. (1991). In the six
variables model, these authors study the effect of three permanent shock: balanced-
growth shock, inflation shock, and real interest rate shock. The shape of the responses
of C , I and Y to the balanced growth shock does not present significant similarities
with the responses to the consumption, investment or output shock of the present
analysis, except for the fact that the responses tend to be positive in both analyzes.
In my study it emerges even with more evidence the fact that shocks related to real
variables are not significantly more important than shocks related to nominal vari-
ables. The responses of Y and C to the inflation shock in the analysis of King et al.
are very similar to the responses obtained in my analysis, while the response of I to
the same shock is very different: mostly positive in the analysis of King et al. mostly
negative in my analysis. There are also some similarities in the shape of the responses
of C , I and Y to the real (nominal in my analysis) interest shock between the analysis
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Fig. 9 Responses of consumption, investment, and output to one-standard-deviation shock in inflation with
95% confidence bands

of King et al. and my analysis, but the responses are quite different in quantitative
terms.

4 Concluding remarks

This paper reconsiders the RBC hypothesis that real permanent shocks are the dom-
inant sources of real aggregate fluctuations and that nominal shocks do not play a
significant role in the determination of real fluctuations, using the King et al. (1991)
VAR. I present an alternative identification method that emphasizes the importance of
the causal structure among the contemporaneous variables. The identification method
is based on a graphical search algorithm, which has as input tests on vanishing corre-
lations among the residuals. Such method is alternative to the Sims’s (1980) Choleski
factorization, to the long-run restrictions used by King et al. (1991), as well as to the
Bernanke’s (1986) structural VAR approach based on restrictions derived from eco-
nomic theory. Indeed, it is able to considerably reduce the class of admissible causal
structures, avoiding the drawbacks both of a completely a-theoretical procedure such
as the Choleski factorization and of an identification procedure completely dependent
on a priori assumptions such as the Bernanke’s (1986) one. Although the method pro-
posed here is apparently data-driven, the more background knowledge is incorporated,
the more detailed is the causal structure identified. In the case considered in this paper,
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Fig. 10 Sensitivity analysis

prior economic knowledge is essential to select the appropriate model, but since the
number of admissible models is reasonably low, it is possible to assess the robustness
of the results to different causal restrictions.

The empirical results confirm those of King et al. (1991) that US data do not support
the view that permanent productivity shocks are the dominant sources of aggregate
fluctuations.

The general method of VAR identification proposed here can be improved taking
into consideration the possibility of latent variables, feedbacks and cycles among con-
temporaneous variables. Another related problem is how aggregation affects causal
structures in a VAR. Further research may follow those directions.
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Fig. 11 Impulse response functions obtained by King et al. (1991: 834)
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Appendix A: Graphical models terminology

Graphs A graph is an ordered pair G = (V, E), where V is a nonempty set of vertices,
and E is a subset of the set V × V of ordered pair of vertices, called the edges of G.
If one or both of the ordered pairs (V1, V2), (V2, V1) belong to E , V1 and V2 are said
to be adjacent. If both ordered pairs (V1, V2) and (V2, V1) belong to E , we say that
we have an undirected edges between V1 and V2, and write V1 — V2. We also say
that V1 and V2 are neighbors. If all the edges of a graph are undirected, we say that it
is an undirected graph. If (V1, V2) belongs to E , but (V2, V1) does not belong to E ,
we call the edge directed, and write V1 −→ V2. We also say that V1 is a parent of
V2 and that V2 is a child of V1. If all the edges of a graph are directed, we say that
it is a directed graph. A path of length n from V0 to Vn is a sequence {V0, . . . , Vn}
of distinct vertices such that (Vi−1, Vi ) ∈ E for all i = 1, . . . , n. A directed path is
a path such that (Vi−1, Vi ) ∈ E , but (Vi , Vi−1) �∈ E for all i = 1, . . . , n. A cycle is
a directed path with the modification that the first and the last vertex are identical, so
that V0 = Vn . A graph is complete if every pair of its vertices are adjacent. A directed
acyclic graph (DAG) is a directed graph which contains no cycles. Given a directed
graph, the set of the vertices Vi such that there is a directed path from Vi to Vj are
the ancestors of Vj and the set of vertices Vi such that there is a directed path from
Vj to Vi are the descendants of Vj . The graph GA = (A, E A) is called a subgraph of
G = (V, E) if A ⊆ V and E A ⊆ E ∩ (A × A). Besides, if E A = E ∩ (A × A), G A

is called the subgraph of G induced by the vertex set A.

D-separation In a directed graph G a vertex X is a collider on a path α if and only
if there are two distinct edges on α both containing X and both directed on X . In a
directed graph G a vertex X is active on a path β relative to a set of vertices Z of G
if and only if: (i) X is not a collider on β and X �∈ Z ; or (ii) X is a collider on β,
and X or a descendant of X belongs to Z . A path β is active relative to Z if and only
if every vertex on β is active relative to Z . In a directed graph G two vertices X and
Y are d-separated by Z if and only if there is no active path between X and Y rela-
tive to Z . X and Y are d-connected by Z if and only if X and Y are not d-separated by Z .

Partial correlation coefficient The correlation coefficient and the partial correlation
coefficient are measures of dependence between variates. I first report a definition of
partial covariance (see Anderson 1958:29).

Let X = (x1, . . . , x p)
′ be a vector of random variables with covariance matrix �.

Let us partition X = (X (1), X (2))′ into q and (p − q) components and similarly � in

� =
(

�11 �12
�21 �22

)
,

where �11 is (q×q), �12 is (q× (p−q)), �21 is ((p−q)×q) and �22 is ((p−q)×
(p−q)). Let �11.2 = �11−�12�

−1
22 �21. The partial covariances of xi and x j given

xq+1, . . . , x p are the i , j th elements of �11.2, denoted by cov(xi , x j |xq+1, . . . , x p) or
σi j.q+1,...,p. The partial variance of xi given xq+1, . . . , x p is var(xi |xq+1, . . . , x p) ≡
cov(xi , xi |xq+1, . . . , x p), denoted also by σi i.q+1,...,p.
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Partial correlation can be defined in the following way (see Anderson 1958: 34).

corr(xi , x j |xq+1, . . . , x p) = σi j.q+1,...,p√
σi i.q+1,...,p

√
σ j j.q+1,...,p

is the partial correlation between xi and x j given xq+1, . . . , x p , denoted also by
ρ(xi , x j |xq+1, . . . , x p) or by ρi j.q+1,...,p. It holds that

ρi j.q+1,...,p = ρi j.q+2,...,p − ρi(q+1).q+2,...,p ρ j (q+1).q+2,...,p√
1− ρ2

i(q+1).q+2,...,p

√
1− ρ2

j (q+1).q+2,...,p

.

Appendix B: Testing vanishing partial correlations among estimated residuals

In this appendix I provide a procedure to test the null hypotheses of vanishing cor-
relations and vanishing partial correlations among the residuals. Let me write the
reduce-form VAR in a more compact form, denoting X ′t = [Y ′t−1, . . . , Y ′t−p], which
has dimension (1× kp) and �′ = [A1, . . . , Ap], which has dimension (k × kp). It is
possible to write: Yt = �′Xt + ut . The conditional maximum likelihood estimate of
� turns out to be given by

�̂′ =
[

T∑
t=1

Yt X ′t

] [
T∑

t=1

Xt X ′t

]−1

.

Moreover, the i th row of �̂′ is

π̂ ′i =
[

T∑
t=1

yit X ′t

] [
T∑

t=1

Xt X ′t

]−1

,

which coincides with the estimated coefficient vector from an OLS regression of yit on
Xt (Hamilton 1994:293). The maximum likelihood estimate of the matrix of variance
and covariance among the error terms �u turns out to be �̂u = (1/T )

∑T
t=1 ût û′t ,

where ût = Yt − �̂′Xt . Therefore the maximum likelihood estimate of the covariance
between uit and u jt is given by the (i, j) element of �̂u : σ̂i j = (1/T )

∑T
t=1 ûi t û j t . It

turns out (see Hamilton 1994:301) that:

√
T [vech(�̂u)− vech(�u)] d−→ N (0, �), (8)

where � = 2D+k (�u ⊗ �u)(D+k )′, D+
′

k ≡ (D′kDk)
−1D′k and Dk is the duplication

matrix.
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Therefore, to test the null hypothesis that corr(uit , u jt ) = 0, it is possible to use
the Wald statistic

T (σ̂i j )
2

σ̂i i σ̂ j j + σ̂ 2
i j

≈ χ2(1).

The Wald statistic for testing vanishing partial correlations of any order is obtained by
applying the delta method. The delta method (see Lehmann and Casella 1998: 61)
says that if XT is a (r × 1) sequence of vector-valued random-variables and if

[√T (X1T − θ1), . . . ,
√

T (XrT − θr )] d−→ N (0, �) and h1, . . . , hr are r real-valued
functions of θ = (θ1, . . . , θr ), hi : Rr → R, defined and continuously differentiable
in a neighborhood ω of the parameter point θ and such that the matrix B = ||∂hi/∂θ j ||
of partial derivatives is nonsingular in ω, then

[√
T [h1(XT )− h1(θ)], . . . ,√T [hr (XT )− hr (θ)]

]
d−→ N (0, B�B ′).

Thus, for k = 4, suppose one wants to test corr(u1, u3|u2) = 0. First, notice that
corr(u1, u3|u2) = 0 if and only if σ22σ13 − σ12σ23 = 0. One can define a function
g : Rk(k+1)/2 → R, such that g(vech(�u)) = σ22σ13 − σ12σ23. Thus,

∇g′ = (0, −σ23, σ22, 0, σ13, −σ12, 0, 0, 0, 0).

Applying the delta method

√
T [(σ̂22σ̂13 − σ̂12σ̂23) − (σ22σ13 − σ12σ23)] d−→ N (0,∇g′�∇g).

The Wald test of the null hypothesis corr(u1, u3|u2) = 0 is given by

T (σ̂22σ̂13 − σ̂12σ̂23)
2

∇g′�∇g
≈ χ2(1).

Tests for higher order correlations and for k > 4 follow analogously.
Simulation results presented in Moneta (2004a) have shown that the Wald test pro-

cedure is more appropriate than the Fisher’s z test for the sample size considered in
this paper.
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