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Social research, from economics to demography and epidemiology, makes extensive
use of statistical models in order to establish causal relations. The question arises as to
what guarantees the causal interpretation of such models. In this paper we focus on
econometrics and advance the view that causal models are ‘augmented’ statistical
models that incorporate important causal information which contributes to their causal
interpretation. The primary objective of this paper is to argue that causal claims are
established on the basis of a plurality of evidence. We discuss the consequences of
‘evidential pluralism’ in the context of econometric modelling.
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1. Introduction

Statistical models are widely used in quantitative causal analysis in the social sciences.

A panoply of disciplines make use of them – from econometrics to sociology, from

epidemiology to experimental psychology. ‘Causal modelling’, as it is also customarily

called, has a long tradition tracing back to Quetelet (1869) and Durkheim [1897] (1960) who,

in the nineteenth century, set the ground for a quantitative and scientific study of societal

problems. Major improvements in quantitative causal analysis are also due to Wright (1921)

andHaavelmo (1944) in the first half of the twentieth century andBlalock (1961) andDuncan

(1975) in the secondhalf of the twentieth century. In very recent noteworthyprogress has been

made by Pearl (2000) (and collaborators), Spirtes, Glymour, and Scheines (2000) and

econometricians in the schools of Heckman (2008) and Hoover (2001), for example.

What distinguishes early methodologists from present-day ones (with a notable

exception, perhaps, for Pearl (2000), Spirtes et al. (2000)) is that they were explicit in

adopting a causal interpretation of the statistical models they developed. For instance,

Wright had no doubt that his ‘path coefficients’ were measures of causal strength between

two variables. Today’s methodologists and practising scientists, on the contrary, are much

more cautious in adopting a causal stance. This is, partly and possibly, because today’s

statistical models are much more complex, and also because it is certainly a very difficult

task to establish stable causal relations in the unstable social world.

Although the caution (and sometimes scepticism) towards an overt causalist stance is

understandable, the question remains as to what allows one to interpret, under

circumstances to be specified, a statistical model in causal terms, no matter how complex it

is. We address exactly this issue.
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The paper draws on examples from causal modelling in econometrics and is organised as

follows. In Section 2 we present statistical models used to infer associations and causal

relations. We compare ‘associational’ and ‘causal’ models pointing at differences at three

different levels: (1) background knowledge, (2) assumptions and (3) methodology. The

presentation in this section draws upon the distinction between associational models and

causalmodels, borrowed fromRusso (2009a, 2009b), on the one hand, and between statistical

and causal information, borrowed from Moneta (2007), on the other hand. In Section 3 we

focus more specifically on the distinction between statistical and causal information, which is

also akin to statistical versus substantive information (Spanos, 2006) and statistical versus

theory information (Spanos, 1999). We argue that statistical models can be causally

interpreted to the extent that statistical and causal information are carefully distinguished and

their role assessed within associational and causal models, respectively. The idea of carefully

distinguishing statistical and causalmodelswas already discussed in Spanos (2005, 2010) and

Hoover (2009), although in quite different terms (cf. also Hoover, Johansen, & Juselius,

2008). Our account introduces the notion of associational model and the idea of causal model

as its augmentation. We argue that this augmentation is supported by a plurality of evidence.

In Section 4we discuss at length this thesis, whichwe refer to as ‘evidential pluralism’, and its

consequences for econometric modelling. Throughout the paper, we highlight how evidence

of mechanisms enters the stage of associational model and of causal model.

2. Associational models versus causal models

Scientists and philosophers alike will promptly agree on a broad distinction between

associational models, on the one hand, and causal models, on the other hand. Here, we take

‘associational models’ as a handy short cut for ‘statistical models in which associations

among random variables are analysed’, and ‘causal models’ as a handy short cut for

‘augmented statistical models in which some of the associations can be interpreted as

causal relations’. First, we clarify the distinction between associational and causal models,

and then we present them in turn, focusing on three specific aspects: background

knowledge, assumptions and methodology.

2.1 The distinction

Simply put, the claims made on the basis of an associational model refer to some properties

or specifications of the probability distribution (joint or conditional) of the randomvariables

that are studied. Causal models make a step further as they aim at uncovering causal

relations. It is worth noting that associational models go beyond the so-called ‘descriptive’

statistics and make use of ‘inferential statistics’ as well: they aim to establish whether the

data are a representative sample of a theoretical distribution (or data generating process

[DGP]) and make inferences about the properties of this distribution from the data.

Notwithstanding the large agreement on this issue, more needs to be said. What is at

stake is in fact to specify the features of associational models and of causal models in order

to understand how causal models, under certain conditions, can use the information

provided by associational models, such as measures of statistical dependence

(e.g. regression coefficients or partial correlations), to support causal claims. We will

also address this issue in Section 4 when discussing the evidence that supports causal

claims. Notably, we will discuss how evidence of difference-making and evidence of

mechanisms enter the two stages (associational and causal model) and support their

respective inferences (about dependencies and about causal relations).
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In this section, we present, in order, associational models and causal models, pointing

at differences at three levels: (1) background knowledge, (2) assumptions and (3)

methodology. The difference between associational and causal models can be

schematically represented as in Table 1.

2.2 Associational models

Associational models aim to provide an accurate and reliable description of how certain

phenomena (chance events) are regularly associated among each other in their occurrence.

Since the occurrence of chance events is quantitatively analysed through the lenses of the

probabilistic structure of random variables, from an adequately specified associational

model one can get a description of how the variations within the realisations of a random

variable are (regularly) associated with the variations within the realisations of other

random variables.1

In associational models, we start by analysing the data and infer a probabilistic

structure underlying the observations. It is in this probabilistic structure that statistical

dependencies between variables of interest, which are potentially meaningful, can be

identified. Establishing statistical dependencies corresponds to what we will call in

Section 4 ‘evidence of difference-making’. The causal interpretation is provided at a

further stage of analysis (see discussion of causal models below), and the ‘augmentation’

also includes evidence of mechanisms, in a way that we discuss in Section 4. Moreover,

dependencies are potentially meaningful, i.e. not irrelevant, only if the underlying

statistically model is adequately specified. In the common statistical parlance, a measured

probabilistic dependence between two variables in which there is no direct causal path

connecting them is called spurious. This may due either to a third variable causing both of

them (cf. common cause principle) or due to the mere fact that the probabilistic

dependence stems from a mis-specified statistical model, which relies, for instance, on a

too small data-set or on assumptions not adequately corroborated, so that the measured

dependence is not a property of the underlying chance set-up (more on this below). It is

important, however, to carefully distinguish between these two cases. In the case of

misspecification, the alleged association would be irrelevant, whereas in the case of a

common cause the statistical dependence would be ‘spurious’ but not irrelevant, since it

delivers useful information. We argue that in an adequately specified statistical model, all

the correctly identified statistical dependencies are relevant. Whether a statistical model is

adequately specified is an empirical issue to be addressed with misspecification testing vis-

à-vis the data, as suggested by Spanos (1999).

Associational models are formalised under the language of statistics so that

associational models reduce to statistical models. Associational or statistical models, as

Table 1. Associational models versus causal models.

Associational models Causal models

Background
knowledge

Choice of variables Causal context; theoretical knowledge;
institutional knowledge, etc.

Assumptions Statistical Statistical; extra-statistical; causal
Methodology Model-based statistical induction

and hypothetico-deductive
method

Model-based induction and
hypothetico-deductive method
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summarised in Table 1, are based on some background knowledge, assumptions (which

includes model specifications) and methodology.

2.2.1 Background knowledge

Extra-statistical substantive knowledge plays a minor role in building an associational

model. Since an associational model is built with the aim of bringing about evidence for

theoretical questions, such questions influence the choice of the data of interest and the

focus on particular dependence relations. However, once we choose the data and specify

the focus of the model, background ‘extra-statistical’ knowledge does not play a crucial

role any longer. This does not mean, of course, that in building an associational model the

researcher needs to disregard any contextual (extra-statistical) knowledge. In fact,

background knowledge may suggest, for example, that some macroeconomic data are

likely to be difference-stationary or other consumption data regarding demographically

different households non-homogeneous. These may actually be useful pieces of

information. The point is that, in all these cases, the specifications of the associational

model are based on the data via statistical tests.

2.2.2 Assumptions and specifications

Associational models are specified statistical models in which it is possible to analyse and

estimate various measures and forms of statistical dependence. A (not yet specified)

statistical model is a family of distribution functions describing a chance set-up (see Spanos,

1999). The most general way of describing a DGP (or chance set-up) is to say that each

single observation is the realisation of a single random variable, where the relationships

among the random variables are left open. The probability according to which a particular

random variable assumes a certain value or a certain interval of values is determined by the

probability distribution. Adopting the terminology of Spanos (2012), a particular data-set

Z0 ¼ fzik; i ¼ 1; . . . ; n; k ¼ 1; . . . ; p} ð1Þ
is viewed as the realisation of a set of random variables, i.e. of a sample

Z ¼ fZik; i ¼ 1; . . . ; n; k ¼ 1; . . . ; p}. The statistical model determines the probabilistic

structure of the sample. In its general form the statistical model can be written as:

MuðzÞ ¼ ff ðz; uÞ; u [ Q} z [ R
np
Z ; for u [ Q , Rm; m , np ð2Þ

where f ðz; uÞ denotes the joint distribution of the sample Z (cf. Spanos, 2011, 2012). This

statistical model is so general that this is uninformative. Equation (2) just says that the data

are generated by a chance set-up of which we do not know anything at all. Statistical

inference precisely aims at obtaining a specified statistical model that formalises the chance

set-up underlying the observed phenomena. Notice that, as Hacking (1965) has pointed out,

the chance set-up can be merely hypothetical. What matters is that the phenomena display

‘chance regularities patterns’ (Spanos, 1999) such that the corresponding data can be

described as generated by a chance set-up.

From a specified statistical model we can obtain useful statistical information for

causal inference. The description of the chance set-up provided by a specified

statistical model is much more informative than the description provided by the

general statistical model. In fact, the specified statistical model partially opens the

black box and provides some details about the chance set-up, while the general
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statistical model just says that the data is generated by some chance set-up. The

details of the chance set-up turn out to be useful to understand whether (and to what

extent) variables are associated.

An important formulation of the statistical model in a manner which facilitates the

further (data-based) specification and (causal knowledge-based) augmentation is obtained

through the so-called ‘marginal-conditional decomposition’ (Mouchart & Russo, 2011).

For example, let the data Z0 in Equation (1) correspond to zik ¼ ðxi; yi;wiÞ for i ¼ 1; . . . ; n
(k ¼ 3). The marginal-conditional decomposition amounts to consider the set of random

variables ðXi; Yi;WiÞ that have generated ðxi; yi;wiÞ for each i, to choose a set of

conditioning variables (for example Xi and Wi) and to factorise the joint probability

density function of ðXi; Yi;WiÞ in the following way:

f ðXi; Yi;Wi; uiÞ ¼ f ðXi;Wi; uiÞf ðYijXi;Wi; uiÞ; for i ¼ 1; . . . ; n and ui [ Q: ð3Þ
Needless to say, one can envisage alternative formulations by choosing alternative

conditioning sets. Moreover, the (unconditional) joint density function on the right hand

side of Equation (3) can be further decomposed into: f ðXijWi; uiÞf ðWi; uiÞ.
Assuming that EðjY2

i jÞ , 1, it is also possible to write:

Yi ¼ EðYijXi ¼ xi;Wi ¼ wiÞ þ ui; for i ¼ 1; . . . ; n ð4Þ
This is called by Spanos (1999, p. 370) a statistical generating mechanism, where

EðYijXi ¼ xi;Wi ¼ wiÞ is the systematic component and the term ui is the non-

systematic component, which is indeed obtained by subtracting the systematic

component from Yi.

The statistical model is further specified using statistical testing, which uses

exclusively data and probability theory. For instance, suppose that after the appropriate

testing, the random variables ðY1; . . . ;YnÞ turn out to be independent and identically

distributed, and the same assumption can be made as regards both ðX1; . . . ;XnÞ and

ðW1; . . . ;WnÞ. Furthermore, suppose that the probability density function f ðX; Y ;WÞ turns
out to be normal.2 In this case the statistical model (generating mechanism, in Spanos’

terminology) reduces to the linear regression model:

Y ¼ aþ bxþ gwþ 1: ð5Þ
Background or causal knowledge can suggest further restrictions of this statistical

model, which should not be in contrast with the testable specifications. For instance,

substantive information may suggest that bþ g ¼ 1 and it is possible to test this

restriction through a standard F test.3 If the restriction is consistent with the data, the

statistical model (5) is reparametrised in Y ¼ aþ bxþ ð12 bÞwþ 1.
If the underlying distribution function is normal, we could use the partial correlation

rðX; YjWÞ to measure the conditional dependence of X and Y given W. In particular, it

turns out that, under the normality assumption, rðX; YjWÞ ¼ 0, if and only if X and Y are

independent given W (X YjW).4

If the statistical model is adequately specified, it accurately describes how variables

co-vary. It is worth noting that the dependencies in the associational model are, to a certain

extent, symmetric. This means that one may think of modelling x ¼ EðXjY ¼ y;W ¼
wÞ þ v instead of Equation (4) and obtain significant (although different) coefficient

estimates. It will be the task of the causal modeller to add further constraints, typically

coming from background knowledge, in order to attain the asymmetries sought for a
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causal interpretation. As we shall see in the next section, the causal model will augment

the associational model with a new viewpoint, which conceives of Equation (4) as

stochastic mechanisms that generate y given x, w and u, provided that this direction of

causal influence is compatible with background knowledge and other model assumptions.

As mentioned above, alternative formulations of the statistical model are possible by

choosing different (even opposite) conditioning sets.

2.2.3 Methodology

We have seen that in associational models we draw conclusions about statistical

dependencies between variables from data. The ‘machinery’ of associational models helps

establish that difference-making relations between variables hold (see Section 4). At a first

sight, this is a pure inductive methodology: it uses a specific set of data to derive

conclusions about the general stochastic process that generated the data. The inference is

indeed inductive because it is both ampliative and not necessarily truth-preserving

(it cannot be excluded that the conclusions inferred may be mistaken). These statistical

dependencies are usually inferred from data within a hypothetico-deductive framework:

we formulate hypotheses about the DGP and derive the consequences to be confronted

with the data. The nature of these hypotheses is mainly statistical, while we will see that in

causal models they have a more prominent causal import.

2.2.4 Example

Let us consider now a stylised econometric example of an associational model.

Suppose we are interested in studying the relationship between expenditures on some

good or service and income, and we have data sampled from a population of

households (for example British households). Theoretical knowledge is crucial for the

choice of variables and data, and particularly the choice of the level of aggregation of

expenditures. The researcher can focus on categories of goods such as food, clothing

and housing, or on more disaggregated items such as cereal products, milk, eggs, fat

and milk. The choice of the level of aggregation usually depends on the research

question one is interested in.

Available data (e.g. from the Family Expenditure Survey in UK) are usually based on

survey of families, selected as a representative sample from a population (e.g. the population

of British families), which is approximately considered as an infinite population. In this way

the variations occurring in the underlying population can be formalised by a probability

density function f ðX; Y ; uÞ, where Y denotes expenditure on some good and service,

X denotes income and u is a set of parameters. Such a statistical model presupposes already a

specification, namely that the random variables X1; . . . ;Xn generating the household

income data are independent and identically distributed, and the same can be said for the

random variables Y1; . . . ; Yn generating the household expenditure data.

In view of a causal analysis, the study of the regression model provides an important

and useful specification of the statistical model:

mðxÞ ¼ EðYjX ¼ xÞ ¼
ðþ1

21
yf ðYjXÞdy: ð6Þ

This regression function (conditional expectation) mðxÞ can be specified and then

estimated in a parametric way or alternatively directly estimated via a nonparametric

method. For the sake of the estimation of this regression function, in the income–
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expenditure setting referred to as Engel curve, it is not necessary to specify the functional

form of the joint density f ðX;Y ; uÞ, although the marginal density function f ðXÞ in many

empirical cases is significantly close to a log normal distribution. Examples of parametric

specifications of Engel curves are:

Y ¼ log xþ 1; Y ¼ x log xþ 1; log Y ¼ log xþ 1; Y ¼ x2 þ 1 ð7Þ

In the nonparametric approach we can write:

Y ¼ mðxÞ þ 1 ð8Þ

where the function mðxÞ is not specified a priori. In this case one finds, directly from the

data, a set of points (whose connection constitutes a smooth line) which better fits

the regression function. A common approach in empirical economics is to evaluate the

adequacy of the parametric and nonparametric estimates of Engel curve by looking at

measures of goodness of fit based on the smallness of the residuals. However, as Spanos

(2007) points out, the adequacy of a statistical specification should not be based on

goodness-of-fit measures, but rather on a criterion which is able to assess whether the

specified statistical model accounts for the regularities in the data better than the

alternative specifications. In the framework proposed by Spanos, which is in our view

largely compatible with ours, an adequate specification of the model should be based on a

test which is able to check whether the residuals are non-systematic enough (e.g. white

noise). This test is empirical (based on observed data), once it is formulated in terms of a

set of probabilistic assumptions about the DGP.

Notice that, in order to specify the regression function, extra-statistical background

knowledge does play a role, but only at the beginning. Theoretical knowledge influences

the choice of the data of interest and the expenditures Y on which the regression function

curve is defined. But once the set of data ðX; YÞ is chosen, the estimation of the regression

function curve is based only on statistical assumptions. These assumptions concern, in this

specific case, the chosen functional form (in the parametric approach) and the method of

estimation. The methodology is hypothetico-deductive, in the sense defined above:

hypotheses about the functional form and distribution, which may, of course, be derived

from background knowledge, are formalised and confronted with the data. The chosen

‘direction’ of the regression function (i.e. the estimation of EðYjX ¼ xÞ instead of EðXjY ¼
yÞÞ depends on the causal model we eventually want to analyse. Indeed, only if the

underlying causal influence runs from X to Y and not from Y to X, the coefficient estimates

of mðxÞ will make substantive sense. But these considerations enter only in the

specification of the corresponding causal model (see the next section).

2.3 Causal models

To go beyond claims about associations and statistical dependencies we need (1) more

background (extra-statistical) knowledge of the causal context, (2) further assumptions

and (3) a methodology to confirm/disconfirm causal hypotheses. These features will be

here sketched and discussed more thoroughly in Section 3, where we will pay special

attention to the ‘extra-statistical’ assumptions made in causal models.
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2.3.1 Background knowledge

Background knowledge used in causal models includes general knowledge of the socio-

political context and of the demographic characteristics of the population under analysis. It

also includes economic theory or ‘institutional knowledge’ such as, for example, the

functioning and procedures of a central bank. In disciplines at the border between the

social and the biomedical, such as epidemiology, background knowledge also includes

information about the physical-biological-physiological mechanisms. In Section 4 we will

develop further this point, namely how evidence of mechanisms supports inferences about

causal relations and how this is related to evidence of difference-making, established in the

form of dependencies in associational models.

2.3.2 Assumptions

Causal models have the same ‘statistical’ assumptions described above for associational

models. But, in addition, they also have ‘extra-statistical’ assumptions. We can classify

under ‘extra-statistical’ assumptions all assumptions that are not related to the statistical

properties of the distribution and that have causal meaning or that impose restrictions on

the distribution but are not subject to statistical testing. For instance, the direction of time

or the direction of the causal relation belong to this class. The causal Markov condition in

the graphical models literature (Spirtes et al., 2000) is an example of an assumption

imposing restrictions on the probability density function but not subject to direct statistical

testing. There could be other assumptions, which are instead subject to statistical test and

which can directly contribute to interpreting the relations between the variables in the

model causally. Causal assumptions will be more thoroughly discussed in Section 3.

2.3.3 Methodology

In causal models a common way to draw causal conclusions is to put in place a

hypothetico-deductive methodology. In very simple terms, we first formulate hypotheses

out of background knowledge and of preliminary analyses of data and then we test them to

ascertain whether and to what extent the consequences derived from such hypotheses hold.

The possible causal structures, in order to bridge the gap with statistical models, are

typically formulated as structural models, which are systems of equations which can be

easily confronted with the system of equation obtained from the specified statistical model.

The so-called identification problem (cf. Dufour & Hsiao, 2008) studies the conditions

under which this confrontation is possible. If there are more estimated statistical

parameters than unknown structural parameters, the system is under-identified; in the

opposite case (more statistical than structural parameters), the system is over-identified. If

the number of unknowns is equal to the number of knowns, the system is just-identified.

Since only over-identified systems are statistical testable, it is typical that the researcher

imposes zero restrictions on the parameters in order to get testable hypotheses.

A way to get over-identifying restrictions is through the graphical-model procedure

proposed by Spirtes et al. (2000) and Pearl (2000). To be correctly performed, our

perspective suggests that this procedure should be based on an adequately specified

statistical model. The first step of this method, aimed at testing conditional independence

relations, is consistent with the statistical-model methodology described above. In the

second step, under certain conditions or rules of inference such as the causal Markov

condition and the faithfulness condition, a causal graph representing the possible causal

structures is derived from the conditional independence tests.
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2.3.4 Example

Let us consider again the econometric example introduced in Section 2.2. Under what

conditions can regression functions such as Engel curves be used to run counterfactual

experiments? Suppose one is interested in evaluating the effect of a tax reform, which will

affect household income and, indirectly, household expenditure patterns. Engel curves, as

regression functions, are framed in associational models and therefore do not necessarily

remain stable under changes of income, and may even change over time. When Engel

curves are formalised in the framework of a causal model, then they can be used to

evaluate policy intervention. This means that Engel curves are augmented with theoretical

knowledge on consumption behaviour (extra-statistical assumptions). In Section 4 we

characterise such theoretical knowledge as evidence of mechanisms; in the discussion of

Engel curves, we show how information concerning socio-economic mechanisms justifies

augmenting the associational model to a causal model.

A common approach is to formulate a ‘demand system’, namely a system of equations

which explicitly formalises the effect of income and price on consumption (Banks,

Blundell, & Lewbel, 1997; Deaton, 1986). These equations are based on theoretical

assumptions about consumer behaviour, and the typical assumption in mainstream

economics is that individuals maximise their utility function. In this manner the system is

meant to remain stable under interventions that yield changes in income and prices. Since

there are alternative specifications of the demand system (in terms, for example, of the

different functional forms that describe the dependence of expenditure on income and

prices), it is important to choose the one that better matches the consumption patterns, as

they emerge in the study of the statistical Engel curves. The methodology is therefore

hypothetico-deductive: one first formulates hypotheses out of economic theory (rational

choice theory in mainstream economics) and then confronts them with the data.

It seems quite clear from the presentation above that associational models and causal

models cannot reach the same goals because they have different apparati. We want to

suggest that causal models could be thought of as augmented associational models,

augmented exactly in some particular assumptions, in the amount of background

knowledge used and in the model-building and model-testing methodology. These extra

features are the extra tools that make causal inference possible in causal models but not in

associational models. In the next section we examine in more details the import of

statistical and causal information in this augmentation from associational to causal

models.

3. Statistical and causal information

In this section we elaborate more on the meaning and import of statistical and causal

information in associational and causal models. We will argue that while associational

models only convey statistical information, causal models also convey causal information.

We will specifically address two questions. What is the difference between statistical and

causal information? And mostly, does ‘causal information’ introduce a vicious circle?

3.1 Statistical information

Statistical information, according to an established tradition, is a summary of data, or as

Fisher (1922, p. 311) put it, a ‘reduction of data’:

A quantity of data, which usually by its mere bulk is incapable of entering the mind, is to be
replaced by relatively few quantities which shall adequately represent the whole, or which, in
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other words, shall contain as much as possible, ideally the whole, of the relevant information
contained in the original data.

This reduction is accomplished by constructing a model which formalises the

(hypothetical) population or process from which the observed data are generated. This

latter feature is what makes the collection of statistical information a procedure governed

by inferential statistics, as distinguished from descriptive statistics. While descriptive

statistics limits its analysis to the sampled data, inferential statistics goes beyond the

sample and seeks to reach conclusions about the whole population. Thus, collecting

statistical information, and in particular statistical information which is useful for causal

inference, amounts to obtaining information about some features of the process which has

generated the data and not just about the ‘superficial’ aspects of the data. Later in Section 4

we will advance the view that statistical information corresponds to what the recent

literature on evidential pluralism has called ‘evidence of difference-making’.

In this way, statistical information delivers an adequate and parsimonious description

of phenomena. It is important to ask what kinds of phenomena, since not all the

phenomena are object of statistical analysis. Statistical information is about phenomena

which exhibit ‘chance regularity patterns’ (Spanos, 1999).5 These are phenomena whose

singular occurrence is uncertain, i.e. we do not know which particular value a variable is

going to take, and, at the same time, phenomena whose aggregate occurrence has some

order, i.e. we know that among many events a certain range of values will regularly come

out.6

There is a particular piece of statistical information which is especially useful for

causal inference. This is the notion of statistical dependence. Statistical dependence

establishes that some events are frequently associated in their occurrence. Note that the

definition of statistical dependence (and independence) merely involves the notion of

density function:

X and Y are dependent iff f XY ðx; yÞ – f XðxÞf Y ðyÞ: ð9Þ
Conversely, using the symbol of statistical independence :

X Y iff f XY ðx; yÞ ¼ f XðxÞf Y ðyÞ: ð10Þ
An important related notion is that of conditional independence. Conditional

independence involves the notion of conditional density function and is used as input for

many causal search algorithms (cf. Pearl, 2000; Spirtes et al., 2000):

X YjW iff f XYjW ðx; yjwÞ ¼ f XjW ðxjwÞf YjW ðyjwÞ ð11Þ
It is important to emphasise that the notions of statistical dependence, independence

and conditional independence are formalised within the framework of the statistical

model: they are indeed characteristics of the chance set-up and only indirectly of the data.

The data are interpreted through the lenses of the statistical model, which has the capacity

of generating data. The observed data are indeed seen as a typical realisation of the

statistical model. Thus, when we adequately identify a statistical-dependence relation, we

have captured an important aspect of the chance set-up (two variables are regularly

associated) and, therefore, of the phenomena of interest, which are realisations of this set-

up. The model is specified in terms of probability density functions and then further

specified in terms of a system of stochastic equations. Since dependence and the related

notions involve only probability densities, it is apparent that they are first properties of the
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model and then, if the model accurately describes the process generating the data, also of

the data. We will come back to this idea of ‘model-dependence’ later in Section 4, but it is

worth saying at this point that model-dependence is not a consequence of an anti-realist

position. As Hoover (2009) also says:

Without the models, there are no probabilities to discuss. This is not an anti-realist thesis.

To put it in another way, if we take any data and mechanically calculate correlations,

without thinking of the underlying chance set-up, it is very likely that we are led astray.

Consider a stock example discussed in the philosophical literature (Sober, 2001): if we

calculate the correlation between sea levels in Venice and British bread prices and we do

not pay attention to the characteristics of the underlying random variables and respective

probability distributions, we may think to have identified statistical dependencies, but

actually, in our perspective, we have just estimated properties of (most likely)

inadequately specified statistical models (see Hoover, 2009, for a similar discussion).

It is worth noting that correlation is a measure of dependence, but the two notions do

not necessarily coincide. In particular, if two variables are uncorrelated, this does imply

that they are independent. However, there are special cases where this is true. For instance,

if the probability distribution is Gaussian, the statistical model shows a bi-implication

between zero correlation and independence.

Statistical information depends on two aspects: (1) the statistical model in which it

is framed and (2) the specific hypotheses about the DGP made in the statistical

model. The DGP can also be interpreted as a stochastic mechanism. However, it is

important to notice that the statistical model postulates a stochastic mechanism, but

does not describe it in full detail: it only assumes that the postulated mechanism is

able to generate chance regularity phenomena, of which the observed data are a

representative sample. This point of view of the statistical modeller is appropriately

described by Lindley (2000, p. 295):

[ . . . ] it is only the manipulation of uncertainty that interests us. We are not concerned with the
matter that is uncertain. Thus we do not study the mechanism of rain; only whether it will rain.

3.2 Causal information

Causal information goes beyond mere association and in this sense opens the ‘black box’

of the DGP a step further by providing more details about such mechanisms. Causal

information is ‘augmented’ statistical information: it allows additional interpretation so

that an association between, say, two variables X and Y can be viewed as, for example, a

causal influence from X to Y. But the causal influence may remain stochastic, either

because we do not know the exact value of additional variables further influencing Y,7 or

because the influence of X on Y may be inherently probabilistic. The additional

interpretation making statistical information causal comes from extra-statistical

assumptions which, as we have seen, rely on different kinds of ‘background knowledge’,

for instance theoretical knowledge, information about institutional mechanisms, or views

on the nature of causality (e.g. temporal priority of cause) and its relations with the notion

of statistical dependence.

Before addressing the issue about the conditions under which causal interpretation is

guaranteed (see also next section), it is important to clarify the extent to which causal

information is shaped by statistical information and background knowledge. Statistical

information provides the formalised empirical evidence which can be used to test

hypotheses about causal claims. In the next section we will suggest that statistical evidence
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codifies evidence of difference-making, namely that there is an appropriate difference-

making relation between the putative cause and the putative effect. However, not all

hypotheses can be tested. Background knowledge provides the a priori constraints on this

information: some causal relations are excluded or allowed on the basis of that.

For example, in studying the influences of consumption decisions of families, one

may decide to consider the disposable income as exogenous to this decision, relying

on occasional observations of families or economic theory of consumption behaviour.

In this way, background knowledge a priori excludes (arbitrarily or not) that

household expenditures do not cause household income and that the latter causes the

former, which explains their statistical dependence. In other contexts, background

knowledge may take a completely different form, and be formalised as ‘rules of

inference’, i.e. assumptions on the relation between causal properties and conditional

independence relations.

Suppose we know all the possible conditional independence relations between three

random variables X, Y, and W, and in particular we know that X and Y are not statistically

independent, that Y andW are not statistically independent, but that X is independent ofW

given Y, in symbols X WjY . According to two rules of inference on which several

graphical methods for causal inference are based,8 since Y ‘screens off’ X from W, some

causal structures are excluded and others are allowed. In graphical representations, the

excluded structures are: X ! Y ˆW and any structure in which X and W are directly

connected. The allowed structures are: X ! Y !W , X ˆ Y ˆW or X ˆ Y !W .

We now turn to the second question. Does the dependence of causal information on

statistical information and background knowledge lead to circularity? One could in fact

argue that statistical information and background knowledge depend, in turn, on causal

information. Statistical information, being framed within a statistical model, depends on

the postulation of a DGP. We have seen that, at the stage of building a statistical model,

extra-statistical background information may play some role, but this is non-causal

knowledge, and even if it is causal, it does not relate to the possible causal relationships

among the objects under scrutiny. Moreover, the mechanisms operating in DGP have not

actually been uncovered: what counts are the concomitant variations of the events. Thus,

statistical information in an associational model is actually not dependent on causal

information.

On the contrary, background knowledge does depend, to a certain extent, on causal

information and so the peril of having hidden causal assumptions (about the sought causal

relations) in the background knowledge used is real. This circularity is avoided by

carefully choosing the ‘parts’ of background knowledge that we are entitled to use.

Specific assumptions about the causal relations under study should be explicitly excluded.

For example, if we are trying to understand whether some household expenditures may

influence future household income (some expenditures on housing and durable goods may

be seen as partial forms of investment and generate future income), we should not build a

statistical model in which income is an exogenous variable.

But this triggers another important and related question: how much background

knowledge is really needed to get new causal information? In the methodology of applied

research, such as econometrics, this is quite a debated question. In the literature, different

answers have been given, and they paved the way to different traditions (see Moneta,

2007). In particular, ‘inductivist’ approaches seek to minimise the use of background

knowledge, while ‘deductivist’ approaches eschew statistical information as a tool of

causal discovery and rely only on theoretical knowledge for the articulation of a causal

structure (i.e. economic theory provides all the background knowledge needed). These two
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approaches, may, quite clearly, lead to two tendencies: inductivist approaches are at risk of

not being able to make the ‘big leap’ beyond statistical information, while deductivist

approaches run the risk of being stuck in a vicious circle.

Our answer about the amount of background knowledge we need is: it depends.

There are situations where we have at our disposal a large volume of data, which may

allow us to infer a very detailed picture of the statistical dependencies (through

conditional independence tests); also, in case we can safely assume that the DGP is

stable, only a relatively limited set of extra assumptions and rules of inference may

suffice (as those proposed by Pearl (2000); Spirtes et al. (2000)). In other situations,

however, the accuracy of background extra-statistical knowledge and the lack of

reliable statistical information may suggest that we need to make extensive use of

background knowledge.

As mentioned in Section 2.3, causal models rely on a hypothetico-deductive

methodology. This view offers also a natural middle way between deductivist and

inductivist approaches, which has to be established in practice in each real-world case.

4. Causal modelling and evidence

As mentioned in the introduction, in this paper we tackle the question of the causal

interpretation of statistical models, and we frame the discussion specifically in the case of

econometrics. The arguments given above hinge upon methodological considerations

about the kind of assumptions, the amount of background knowledge needed and the

methodology used in order to make the step from an associational model towards a causal

model. We argued that, in a statistical model, we infer associations (or dependencies)

between variables, while a causal model is an ‘augmented’ statistical model, ‘augmented’

in such a way that we can infer causal relations. In this section, we discuss that part of the

augmentation having to do with the evidence generated in the associational model and in

the causal model, notably evidence of difference-making and mechanisms. We try to build

a bridge between the recent literature in the philosophy of medicine – where ‘evidential

pluralism’ is currently being debated – and causal modelling in econometrics.

4.1 Evidential pluralism

The remote origins of evidential pluralism lie in the philosophical literature on causation

developed in the second half of the twentieth century. The accounts developed in that

period clustered around two main ideas.

On the one hand, in ‘difference-making accounts’, the claim ‘A causes B’ is established

in virtue of there being some appropriate difference-making relation (probabilistic,

counterfactual or manipulation) between A and B (see, for instance, Arntzenius, 2010;

Eells, 1991; Lewis, [1973] 1986, 2004; Reichenbach, 1956; Suppes, 1970). For instance,

the causal claim ‘Smoking causes lung cancer’ is established, depending on the particular

difference-making account embraced: (1) if smoking increases the chances of developing

lung cancer or (2) if, had smoking rates decreased, cancer rates would have decreased too

or (3) if intervening on smoking behaviour would result in decreased cancer rates.

On the other hand, in ‘mechanistic accounts’ the claim ‘A causes B’ means that there is

a mechanism, or a process, linking the cause to the effect (see, for instance, Bechtel &

Abrahamsen, 2005; Craver, 2007; Dowe, 2000; Glennan, 2002, 2010; Machamer, Darden,

& Craver, 2000; Salmon, 1984). For instance, the causal claim ‘Smoking causes lung
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cancer’ is established to the extent that there is a sufficiently well understood mechanism

that links smoking to lung cancer.

In a recent paper, Russo and Williamson (2007) develop an argument to show that

there is a share of problems in holding one, the other or some combination of the above-

mentioned views. The mistake, in each of the above-mentioned accounts, is to reduce the

concept of causation to either the concept of mechanism or to (an appropriate form of)

difference-making. Russo and Williamson (2007) go on in arguing that the main problem

is the confusion between the very concept of causation and the evidence needed in order

to establish a causal claim. Causal claims, in their view, are established on the basis of

evidence of mechanisms and difference-making. They illustrate this thesis about

evidential pluralism in the field of biomedical research, appealing to current practices in,

e.g., the International Agency for Research on Cancer and to several examples from

history of medicine.9

This form of evidential pluralism, now referred to as the ‘Russo–Williamson Thesis’

(RWT), generated a substantial body of literature in the context of medicine (see, for

instance, Clarke, Gillies, Illari, Russo, & Williamson, 2013; Illari, 2011; La Caze, 2011;

Russo & Williamson, 2011; Weber, 2009), but much less in the context of the social

sciences and in particular econometrics. In the following, we discuss how different

evidential components are generated in the associational and causal models presented in

the previous sections and how they support the inferences drawn in associational and

causal models.

4.2 Types of evidence and types of model

According to RWT, causal claims need support from two types of evidence, broadly

conceived. One type is evidence of difference-making, that is probabilistic, statistical or

counterfactual relations between variables of interest indicating that the putative causal

factor is in fact relevant (or, makes a difference) to the occurrence of the putative effect.

Difference-making evidence is generated, in a first instance, by the statistical information

– in the form of dependencies – of associational models (see earlier Section 3.1).

Difference-making is needed to justify the choice of building the ‘augmented’ statistical

model discussed earlier in Sections 2 and 3. Difference-making evidence also supports

claims about prediction and control derived from the causal claims established in the

model.

The other type of evidence is evidence of mechanisms, that is knowledge – whether

plausible or confirmed – about mechanisms that (may) underlie the observed

dependencies. The issue of whether there are socio-economic mechanisms as opposed

to individual-level mechanisms is not easy to settle (for a discussion see Little, 2006). An

important part of the recent debates in social science methodology has been focussed on

the characterisation and modelling of socio-economic mechanisms (see, for instance,

Demeulenaere, 2011). In this literature, socio-economic mechanisms are not just the

statistical aggregate (e.g. sum or average) of individual mechanisms, but may also display

properties not reducible to the micro-level.

According to the econometric tradition which can be traced back to the Cowles

commission, (economic) theory provides the mechanisms, and empirical research is

eventually about testing the theory against available data (cf. Boumans, 2010). But we can

also conceive of causal modelling as the modelling enterprise that we use to hypothesise

and test (economic or social) mechanisms (see, for instance, Mouchart & Russo, 2011;

Mouchart, Russo, & Wunsch, 2010; Russo, 2011b). In this view, the ‘augmented’
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statistical model codifies the available background knowledge and preliminary analysis of

data in the ‘recursive decomposition’. The recursive decomposition (a generalisation of

the marginal-conditional decomposition mentioned in Section 2.2) breaks down the initial

joint probability distribution into a sequence of marginal and conditional components that

can be interpreted as a mechanism. The important feature of causal mechanisms, in this

perspective, is that they carry explanatory power.

What RWT says is that, alone, neither evidence of difference-making nor evidence of

mechanisms suffices to establish causal relations. This is typically the case in

econometrics too, as we seek to establish dependencies (in associational models), and

we also impose further constraints (the augmentation) in order to draw causal inferences.

Mechanisms play an important role in the augmentation phase. This, notice, does not

amount to saying that difference-making and mechanisms are necessary (or sufficient)

conditions for causal relations. The thesis has epistemological and methodological scope.

This means that RWT indicates what to look for in order to establish causal relations,

i.e. what kind of evidence licences claims about dependency and what kind of evidence

licences claims about causality.

Differently put, RWT is not a tick-list for items of evidence such that, if we have them,

we are automatically allowed to interpret the model causally. Evidential pluralism refers to

the way evidence generated in a model has to be evaluated. What we seek to evaluate is

whether statistical and causal information allow us to establish that the putative causal

factors make a difference to the effect, and that there is some mechanism that supports

such difference-making relations. Thus, one single item can be evidence of both

difference-making and mechanism. Examples from medicine are perhaps clearer in this

respect. For instance, observations about the mode of transmission of a bacterium, say

Vibrio Cholerae, provide evidence about the mechanism underlying such transmission

and that the bacterium makes a difference to the occurrence of the disease.

In socio-economic contexts we are most often provided with evidence of difference-

making generated by associational models, and the real challenge is to use or model causal

information such that evidence of mechanisms supports causal inferences. One difficulty is

that in socio-economic contexts, very different mechanisms can support the same

difference-making relations. Population heterogeneity is a real problem for social research

and it is an empirical question how much (and to what extent) the same mechanisms are at

work in different contexts. Mechanisms are often highly context-dependent, but this does

not mean they are of no use. Quite to the contrary, it is of utmost importance, when

building the causal model, to be explicit about the assumptions and background

knowledge employed during the various phases of building, testing and interpreting a

model. This, as we shall discuss later, is crucial in conflict resolution, that is, when we have

radically different explanations for the same phenomenon.

4.3 Some consequences of evidential pluralism

In this section we show that evidential pluralism is able to shed new light on three broad

issues concerning causal modelling: model-dependence, fallibility and conflict resolution.

4.3.1 Model-dependence

A main consequence of evidential pluralism is that the validity of causal claims is relative

to their respective models. This does not amount to denying the reality of socio-economic

phenomena. It is instead a way of highlighting the importance of each stage and part of the
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modelling enterprise: assumptions, statistical and causal information, background

knowledge, data analysis and testing. In other words, results of empirical studies are

primarily valid within the model being developed, and each stage of the modelling

procedure contributes to establishing the validity of the model.10

We mentioned in Section 2 studies on household consumption. A well-established

empirical regularity is the so-called Engel’s law: the poorer is a family, the larger its

budget share spent on nourishment (cf. Chai &Moneta, 2010, and references therein). This

is indeed a well-known empirical generalisation, grounded on the numerous investigations

which have applied statistical modelling to a wide range of data-sets and have found this

form of statistical dependence between food budget share and income. As mentioned, the

standard approach (in neoclassical economics) is to causally augment this statistical

information and to embed it in a theoretical model which contemplates utility

maximisation and rational choice. Other, more naturalistic, approaches provide

alternative interpretations of that statistical dependence by pointing out at the hierarchical

structure of individual needs, physiological wants, such as those motivating food

consumption, have to be (to a certain degree) satisfied before devoting resources to

consumption activities aimed at the satisfaction of other (e.g. psychological or cognitive)

needs (Chai & Moneta, 2012; Witt, 2001).

However, such claims will be valid within the corresponding model being developed,

namely depending on the analysed data, on the background knowledge of the researchers

and on the methods used. It is an empirical question whether the same results are valid for

different data-sets (namely for different populations) and whether different modelling

strategies lead to different results, in which case it is of utmost importance to find out

why.11 Regarding food consumption, for example, it is interesting to note that Banerjee

and Duflo (2011) found out that in Morocco families that do not have enough to eat buy a

television and they analysed this phenomenon on the basis of an adequate and evidence-

based understanding of poverty.

In summary, the ‘augmentation’ of statistical evidence (associations) in causal terms is

an interpretation of real aspects of the reality against the backdrop of our background

knowledge. Often, background knowledge is formalised (as in neoclassical economics) in

terms of an analytical model, sometimes articulated in substantial information related to

different scientific areas. This is expressed in a language familiar to econometricians and

basically rephrases what we expressed earlier, in a language that is more familiar to

philosophers: there is an interplay and mutual support of evidence of difference-making

(the dependencies) and mechanisms (e.g. economic behaviour).

But causal claims in social research can be model-dependent in another, less direct, way.

Statistical, or difference-making, evidence, on which associational models and causal

models are based, is relative to the statistical model because it is generated within this frame.

This simple fact renders causal claims (when inferred in the framework of an augmented

statistical model) model-dependent. The fact that statistical evidence is relative to (or makes

senses in) the statistical model where it has been generated has sometimes been neglected. In

fact, data are often viewed as if they were already statistical evidence per se. But this view is

not correct. Data are but a sample of an unobserved or hypothetical DGP, so it cannot be

‘evidence’. Data analysis, in an associational model, provides evidence of difference-

making. This neglect is apparent in empirical works (in economics or social research more

generally) in which correlations or linear regression functions, which involve precise

assumptions about the DGP, are estimated before testing any feature of the DGP. The

consequence is that one may obtain bad sample estimates of population values parameters.

This point has been clearly made already by Spanos (1990) and also by Hoover (2009).
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4.3.2 Fallibility

We talk about fallibility in two senses. The first is that the results of empirical studies

should be always considered fallible and open to revision, once a more reliable

background knowledge or new data becomes available, or once different modelling

strategies are tried out. Evidence is neither monolithic nor immutable, and we have to

allow for the possibility of revising the results of studies on the basis of new evidence

generated. We said earlier that background knowledge plays a crucial role in the

‘augmentation’ of statistical models. But this does not mean that background knowledge

cannot be changed. There is instead a va et vient between established knowledge and

knowledge being established, and the evidence generated in empirical studies of course

looms large in this dynamic.

The second is that the statistical evidence (i.e. difference-making evidence encoded in

the dependencies of the associational model) upon which causal claims are based should

also be considered fallible and open to revision. This is related to the earlier point about

model-dependence. It is always conceivable that a more appropriate formalisation of the

DGP (perhaps due to progress in statistical methods or data collection) delivers a more

accurate statistical model and hence more reliable statistical evidence.

The acknowledgement of fallibility reinforces the point about model-dependence in

the sense that, precisely because we can get things wrong, it is of utmost importance to

specify how we got to those results. However, this is not to undermine the possibility of

drawing causal conclusions from models in social research.

4.3.3 Conflict resolution

The views about evidential pluralism and model-dependence, we maintain, also help with

conflict resolution. A major gain in adopting the framework we suggested – notably, the

account of associational versus causal models, evidential pluralism and model-

dependence – allows a better and more fruitful analysis of conflict resolutions,

i.e. when scientists disagree about causal relations. Disagreements may in fact come from

different ways of specifying the model (that is different difference-making evidence) or

from different pieces of information in the augmentation (that is different mechanisms to

support dependencies). Thus, specifying how difference-making evidence has been

generated or what (socio-economic) mechanisms have been called to support

dependencies may help understand the origin of divergent results. This is not guarantee

that a solution will be found, but at least helps to make clear where the dispute lies.

Consider, for instance, the dispute in the 1980s between Milton Friedman and Anna

Schwartz, on the one hand, and David Hendry and Neil Ericsson, on the other hand, on

money demand in the UK (Friedman & Schwartz, 1982, 1991; Hendry & Ericsson, 1985,

1991)12. In their 1982 book, Monetary Trends in the United States and the United

Kingdom: Their Relation to Income, Prices, and Interest Rates, 1867–1975, Friedman and

Schwartz present a number of empirical findings which support several economic

hypotheses consistent with the quantity theory of money, according to which the money

stock is the predominant factor explaining changes in money income. Hendry and Ericsson

(1985) examined their empirical claims about monetary behaviour in the UK and found

that these were established upon an econometric model which was not adequately

specified.

In the regressions that Friedman and Schwartz (1982) estimated to establish evidence

concerning the money demand, and the influence of money on income and prices in UK,

they used phase-averaged data, considered the parameters in the money demand equation
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as constant, treated money as exogenous and, more in general, ignored the mutual

interdependence of money, income and prices, and interest rates. Hendry and Ericsson

(1985) showed that these assumptions can be tested from the data (or at least have testable

implications). Using the same UK data used by Friedman and Schwartz, Hendry and

Ericsson rejected those assumptions, removing credibility from the theoretical conclusions

of Friedman and Schwartz (1982). Moreover, they estimated a better-fitting, constant,

dynamic error-correction (i.e. taking into account co-integrating relationships) model.

This model turns out to be a model of money but not of prices because ‘its constancy holds

only conditionally on contemporaneous prices’ (Hendry & Ericsson, 1991).

Two remarks are in order. First, questioning the results means to discuss different

aspects of the model building and model testing process (methodology, assumptions,

background knowledge). To ground both the claim that Friedman and Schwartz’s model

was mis-specified and the proposal of an alternative empirical model of money demand,

Hendry and Ericsson (1991) discuss at length the methodology of model specification. In a

manner consistent with Spanos’ (and ours, see Section 2.2) perspective, Hendry and

Ericsson (1991) see the statistical model as a DGP ‘characterized by the joint density of

the observable variables’. Empirical (econometric) models are just transformation or

‘reduction’ of the DGP and each step of reduction should be tested vis-à-vis the data

(Cook & Hendry, 1994). For example, one of the implicit (or hidden) assumptions in

Friedman and Schwartz’s analysis is that disturbances are normal. Using a standard test,

Hendry and Ericsson (1985) show that normality should be rejected. Friedman and

Schwartz, on the other hand, use statistical analysis to find associations which have to be

heavily interpreted by a priori historical knowledge about institutional arrangements and

mechanisms (cf. Friedman & Schwartz, 1991).

The second remark we want to make is about fallibilism: in the light of new methods of

analysis (or data collection) we can revise established results. If econometrics, since the

time Hendry and Ericsson wrote, offers new tools, then it is a sensible thing to rerun the

analysis and check whether the same results obtain. In a recent paper, indeed, Ericsson

(2011) re-evaluates Hendry and Ericsson’s (1985, 1991) model with Autometrics, which is

an algorithm for computer-automated model selection (cf. Doornik, 2009), finding ground

for several (minor) improvements.

It is worth noting, however, that this does not licence an ‘anything goes’ line of

argument. If background knowledge is used in different manners and if there are

competitive specifications of the statistical model, one should always question which

alternative is better justified. These questions are not settled a priori. They are instead

settled by an open and honest discussion about the choices made at each step of the

modelling procedure. So we are in the position, at least in principle, to settle conflicts. It is

also worth noting that this is no guarantee that conflicts will be resolved, as we may not

reach a consensus about what background or testing technique to use. But surely open and

honest confrontation at the level of the model should lead the debate forward, and thereby

enhance our understanding of phenomena.

5. Conclusion

Econometrics, and the social sciences more generally, makes extensive use of statistical

models in order to gain causal knowledge of phenomena. While early statisticians and

methodologists such as Wright (in the 1930s) or Blalock (in the 1960s) were more prone to

adopt a causal interpretation of statistical models, present-day scientists (and philosophers

of science alike) are cautious in drawing causal conclusions from statistics. We also share
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this cautious attitude, and yet we think that the question of when a statistical model can be

given a causal interpretation needs to be addressed further.

The paper advances the view that we are justified in interpreting a statistical model in

causal terms when it is ‘augmented’ with some specific features. We developed two lines

of arguments. The first draws a distinction between associational models and causal

models (and thereby between statistical and causal information); the second examines

evidential pluralism in the context of econometric modelling.

Associational models are statistical models that allow us to infer dependencies

between variables of interest. They are based on a minor use of background knowledge

and assumptions. In order to infer causal relations, we need to augment associational

models with a lot more background knowledge and assumptions, and to employ a

hypothetico-deductive methodology. An important difference between associational

models and causal models is that they encode, respectively, statistical and causal

information.

Both statistical and causal information describe some facets of the DGP which realises

the values of certain variables of interest. At bottom, the difference between statistical and

causal information is that the former consists of symmetric relations (X is associated with

Y implies that Y is associated with X), whereas the latter consists of asymmetric relations

(X causes Y does not imply that Y causes X). While statistical information describes how

these values are regularly associated, or how the values regularly co-vary, causal

information contributes to a description of the DGP as a ‘mechanism’. Statistical and

causal information thus contribute to making successful inferences about intervention,

explanation and prediction.

We addressed the question of why causal information does not necessarily introduce a

vicious circle. Causal information is statistical information augmented with background

knowledge, namely assumptions about some facets of the DGP which also include causal

propositions. Vicious circles are excluded if assumptions about causal propositions we

want to validate are deliberately not included in this augmentation.

We then considered the recent literature on evidential pluralism, namely the thesis that

causal claims are established on the basis of a plurality of evidential sources. The thesis

has not received close attention in social contexts, particularly in econometrics. We argued

that associational models generate evidence of difference-making, which is encoded in the

dependencies inferred within such framework. Causal models also generate evidence of

mechanisms, which is encoded in the formalisation of the DGPs.

Ultimately, we hold the view that a causal interpretation of statistical models is

justified to the extent that statistical information is augmented into causal information, or

in other words that evidence of difference-making is integrated with evidence of

mechanisms.

We discussed three consequences of adopting such a view: model-dependence,

fallibility and conflict resolution. These are all consequences of highlighting the

importance of the modelling procedure, and of each step therein, for establishing causal

relations. However, model-dependence does not imply that no generalisation about

economic (or social) phenomena can be attained. It just says that it is an empirical question

whether, and to what extent, we can generalise. Similarly, reminding about the fallibility

of studies is not to undermine causal analysis at its very basis. It just says that our

knowledge and understanding of economic (or social) phenomena is not immutable, and

that it is precisely through further empirical studies that we can improve it. But this may

mean to discard previous results. Finally, conflict resolution is a delicate issue, and we

wanted to suggest that honest and open discussions about any stage of the modelling
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procedure (from data collection to testing and interpretation) may shed light on divergent

conclusions.
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Notes

1. On the interpretation of associational models and of causal models in terms of ‘variation’ rather
than ‘regularity’, see Russo (2009b).

2. Since Xi; Yi;Wi are i.i.d., we omit for convenience the subscript i. Notice that in this case
f ðX1; . . . ;Xn;fÞ ¼

Qn
i¼1 f ðXi; uÞ.

3. We thank one anonymous referee for suggesting this example.
4. The correlation is indeed a measure of dependence between two normal variates, and is defined

in the following way: rðX; YÞ ¼ sXY=sX ;sY , where sXY denotes the covariance between X
and Y; and sX , sY are standard deviations. The partial correlation can be recursively defined
as: rðX; YjWÞ ¼ ðrðX; YÞ2 rðX;WÞrðY;WÞÞ=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 r 2ðX;WÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r 2ðY ;WÞp Þ. Statistical

dependence, denoted by (Dawid, 1979), is defined as: X Y iff f XY ðx; yÞ ¼ f XðxÞf Y ðyÞ.
Conditioning onW : X YjW iff f XY jW ðx; yjwÞ ¼ f XjW ðxjwÞf YjW ðyjwÞ. More details are given in
Section 3.1.

5. Or, rephrased in ‘variation’ terms alluded above, stochastic co-variations that are regular
enough in the data-set.

6. The stochastic characteristic of the social phenomena is related to our incomplete knowledge of
the world. This does not force us to take a stance about the metaphysical issue of whether the
world is deterministic or indeterministic. In the framework hereby developed, we can
meaningfully talk of stochastic social mechanism without any commitment to indeterminism.

7. In this way the ‘black box’ of the DGP is only partially opened.
8. That is, the causal Markov and the faithfulness condition (Pearl, 2000; Spirtes et al., 2000).
9. Russo and Williamson (2007) argue, together with the thesis about evidential pluralism, in

favour of the ‘epistemic theory’, which is supposed to provide the causal metaphysics. Simply
put, according to the epistemic theory, causation has to do with the (causal) inferences we are
allowed to make on the basis of the available evidence, background knowledge and methods.
Causation, in this theory, is primarily an epistemic category that we, as epistemic agents, use to
chart the world in order to make successful inferences. The epistemic theory has also sparked
debate, but we do not take stance with respect to this discussion here. Evidential pluralism is in
fact compatible with other pluralistic, metaphysical views.

10. On this point, see also Russo (2011a).
11. Some readers may prefer the expression ‘context-dependent’ on the grounds that it is more

general in scope than ‘model-dependent’. We do not have any objection to that. In our
approach, the context is part of the model and consequently there is not any incompatibility
between the two.

12. For a discussion see Hammond (1996) and references therein.
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