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Abstract

Robot ecologies are a growing paradigm in which one
or several robotic systems are integrated into a smart
environment. Robotic ecologies hold great promises for
elderly assistance. Planning the activities of these sys-
tems, however, is not trivial, and requires consideration
of issues like temporal and information dependencies
among different parts of the ecology, exogenous ac-
tions, and multiple, dynamic goals. We describe a plan-
ner able to cope with the above challenges. We show
in particular how this planner has been incorporated
in closed-loop into a full robotic system that performs
daily tasks in support of elderly people. The full robot
ecology is deployed in a test apartment inside a real res-
idential building, and it is currently undergoing an ex-
tensive user evaluation.

1 Introduction

Robotic ecologies (Saffiotti et al. 2008) are networked sys-
tems composed of one or several robots that cooperate with
static sensors and actuators deployed in the environment.
The combination of the advanced motion and manipulation
capabilities afforded by robots, and the pervasive sensing
and actuation capabilities afforded by the smart environ-
ment, often results in systems which are more robust, flex-
ible, and modular than a traditional monolithic robot. Be-
cause of this, robot ecologies hold great promises for ap-
plications in domestic, everyday environments like elderly
assistance. In fact the increase of life expectancy and reduc-
tion of births has induced a rapid increase of elderly popula-
tion and consequently a number of societal challenges, such
as provision of social and medical services with sustainable
costs and extension of the working life of senior citizens.
Different works in literature address the integration of
robots and smart environments to provide physical and cog-
nitive support in the field of ambient assisted living (AAL).
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In (Schroeter et al. 2013), a companion robot is used to
cope with mild cognitive impairments. (Huijnen et al. 2011)
describes two projects devoted to developing platforms for
assisting people in daily tasks such as reminding or enter-
tainment. In (Lowet and Frank 2012) an inexpensive archi-
tecture has been developed to provide a support similar to
the previous approaches. (Cavallo et al. 2013) presents a
multi function robot for physical and cognitive assistance at
home. (Bedaf et al. 2013) and (Cousins 2011) describe an in-
frastructures equipped with robotic manipulators to provide
physical support to the users. Relevant results have also been
obtained with outdoor or office-like platforms (Ferri et al.
2011; Kanda et al. 2009; Mizoguchi et al. 1999). In most of
these works, however, it is assumed that the service provided
by the system consists of a single task; where this is not the
case, the form of reasoning employed to cope with multi-
ple tasks is simplified by not considering situations where
there might be multiple and concurrent goals. Furthermore,
the above approaches do not consider multiple robots.

In this paper we present a planner for multi-robot, multi-
task ecologies developed in the context of the EU project
Robot-Era.! To the best of our knowledge, this is the first
attempt to integrate an autonomous multi-robot system in a
complex, smart environment in the service of elderly peo-
ple. This application domain introduces several important
new challenges and requirements to the planning system:
(a) since we do not focus on one specific task, the planner
must cope with a variety of different, possibly concurrent
goals that can be posted any time; (b) because of the dy-
namic nature of the environment and of human interaction,
the planner is committed to perform high-level reasoning
that has to be further mapped into low-level (inter-)actions
that fulfill the on-going requirements; (d) the presence of
a multi-robot system demands a form of coordination be-
tween the units that can possibly perform heterogeneous ac-
tions while receiving support from the smart environment;
and (d) the intrinsic concurrency in a robot ecology rises
challenges related to the usage of common resources, time
synchronization, and causal and information dependencies.

To satisfy the above requirements, we control our robot
ecology using a configuration planner (M. Di Rocco et al.
2013) that is able to produce fine-grained plans for robotic
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systems. The planner can model the causal, temporal, re-
source and information dependencies between the sensing,
computation, and actuation components in one or multiple
robots. As we shall see, the planner has features which are
geared toward the integration with low-level, physical robot
execution in the real world. In this paper we show how the
configuration planner has been integrated in the full Robot-
Era robot ecology, starting from high-level reasoning and re-
fining this down to low-level interaction between the devices
in the ecology.

2 Related work

Classical planning approaches make a number of assump-
tions that abstract away from the details of physical execu-
tion in real, dynamic environments (Ghallab et al. 2004). In
particular, aspects of time, information, and resources are
often ignored. By contrast, our work is grounded on tempo-
ral planning techniques, and enriches this paradigm with the
ability to reason about resource, causal and information de-
pendencies among the entities involved in the plan. All these
features are needed when orchestrating networked robotic
systems: the information flow plays a crucial role to coor-
dinate the various units, while resource constraints must be
carefully taken into account since devices may share and ex-
ploit limited resources. The temporal aspect has a pivotal
role, and the tasks involved may be subject to deadlines. In
addition, the concurrency of multiple goals emphasizes the
role of synchronization between interacting functionalities.

Today’s planners exhibit some of the above features. For
instance, a considerable amount of work has been done
to integrate metric time into planning (Knight et al. 2001;
Do and Kambhampati 2003; Gerevini et al. 2006; Doherty
et al. 2009; Barreiro et al. 2012; Eyerich et al. 2009). Includ-
ing time has allowed some planning systems to perform con-
tinuous planning, i.e., continuously synthesize plans as new
goals and contingencies become known. Execution moni-
toring techniques have been developed which leverage the
explicit temporal representation of these plans (Finzi et al.
2004; McGann et al. 2008b; 2008a), thus effectively provid-
ing a few examples of planning for real robots. Although
these constitute important steps towards obtaining planners
that are appropriate for robots, they do not address the need
to represent and reason about other aspects of physical do-
mains, like space, information and resources.

Some work has addressed the issue of including re-
sources into the planning problem. Some of these ap-
proaches (Kockemann et al. 2012; Fratini et al. 2008; Ghal-
lab and Laruelle 1994) would also be well suited for use
in closed loop with actuation and perception, as they main-
tain a certain level of least-commitment with respect to the
timing of plan execution. Nevertheless, they are neither de-
fined nor evaluated as closed-loop planning systems. (Lemai
and Ingrand 2004) propose an extension of the IxTeT plan-
ner (Ghallab and Laruelle 1994) for closed loop execution
monitoring with resources; however, their technique is only
applied to single robot navigation tasks.

3 High-level reasoning

Task planners typically reason about abstract causality: what
actions should be performed in order to bring the system in
a state where the goal is satisfied? To better close the gap
with low-level robot execution, our configuration planner
also reasons about finer-grained aspects that are relevant to
successful execution, like time, information, and resources.
Moreover, our planner operates in closed-loop: it continu-
ously incorporates new sensor observations and goals dur-
ing execution, and it adapts the current plan to take these
into account — or, if adaptation is not possible, generates an
entirely new plan.

Our approach is grounded on the notion of state variable
(SV), which models elements of the domain whose state in
time is represented by a symbol. State variables, whose do-
mains are discrete sets, represent features of the environment
we want to model as well as functionalities provided by
the ecology. The particular instantiation of a functionality,
called activity, can either produce information (information
output) or effects on the world, i.e., act on state variables
representing the environment. We employ a (flexible) tem-
poral representation that allows us to restrict the occurrence
in time of a particular predicate over a SV.

To be executed, a functionality may need sources of in-
formation (information input) and consume resources. Our
framework takes into account reusable resources, i.e., re-
sources that are fully available when not used by any func-
tionality. The information flow as well as the manipulation
of the world leads to the connection among different func-
tionalities during plan generation: these interactions and de-
pendencies are modeled temporally through Allen’s Interval
Algebra (Allen 1984). These are the thirteen possible tempo-
ral relations between intervals, namely “before” (b), “meets”
(m), “overlaps” (0), “during” (d), “starts” (s), “finishes” (f),
their inverses (e.g., b_l), and “equals” (=). For example,
the relation fo {m} f; represents that f5 ends as soon as f;
starts.

Definition 1 A constraint network is a pair (A,C), where
A is a set of activities and C is a set of temporal constraints
among activities in A.

Plans are constraint networks in which activities are linked
by temporal relations generated by causal, resource and in-
formation constraints (Di Rocco et al. 2013b). We call these
configuration plans, as they describe the desired behavior
of the overall system in time, including both actuation and
information generating components:

Definition 2 A feasible configuration plan is a constraint
network that is:

e temporally consistent, i.e., there exists at least one allo-
cation of fixed bounds to intervals such that all temporal
constraints are satisfied;

e resource feasible, i.e., activities do not over-consume re-
sources over time;

e symbolically feasible, i.e., state variables are not pre-
scribed to assume different values at the same time;



e information feasible, i.e., for each information input re-
quired in the plan there exists a supporting activity in the
network producing a consistent information output.

A goal can be seen as a constraint network which is not
feasible, i.e., whose inconsistencies must be solved by a rea-
soning system. Such a constraint network implicitly repre-
sents a set of desired states — all those that are consistent
with the constraints.

Our framework employs the so called Meta-CSP ap-
proach: the problem of refining the goal constraint network
into a feasible one is cast as a high-level Constraint Satis-
faction Problem (CSP) (Tsang 1993) whose variables repre-
sent the infeasibilities above. The values of these high-level
variables constitute possible ways to solve the infeasibili-
ties, and are computed by a set of specialized solvers. This
approach naturally adheres to the necessity of managing sev-
eral features (temporal, causal, resource conflict) that are of
interest to the physical execution of robotic tasks.

3.1 Constraint-Based Search

The planning process used in our approach is incremental in
nature, and yields a refined constraint network, which itself
represents a feasible configuration plan which achieves the
given goal. The resulting constraint network represents one
or more temporal evolutions of the state variables that guar-
antee the achievement of the goal under nominal conditions.
Feasible and goal-achieving configuration plans are ob-
tained in our approach by means of four interacting solvers:
Temporal solver. The temporal consistency of the constraint
network is checked through temporal constraint propagation
by means of a Simple Temporal Problem (STP) (Dechter et
al. 1991) solver. The solver propagates temporal constraints
to refine the bounds of the activities in the network, and re-
turns failure if and only if temporally consistent bounds can-
not be found.

Resource scheduler. This solver enforces that resources
are never over-consumed. The maximum capacities of re-
sources restrict which activities can occur concurrently, and
this solver posts temporal constraints to the constraint net-
work enforcing that over-consuming peaks of activities are
avoided (Cesta et al. 2002).

State variable scheduler. State variable scheduling ensures
that activities do not prescribe conflicting states in over-
lapping intervals. Similarly to the resource scheduler, this
solver posts temporal constraints which impose a temporal
separation between conflicting activities.

Information dependency reasoner. Operators model the
information dependencies between functionalities®>. This
solver instantiates into the constraint network relevant op-
erators (in the form of activities and temporal constraints)
so as to enforce the information dependencies.

Causal reasoner. Operators in the domain also model causal
dependencies between states. This solver instantiates into
the constraint network relevant operators (in the form of ac-
tivities and temporal constraints) so as to enforce the causal
dependencies of the configuration plan.

In our approach, the domain is such that information depen-
dencies constitute an acyclic propositional Horn theory.

Technical details about these reasoners can be found
in (Di Rocco et al. 2013b).

As noted, resource over-consumption and multiple con-
current states are averted by imposing temporal constraints
which sequence potentially concurrent activities; trivially,
there are alternative sequencing decisions that can be made
to resolve such a conflict, e.g., by enforcing the “before”
constraint a {b} b or a {b='}b. Also operator selection is
subject to alternative choices, as more than one operator may
provide the necessary information output and/or support the
necessary causal dependency; e.g., the presence of light in
the environment may be obtained as a result of invoking
the light controller or by opening the blinds. Only tempo-
ral feasibility enforcement is not subject to multiple choices,
which makes the problem tractable. In our approach, all re-
quirements which may entail alternative courses of action
are seen as decision variables in a high-level CSP. Given a
decision variable d, its possible values constitute a finite do-
main 6¢ = {(A%, Cd)y,..., (AL, C2),}, whose values are
alternative constraint networks, called resolving constraint
networks. The individual solvers are used to determine re-
solving constraint networks (A4, C%);, which are iteratively
added to the goal constraint network (4,4, Cy).

Function Backtrack (Ag, Cy) : success or failure

1 d < Choose ((Ag, Cy), hvar)

2 if d # () then

3 (Sd:{(Af,C,‘?)l,,(Af,C’f)n}

while 5¢ # () do
(Af, Cﬁl)i < Choose (d, hya)
if (A, U AZ, Cy U C2) is temporally consistent then
L return Backtrack (A4, U A?,C, U CY)

% 61\ {(A7, O}

| return failure

10 return success

o e N A

In order to search for resolving constraint networks, we
employ a systematic search (see Algorithm Backtrack),
which occurs through standard CSP-style backtracking. The
decision variables are chosen according to a variable order-
ing heuristic hy, (line 1); the alternative resolving constraint
networks are chosen according to a value ordering heuristic
hya (line 5). The former decides which (sub-)goals to at-
tempt to satisfy first, e.g., to support a functionality by ap-
plying another operator, or to resolve a scheduling conflict.
The latter decides which value to attempt first, e.g., whether
to prefer one operator over another. Note that adding resolv-
ing constraint networks may entail the presence of new de-
cision variables to be considered.

All five solvers employed in the algorithm above are im-
plemented on top of the Meta-CSP framework (Pecora et al.
2012). The framework facilitates the integration of solvers
through Meta-CSP techniques, and in particular provides
implementations of inter-solver interfaces and overall search
modules (such as Algorithm Backtrack).



3.2 Plan Execution and Dynamic Plan Update

The ability to support on-line sensing is directly enabled
by the constraint-based representation: sensing is reduced to
dynamically updating the constraint network with new activ-
ities and constraints representing the sensed state of the envi-
ronment; the same mechanism also supports prediction (i.e.,
“sensing in the future”) and other on-line plan modifica-
tions, such as temporal delays and dynamically posted goal
constraint networks. Activities and constraints that repre-
sent sensed information can have different levels of abstrac-
tion: low-level observations like “stove-on”, filtered state es-
timates like “user-at-kitchen”, or high-level interpretations
like “user-is-cooking”. Section 4.1 will show the sensing ab-
stractions used in the Robot-Era system.

Our approach to continuous planning is based on the al-
ternation of planning and plan execution monitoring. The
former consists of the planning procedure shown above.
The latter consists of two processes: sensing and plan up-
date. The sensing process adds to the constraint network
activities and temporal constraints representing the current
view of the environment as provided by sensors. The plan
update process maintains and updates temporal constraints
which bound on-going activities (sensed states or function-
alities in execution) with the current time. This is done
in O(n?) through incremental temporal constraint propaga-
tion (Dechter et al. 1991), where n is the number of activities
in the constraint network. Also, this process imposes con-
straints that verify the existence of preconditions and trigger
the manifestation of effects contained in the plan. Specifi-
cally, the presence of a precondition is verified by attempt-
ing to unify the activity representing the precondition with
a sensed activity. If the unification is not possible, the pre-
condition is delayed by inserting a temporal constraint, and
is re-evaluated at the next iteration. The process enforces
the occurrence of activities representing effects by posting
temporal constraints which fix their start time to the current
time. The effect of the constraints posted by these processes
is that functionalities start when possible, are delayed until
the preconditions hold, and their effects are imposed when
necessary. This step also requires polynomial computation.

In our current implementation, all solvers monitor the net-
work for new decision variables. Thus “re-planning” occurs
by temporal propagation, resource or state variable schedul-
ing, or operator application, depending on the situation.

Note that this allows to keep the computational impact
of replanning at a minimum (e.g., operator application need
not occur if scheduling is sufficient, scheduling need not oc-
cur if temporal propagation is sufficient). This mechanism is
what enables dynamically posted goals, as in other temporal
constraint-based continuous planners (McGann et al. 2008b;
Barreiro et al. 2012), but here we also deal with resources,
sensor data and information constraints.

All the components so far described post activities and/or
constraints into the temporal network and their relations can
be compared to the ones existing between components of
a classical control system. The dynamic goal posting cor-
responds to the desired state for the system to control; in
order to achieve this state (which changes over time) several
solvers manipulate the temporal network, which can be seen

as a way of formulating high-level control signals. Once de-
cisions are taken, control signals are injected into the state
if they did not lead to temporal inconsistencies (validation
performed by the temporal solver). Finally, the state of the
world is continuously fed back to the system through the
observer. A schematic representation of this comparison is
depicted in Fig. 1. We show an example of this behavior in
the next Section.

INFORMATION

cousa. | oEpENDINCT || SIS
REASONING | = REASONING =
1

R 0 4 | SCHEDULING
N y ,,\// . (resources)
\ A o ‘\r\’ -,
REFERENCE CONTROL
DYNAMIC STATE ¢ A
GOAL e —_—
POSTING \ \
’ L £
s\ Constraint s ~
network |/ S
W\ o TEMPORAL
OBSERVER - REASONING
w FEEDBACK ‘

Figure 1: High level reasoners (causal reasoner, information de-
pendency reasoner, schedulers) modify the constraint network to
achieve the dynamically changing desired state (dynamic goal post-
ing). Their decisions are temporally validated (temporal reasoning)
and sent to the system for execution. The current state of the system
is continuously maintained in the constraint network (observer).

4 The Robot-ERA System

The above planner has been implemented in a specific mod-
ule, called Configuration Planning Module (CPM) and in-
cluded in the full Robot-ERA system. This is a networked
robot system whose structure can be conceptually divided
into sensing and actuation modules. The former provide, at
the moment, a minimal form of context awareness that may
automatically trigger goals in addition to the ones explicitly
requested by the user; the latter allows manipulation of the
world to fulfill the requirements of a configuration plan.

All the components in the system communicate by means
of the PEIS Middleware (Saffiotti and Broxvall 2005), which
implements a distributed blackboard model: each module
publishes and reads from a decentralized tuple-space (see
Fig. 2). The PEIS Middleware allows devices to join or leave
the network dynamically. This mechanism constitutes the in-
terface between CPM and the software modules associated
to the activities in the plan.

4.1 Sensing Modules

The sensing abstraction provided to the high-level reason-
ing is grounded in the information produced by sensors de-
ployed in the environment. Currently, we employ wireless
sensor network nodes (Motes) equipped with heterogeneous
sensors: passive infrared (PIR), pressure, humidity, light,
temperature and proximity transducers. Each of them is in-
stalled in meaningful positions (e.g., a pressure sensor un-
der a chair) to provide pieces of information that processed



Figure 2: Blackboard model: robots, actuators and sensors com-
municate by means of the PEIS Middleware.

together provide an abstraction for one or multiple environ-
mental variables.

In this paper we focus on a particular subsystem which
estimates the position of the user. We have used two com-
plementary methods: the first relies on the RSSI signal pro-
duced by a subset of Motes; the user, wearing a small mod-
ule, is localized by means of trilateration techniques (Cav-
allo et al. 2011). The output of the algorithm provides the
(metric) location of the user within the apartment. The sec-
ond system is based on pressure and PIR sensors (see Fig. 3);
the (temporal) alternation of signals can provide a topologi-
cal location but also can infer simple behaviors (e.g., having
the bed-light OFF during bed-pressure ON entails that the
user is sleeping). At the moment this reasoning process is
still minimalistic and is currently under development, as is
the fusion between the metric and discrete sources of infor-

mation.

Figure 3: Map of the Domo Casa at the Biorobotics institute. The
environment is equipped with antennas to detect the position of
the human and with heterogeneous transducers to detect interesting
features of the environment. Several PIR, pressure (PRES), temper-
ature (circles) and gas (triangles) are installed in the house

Information from sensors is continuously fed back to the
planner in the form of new activities with fixed start and
evolving end times. Through the process of unification ex-
plained earlier, this knowledge is used by the CPM to de-
rive plans that are contextualized to the current state as it is
sensed by the sensors.

Figure 4: The three platforms used in the experimentation: the
outdoor robot Oro (left), the condominium robot Coro (center) and
the domestic robot Doro (right),

4.2 Actuation

The actuation capabilities are mostly performed by robots,
with some exceptions in the case of simple forms of ac-
tuation like turning on lights or moving between floors by
means of an automated elevator.

In our project we employ three robots: two Metralabs SC-
ITOS GS platforms, and one RoboTech Dustcart. Each robot
is equipped with ROS, and its functionalities are modeled in
the domain of the planner. The execution of an activity is of-
ten bounded to an instantiation of a functionality that com-
municates by PEIS with the CPM. As we show in Sec. 5,
the planner’s symbolic reasoning processes (temporal infer-
ence, planning, resource and state variable scheduling, and
information dependency reasoning) result in lower-level ac-
tuation commands dispatched in metric time.

For example, necessary synchronizations between robots
and resource conflicts are mapped into timely dispatching
of actuation commands: suppose that a robot is required to
move from the first to the sixth floor to access the laundry
room. While from a high level perspective the task is simply
to travel the edge of a topological graph, this action is further
refined involving the elevator and several software modules.
Those that are responsible for actuating the robot are there-
fore activated and synchronized with the ones moving the
elevator and its door (Fig. 5).

5 Experiments

In this section we describe several runs of the system for the
purpose of highlighting the interesting features of our ap-
proach. A quantitative evaluation of the planner alone is out-
side the scope of this paper and can be found in (Di Rocco
et al. 2013b).

The CPM was employed in two different test-beds: the
DomoCasa Living Lab of the Biorobotics Institute in Italy
(see Fig. 6) and the Angen Smart Home in Sweden (see
Fig. 7). The two facilities are prototypical smart homes built
for the same purpose, developing robot ecologies for elder
care, and similar robots were deployed in both. However, the
two facilities are structurally different and populated by dif-
ferent sensors and actuators. The CPM is currently used to
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Figure 5: Moving between floors. The motion of the robot
(mvt_r) from the floor to the elevator (F/—E_FI) and vice-versa
(E_-F6—F6) can happen only when the elevator door is open
(during constraint). Similary the motion of the elevator (mvz_e),
supporting the motion of the robot from the 1% to the 6" floor
(F1—F6) can only happen when the doors are closed. The execu-
tion of functionalities can modify the state variables representing
environmental state, e.g., the motion of the robot modifies the state
of r_pos. The state representing the position of the elevator and the
modules acting on the door are not shown for simplicity.

evaluate eleven case-studies in a long-term field evaluation
within the EU project Robot-ERA 3.

Figure 6: DomoCasa Living Lab of the Biorobotics Institute
(Scuola Superiore Sant’Anna, Italy). The Biorobotics Institute
(left); ROS map of the first floor (middle); ROS map of the ground
floor (right). Both maps shot the symbolic locations used in the
plan.

5.1 Synchronization: goods exchange

This experiment describes an example of synchronization
between two robots. The scenario evolves as follows:

Sven has ordered some goods at the nearby supermar-
ket; he lives at the first floor of a building where a con-
dominium robot, Coro, and an outdoor robot, Oro, pro-
vide services for the inhabitants. Oro is instructed to go
the supermarket to collect goods prepared by the clerk.
When coming back, it will pass the goods to Coro at
the entrance of the building. Coro will then deliver the
goods to Sven; it will interact with the elevator in order
to move across floors inside the building.

Although contingencies are not taken into account, the
system has to properly coordinate two robots that have to
exchange the package in a given location. One of the robots
employs the elevator to go from the user’s apartment to
the exchange location and back. The experiment was con-
ducted at the Biorobotics lab using the ground (Fig. 6-c)
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Figure 7: Second experimental setup. Left: a CAD representation
of the environment. The scenario runs on three different floors:
food is picked up on ground-floor, the user’s apartment is on the
first floor, and the shared residential laundry room is on the top
floor. Right: map of the user’s apartment and its sensors.

and the first floor (Fig. 6-d). The plan generated is de-
picted in Fig. 8 while video of the experiment is available
athttp://youtu.be/jY74RtufYIo.
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Figure 8: Oro moves from the entrance (ENT) to the shop (SH) to
fetch goods (Oro_takeGoods) and then comes back. In the mean-
while Coro moves from its location (E1) to the elevator at the first
floor (L1); the elevator brings Coro to the ground floor (LO). Then,
it exits the elevator (EO) and finally moves to ENT where the ex-
change occurs (Coro_goodsExch and Oro_goodsExch). After the
completion of the exchange, Coro goes upstairs to Sven’s apart-
ment (A) to deliver the package (Goal). The motion from one lo-
cation to another is handled by the MoveTo functionality that can
either exploit the Kinect or Laser modules. Note how travelling to
and from the elevator implies the opening of the elevator door, and
that moving the elevator requires the door to be closed.

5.2 Plan adaptation

In this experiment we highlight the flexibility of the reasoner
to cope with multiple requests:

Sven sends the laundry by Coro to the laundry-room
at the 6th floor; the robot after executing this task is
expected to deliver it back in 1 hour; while delivering
the laundry back to Sven, Gunilla’s food arrives at the
entrance of the building...

This calls into play the same flexibility necessary to deal
with contingencies, as described in (Di Rocco et al. 2013a).
In this scenario, we do not want the food to become cold;
this could not be avoided if the second task were scheduled



after the accomplishment of the laundry task; fortunately,
the robot is capable of accommodating two objects on its
tray (namely, the robot’s tray is modeled as a resource with
capacity two); the planner leverages this resource to insert
into the plan for delivering the laundry back to Sven also the
task of obtaining the food for Gunilla and bringing it back
to her before delivering the laundry to Sven (see Fig.9). This
example emphasizes the ability of the planner to re-arrange
activities in order to maintain the feasibility of the temporal
network.

0 0 100
Coro_laundry

5
Coro_food
Coro_Position [E§] Bl VESE) | 15222
(@)
0 50 100
Coro_laundry DEY,
Coro_food FETCH
Coro_Position [Ef] Vs [BPE [
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Figure 9: a) the initial plan drives the robot to fetch the laun-
dry (L.BACK) at the laundry-room (LAU_R); afterwards the robot
goes to the first apartment (APT1) to deliver the laundry (L_DEL)
and then to entrance of the building (ENT) to pick up the food
(FETCH) to eventually deliver the food (F_DEL). This plan results
inconsistent due to the deadline imposed on the second task b) the
alternative plan that achieves both goals: the robot, after visiting
the laundry-room, first brings the food to the second user and then
delivers the laundry to the first one

6 Conclusions

We have described how our constraint-based approach to
configuration planning caters for real-world requirements.
We have focused on the capability of our system to trans-
late symbolic, high-level requirements (temporal, causal, re-
source, information requirements) into plans that are exe-
cutable by a robotic framework. Several experiments were
carried out in two different facilities where robots and smart
environments are deployed. These preliminary results will
be further validated by elderly users in the context of the
Robot-ERA project. Eleven different scenarios like the ones
shown in this paper will be evaluated through active partici-
pation followed by questionnaires.

The inclusion of our planner in a real, deployed and eval-
uated robotic ecology has allowed us to identify the need
for the key technological issues (a)-(d) presented in the In-
troduction. More issues are also needed, and they will be
addressed in our future work. One such issue is the need
for manipulation, which will be required in several of our
use cases (e.g., picking objects, setting tables). For these, we
plan to include a spatial representation into our planning do-
main. The particular approach described in (Mansouri and
Pecora 2013) seems particularly suited as it allows to de-
scribe desires spatial layouts in qualitative terms while re-
sulting in metric spatial plans that are directly executable by

a robot.

Another open issue is pointed out by the example in Sec. 5
about multiple requests. While that example shows the flexi-
bility of our planner, it also exposes situations that currently
are not handled by it. Namely, if the robot had the capacity
to carry only one object (laundry or food), and the second
goal was launched after the robot picks up the laundry, our
planner would not find a solution. This is because the plan-
ner cannot achieve goals stated in terms of resrouce usage: in
this case, it would have to decide to empty the tray in order
to carry the food as a sub-goal of the goal of food delivery.
Future work will explore more sophisticated forms of causal
planning that cater to resource usage goals.

References

Allen, J. 1984. Towards a general theory of action and time.
Artificial Intelligence 23(2):123-154.

Barreiro, J.; Boyce, M.; Frank, J.; Tatauro, M.; Kichkaylo,
T.; Morris, P.; Smith, T.; and Do, M. 2012. EUROPA: A
platform for Al planning. In Proc of ICAPS-ICKEPS.

Bedaf, S.; Gelderblom, G.; de Witte, L.; Syrdal, D.; Lehn-
mann, H.; and Dautenhahn, F. A. K. 2013. Selecting services
for a service robot. In ICORRI3.

Cavallo, F.; Aquilano, M.; Bonaccorsi, M.; Mannari, I.; Car-
rozza, M.; and Dario, P. 2011. Multidisciplinary approach
for developing a new robotic system for domiciliary assis-
tance to elderly people. In Annual Int Conf of the IEEE Eng.
in Medicine and Biology Society, EMBC, 5327-5330.

Cavallo, F.; Aquilano, M.; Bonaccorsi, M.; Limosani, R.;
Manzi, A.; Carrozza, M. C.; and Dario, P. 2013. On the
design, development and experimentation of the ASTRO as-
sistive robot integrated in smart environments. In /IEEE Int
Conf on Robotics and Automation (ICRA), 4310-4315.

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A constraint-
based method for project scheduling with time windows.
Journal of Heuristics 8(1):109-136.

Cousins, S. 2011. ROS on the PR2. In Springer Lecture
Notes in Computer Science - LNCS 7040, 324-329.
Dechter, R.; Meiri, 1.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61-95.

Di Rocco, M.; Pecora, F.; and Saffiotti, A. 2013a. Closed
loop configuration planning with time and resources. In Proc
of the ICAPS 2013 Workshop on Planning and Robotics.

Di Rocco, M.; Pecora, F.; and Saffiotti, A. 2013b. When
robots are late: Configuration planning for multiple robots
with dynamic goals. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS).

Do, M. B., and Kambhampati, S. 2003. Sapa: A multi-
objective metric temporal planner. J. Artif. Intell. Res. (JAIR)
20:155-194.

Doherty, P.; Kvarnstrom, J.; and Heintz, F. 2009. A tem-
poral logic-based planning and execution monitoring frame-
work for unmanned aircraft systems. Autonomous Agents
and Multi-Agent Systems 19(3):332-377.

Eyerich, P.; Mattmiiller, R.; and Roger, G. 2009. Using
the context-enhanced additive heuristic for temporal and nu-



meric planning. In Proc. of the 19th Int. Conf. on Automated
Planning and Scheduling (ICAPS).

Ferri, G.; Manzi, A.; Salvini, P.; Mazzolai, B.; Laschi, C.;
and Dario, P. 2011. DustCart, an autonomous robot for
door-to-door garbage collection: From DustBot project to
the experimentation in the small town of Peccioli. In IEEE
Int Conf on Robotics and Automation (ICRA), 655-660.

Finzi, A.; Ingrand, F.; and Muscettola, N. 2004. Model-
based executive control through reactive planning for au-
tonomous rovers. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS).

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying plan-
ning and scheduling as timelines in a component-based per-
spective. Archives of Control Sciences 18(2):231-271.

Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach
to temporal planning and scheduling in domains with pre-
dictable exogenous events. J. Artif. Int. Res. 25(1):187-231.

Ghallab, M., and Laruelle, H. 1994. Representation and
control in IxTeT, a temporal planner. In AIPS, 61-67.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Huijnen, C.; Badii, A.; van den Heuvel, H.; Caleb-Solly, P.;
and Thiemert, D. 2011. Maybe it becomes a buddy, but do
not call it a robot - seamless cooperation between compan-

ion robotics and smart homes. In Springer Lecture Notes in
Computer Science - LNCS 7040, 324-329.

Kanda, T.; Glas, D.; Shiomi, M.; and Hagita, N. 2009. Ab-
stracting people’s trajectories for social robots to proactively
approach customers. In IEEE T. on Robotics, 1382—1396.

Knight, S.; Rabideau, G.; Chien, S.; Engelhardt, B.; and
Sherwood, R. 2001. Casper: Space exploration through con-
tinuous planning. Intelligent Systems 16(5):70-75.

Kockemann, U.; Pecora, F.; and Karlsson, L. 2012. To-
wards planning with very expressive languages via problem
decomposition into multiple csps. In Proc. of the ICAPS
Workshop on Constraint Satisfaction Techniques for Plan-
ning and Scheduling Problems (COPLAS).

Lemai, S., and Ingrand, F. 2004. Interleaving temporal plan-
ning and execution in robotics domains. In Proc of the 19th
national conference on Artifical intelligence, 617-622.

Lowet, D., and Frank, H. 2012. Florence - a multipurpose
robotic platform to support elderly at home. In Workshop on
Ambient Intelligence Infrastructures (WAmli).

M. Di Rocco, M.; Pecora, F.; Kumar, P.; and Saffiotti, A.
2013. Configuration planning with multiple dynamic goals.
In AAAI Spring Symposium on Designing Intelligent Robots.

Mansouri, M., and Pecora, F. 2013. TA representation for
spatial reasoning in robotic planning. In Proc. of the IROS
Workshop on Al-based Robotics.

McGann, C.; Py, F;; Rajan, K.; Ryan, J. P.; and Henthorn, R.
2008a. Adaptive Control for Autonomous Underwater Ve-
hicles. In Proc. of the AAAI Conf on Artificial Intelligence.

McGann, C.; Py, F,; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2008b. A Deliberative Architecture for

AUV Control. In Proc. of the Int. Conf. on Robotics and
Automation (ICRA).

Mizoguchi, F.; Hiraisci, H.; and Nishiyama, H. 1999.
Human-robot collaboration in the smart office environment.
In Advanced Intelligent Mechatronics.

Pecora, F.; Di Rocco, M.; Kockemann, U.; Mansouri, M.;
and Ullberg, J. 2012. The meta-csp framework api. Source
and binaries available at http://metacsp.org.

Saffiotti, A., and Broxvall, M. 2005. PEIS ecologies: ambi-
ent intelligence meets autonomous robotics. In Proc of the
Jjoint conference on Smart Objects and Ambient Intelligence,
sOc-EUSAI 05, 277-281.

Saffiotti, A.; Broxvall, M.; Gritti, M.; LeBlanc, K.; Lundh,
R.; Rashid, J.; Seo, B.; and Cho, Y. 2008. The PEIS-ecology
project: vision and results. In Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2329-2335.

Schroeter, C.; Volkhardt, S. M. M.; Einhorn, E.; Huijnen, C.;
van den Heuvel, H.; van Berlo, A.; Bley, A.; and Gross, H.-
M. 2013. Realization and user evaluation of a companion
robot for people with mild cognitive impairments. In /IEEE
Int. Conf. on Robotics and Automation, ICRA, 1145-1151.

Tsang, E. 1993. Foundations of Constraint Satisfaction.
Academic Press, London and San Diego.



