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Phase analysis method for burst onset prediction
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The response of bursting neurons to fluctuating inputs is usually hard to predict, due to their strong nonlinearity.
For the same reason, decoding the injected stimulus from the activity of a bursting neuron is generally difficult.
In this paper we propose a method describing (for neuron models) a mechanism of phase coding relating the
burst onsets with the phase profile of the input current. This relation suggests that burst onset may provide a
way for postsynaptic neurons to track the input phase. Moreover, we define a method of phase decoding to solve
the inverse problem and estimate the likelihood of burst onset given the input state. Both methods are presented
here in a unified framework, describing a complete coding-decoding procedure. This procedure is tested by using
different neuron models, stimulated with different inputs (stochastic, sinusoidal, up, and down states). The results
obtained show the efficacy and broad range of application of the proposed methods. Possible applications range
from the study of sensory information processing, in which phase-of-firing codes are known to play a crucial
role, to clinical applications such as deep brain stimulation, helping to design stimuli in order to trigger or prevent
neural bursting.
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I. INTRODUCTION

The activity of the brain cortex can be described as a
superimposition of coordinated oscillations of different sets of
neurons spanning a broad range of frequencies [1]. In the past
two decades the phase of such oscillations, usually measured
by global firing rate, local field potential (LFP), or electroen-
cephalogram [2], has been shown to correlate with a variety
of brain functions. For instance, studies on communication
through coherence [3] suggest that interactions between two
areas are possible only when the activities in the two areas have
the same phase relatively to the appropriate frequency band.
Surely the phase of cortical network subthreshold oscillations
(captured by LFP [4]) defines the windows of opportunity for
the incoming spikes to trigger a response in the local network,
hence it is crucial to regulate information transmission. On
the other hand, however, the subthreshold phase is not a
neural feature that can be directly exploited for information
transmission, since it is invisible to the other neurons unless it is
associated with firing. It is the relationship between firing and
phase that lies at the core of processes such as those observed in
the hippocampus [5,6] or the sensory cortex [7–9]. Modeling
studies have proved that stimulus-dependent phase locking of
firing can be reproduced with networks of leaky integrate and
fire (LIF) neurons [10,11]. However, also to ensure efficacy
on postsynaptic neurons, in some neural structures such as the
olfactory bulb [12] and the thalamus [13], neurons tend to fire
in a burst of spikes rather than with isolated action potentials.
Both the olfactory bulb [14] and the thalamus [15] display
indeed a phase locking between burst onsets and input phase
that a simple LIF model cannot account for. A recent interest-
ing modeling study [16] considers this locking and suggests
that the way the LFP phase is converted into firing is through
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input-phase modulation of burst onset. The ability of bursts to
encode the input phase is moreover proved to be qualitatively
robust to the specific choice of bursting model [17].

In this paper we introduce and validate a method able to
give a complete analytical description of the way burst onset
depends on the phase of the input (phase coding) but also
to invert the problem and estimate the likelihood of burst
onset given the input state (phase decoding). The phase coding
part in particular provides a solution to the issue of whether
the brain can exploit LFP information. We suggest that burst
onset may be a way for postsynaptic neurons to track the
LFP phase. The method is tested with three different neuron
models able to generate bursts and with different kinds of
inputs, including standard sinusoidal inputs but also inputs
mimicking the transitions between up and down states [18],
since this transition has been shown to depend on the phase of
the process [19,20].

II. METHODS

The proposed method is structured in three parts. The first
part (phase coding) comprises a characterization of the neuron
phase coding properties (done by stimulating the neuron
with stochastic stimuli with different spectral features and
recording the corresponding neuron responses), an analysis of
the neuron responses with interburst interval (IBI) detection
and extraction of a set of phase profiles (corresponding to
the detected IBIs) that cause burst onset, and a consequent
identification of the phase coding mechanism for the chosen
neuron model.

We point out that this part can be viewed as a specific
method per se and can be applied also without a subsequent
decoding. Moreover, it allows highlighting the correlation
between phase profiles of the input current and burst onset
of the membrane potential, which is another element of this
paper. The second part of the method is the phase decoding
procedure. Finally, the third part is the identification of burst
onset probability for a generic input phase profile.
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FIG. 1. Block scheme describing at a glance the phase coding part of the method applied to obtain raster plots of the phase profiles. The
input signal x(t) is filtered to obtain the current I (t), which is the input of both a two-compartment neuron model with active currents (reduced
Traub model) (see Appendix A and [21]) and a phase detection block (see Appendix D). From the neuron output V (t) we extract the spike
times and then the IBIs. By combining this information with the phase detected from I (t), we obtain the phase profiles corresponding to IBIs.
Finally, these phase profiles are ordered according to their lengths [the vector L̃ is defined in Eq. (2)] and represented in a raster plot.

The whole method is detailed in the following, by using as
reference a pyramidal neuron model (the same considered in
[16]) with somatic and dendritic compartments [21], described
in detail in Appendix A. In this neuron model, bursting is
induced by a persistent sodium current [see Eq. (A5)] and a
slow potassium current [see Eq. (A6)] in the dendrite [22].

A. Part 1: Phase coding

The phase coding part is described at a glance in Fig. 1.
Through the methods reported in Appendix B, we generate
signals x(t) as realizations of stochastic processes [white
noise, pink noise, brown noise, and Ornstein noise (see
Appendix B)] characterized by null mean, standard deviation
σx (fixed for all processes), and different power spectral
densities (PSDs), obtained as described in Appendix C, in
the frequency band [1,21] Hz. Then each signal x(t) is filtered
through a finite impulse response (FIR) digital filter (of order
500, with Hamming window to reduce the spectral leakage)
in partially overlapping frequency windows of bandwidth
4 Hz, i.e., [1,5],[3,7],[5,9], . . . ,[17,21] Hz, thus obtaining the
synaptic input currents I (t).

The somatic membrane potential V (t) in response to I (t)
is computed by integrating the considered model through
the explicit Euler method with a fixed step of 20 μs. The
black lines in Figs. 2(a)–2(d) are the four stimuli I (t) (white,
pink, Ornstein, and brown noise, respectively), computed by
filtering the corresponding signals x(t) (light gray line) in
the frequency band [3,7] Hz. The PSDs of the corresponding
stochastic processes [computed by Eq. (C1)] are shown in
Figs. 2(e)–2(h), both without filtering (light gray lines) and
with filtering in the band [3,7] Hz (black lines).

This first step is necessary to characterize the chosen neuron
model through input signals with frequency contents typical
for LFPs. The method (besides the example of Fig. 3) requires
that the stochastic stimulation is done by using all four of these
synaptic inputs, in sequence.

As a second step, through a threshold-based spike-detection
method, with a threshold of −20 mV, the interspike intervals
(ISIs) are directly computed. From the ISI histogram, it is easy
to detect two sets: shorter intraburst ISIs and longer IBIs. The
first set is neglected and we focus on the second one.

For the kth IBI (k = 1, . . . ,N), we detect the starting time t Ik
[marked by a gray closed circle in Fig. 3(c)] and the final time

FIG. 2. (a)–(d) Signals x(t) (light gray lines) and corresponding (after filtering in the frequency band [3,7] Hz) synaptic input currents I (t)
(black lines) in nA for white, pink, Ornstein, and brown noise, respectively. (e)–(h) PSDs (in dB) of the corresponding stochastic processes,
both without filtering (light gray lines) and with filtering in the band [3,7] Hz (black lines). Since the ordinate axis is common to each row, it
is reported only in the leftmost figure.
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FIG. 3. Detail of the (a) input stimulus I (t) (white noise filtered in the frequency band [3,7] Hz) and (b) corresponding phase ϕI (t) and
(c) membrane potential V (t). The gray closed (open) circles mark the starting (final) point of each IBI. (d) Raster plot of phase profiles ϕk(τ ),
obtained from a simulation of 1000 s. The colors (gray levels) code the phase amplitudes.

tFk (marked by an open circle). These times are stored in two
vectors TI = [t I1 , . . . ,t IN ]T and TF = [tF1 , . . . ,tFN ]T . Finally,
the vectorL = TF − TI = [l1, . . . ,lN ] contains the IBI lengths
lk (k = 1, . . . ,N ), represented by gray horizontal segments
in Fig. 3(c). In the last step of the phase coding method,
the phase profile ϕI (t) of any input stimulus I (t) is detected
through the method based on the Hilbert transform described in
Appendix D.

The phase profile ϕk related to the onset of the kth IBI
([t Ik ,tFk ]) of length lk (= tFk − t Ik ) ∈ L is extracted from ϕI (t)
as follows:

ϕk

(
t − t Ik

) =
{
ϕI (t) for t Ik < t < tFk , k = 1, . . . ,N

undefined elsewhere.
(1)

We point out that, at the end of each burst, the neuron memory
is reset. For this reason, each phase profile can be expressed
as a function of a relative time τ (= t − t Ik ), i.e., as ϕk(τ ), with
τ ∈ [0,lk].

Figure 3(a) shows a detail of an input stimulus I (t)
(white noise filtered in the frequency band [3,7] Hz), whose
corresponding phase ϕI (t) is shown in Fig. 3(b). The black
pieces of ϕI (t) are the phase profiles ϕk(t) in the kth IBI,
detected from the corresponding neuronal response, shown in
Fig. 3(c). Sorting L in ascending order, we obtain the ordered
vector

L̃ = {l̃1, . . . ,l̃N }, (2)

with l̃j � l̃j+1. The phase profiles are ordered accordingly.
Figure 3(d) shows the raster plot of phase profiles for
the considered example. The regular structure of this panel
evidences a correlation between the kth IBI length (time
length of the nonwhite region for any k) and the corresponding
phase profile [coded by colors (gray levels)], which we use to
estimate the phase coding mechanism. The homologous raster
plots of phase profiles, obtained with brown noise, Ornstein
noise, and pink noise filtered in the frequency band [3,7] Hz
are shown in Figs. 4(a)–4(c), respectively. The three raster
plots, as well as the raster plot in Fig. 3(d), have a similar
dynamics. For instance, they all display a doubling of the
oscillation for IBI lengths higher than about 220 ms.

We assume that the possible IBI lengths are bounded by the
edges of L̃, i.e., they belong to the interval

� = [l̃1,l̃N ]. (3)

Let I be the interval [0,l], with l ∈ �, � the circular interval
[−π,π ] (see Appendix E), and � the (circular) space of
continuous input phase profiles ϕ : I �−→ � that make the
neuron activate a burst at τ = l ∈ �. Remember that the
variable τ is used to denote the time relative to the beginning
of an IBI, i.e., for any IBI of length l ∈ �, τ ∈ I.

The sorted IBI length vector L̃ has components belonging
(by construction) to the interval �. The corresponding
sequence of sorted phase profiles belongs to the functional
space �.
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FIG. 4. Raster plots of phase profiles ϕk(τ ), obtained from a simulation of 1000 s with (a) brown noise, (b) Ornstein noise, and (c) pink
noise filtered in the frequency band [3,7] Hz. Since the k axis is common to each row, it is shown only in the leftmost figure.

What we call phase coding is nothing but a many-to-one
mapping that for any piece of input stimulus of length l ∈
� corresponding to an IBI provides the corresponding phase
profile ϕ ∈ �. Since the same IBI length can be caused by
different stimuli, all these stimuli will be coded by the same
phase profile. However, we remark that in order to define a
phase decoding, each length l must be one to one associated
with a phase profile ϕ (i.e., this specific mapping must be
invertible, as detailed in the following section).

B. Part 2: Phase decoding

The phase decoding procedure is based on the assumption
that the phase coding mapping is invertible, i.e., for any l ∈ �,
there exists a unique corresponding phase profile ϕ(τ ). Now
we describe how to obtain the decoding mapping from the data
stored during the coding procedure. The phase decoding can
be expressed in terms of the (bijective) map

	 : � �−→ �, (4)

which is the inverse of the phase coding mapping and is such
that 	[l] = ϕ.

Let λl be a subinterval of lengths belonging to �, differing
at most by ε, and centered around l:

λl =
[
l − ε

2
,l + ε

2

]
, l ∈ �. (5)

Assuming that l is a random variable, we can use the histogram
of all the lengths l̃k ∈ λl to estimate the probability density
function (PDF) fl(τ ) of λl . Then the mean length of λl can be
computed directly from the histogram as the discrete version
of the following expression:

μl =
∫

λl

τfl(τ )dτ. (6)

Each interval λl maps into the functional subspace φl ⊆ �,
which contains phase profiles ϕ(t) (corresponding to burst
onsets) with lengths belonging to λl [see Fig. 5(a)].

For any τ , ϕ(τ ) is a random variable (defined on the circular
interval �) with time-variant PDF f̊l(ϕ,τ ), which can in turn be
estimated from the available histograms for any τ . Therefore,
any ϕ ∈ φl can be interpreted as a nonstationary process with
a time-variant PDF f̊l(ϕ,τ ) and can be characterized through
first-order statistics. The circular mean and circular variance
of f̊l(ϕ,τ ) can be computed as follows (see Appendix E):

μ̊l(τ ) = arg

[∫
�

f̊l(ϕ,τ )ejϕ(τ )dϕ

]
, (7)

σ̊ 2
l (τ ) = 1 −

∣∣∣∣
∫

�

f̊l(ϕ,τ )ejϕ(τ )dϕ

∣∣∣∣, (8)

where μ̊l(τ ) is the circular mean phase profile in φl , with
corresponding standard deviation profile σ̊l(τ ) ∈ [0,1]. This
allows us to define a time-dependent confidence interval of

FIG. 5. (a) Raster plot of the phase profiles ϕk generated by a stochastic stimulation (comprising all four kinds of stimuli considered)
filtered in the band [3,7] Hz and corresponding raster plots of (b) μ̊l(τ ) (map 	) and (c) σ̊l(τ ) (map 	σ ). Since the k axis is common to each
row, it is shown only in the leftmost figure.
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FIG. 6. Histograms of the IBI lengths contained within the subintervals (a) λlA , (b) λlB , and (c) λlC [vertical transparent green (light gray)
rectangles in Fig. 5(a)]. The mean values μlA , μlB , and μlC are marked by vertical red (gray) lines. Also shown is the zoom of the raster plots
of phase profiles ϕk(t) belonging to (d) φlA (k ∈ [1144,2976]), (e) φlB (k ∈ [8524,9955]), and (f) φlC (k ∈ [15198,17551]), highlighted with
horizontal transparent blue (gray) rectangles in Fig. 5(a). The corresponding PDFs (g) f̊lA (ϕ,τ ), (h) f̊lB (ϕ,τ ), and (i) f̊lC (ϕ,τ ) are shown in
logarithmic color (gray level) scale. Also shown are the corresponding circular mean phase profiles (black curves) (j) μ̊lA (τ ), (k) μ̊lB (τ ), and
(l) μ̊lC (τ ) with confidence intervals (gray regions).

±πσ̊l around μ̊l (see Appendix E) to estimate the reliability
of μ̊l(τ ) for each τ .

Figure 5(a) shows the raster plot of phase profiles ϕk(t),
extracted from the neural response to stochastic stimulation
obtained by using all the four kinds of stimuli considered,
filtered in the band [3,7] Hz. Three values lA, lB , and lC
and corresponding subintervals λlA , λlB , and λlC [vertical
transparent green (light gray) rectangles] are evidenced, whose
histograms are shown in Figs. 6(a)–6(c) with means μlA , μlB ,
and μlC [vertical red (gray) lines]. The raster plots of phase
profiles ϕk(τ ) belonging to φlA , φlB , and φlC [highlighted with

horizontal transparent blue (gray) rectangles in Fig. 5(a)]
are enlarged in Figs. 6(d)–6(f). Figures 6(g)–6(i) show the
corresponding PDFs f̊lA (ϕ,τ ), f̊lB (ϕ,τ ), and f̊lC (ϕ,τ ), whereas
Figs. 6(j)–6(l) show the corresponding circular mean phase
profiles μ̊lA (τ ), μ̊lB (τ ), and μ̊lC (τ ) (black curves) with their
confidence intervals (gray regions).

To complete the phase decoding method, we define the
mapping 	 in order to one-to-one associate any length l =
μl with the phase profile μ̊l(τ ), with the related confidence
interval:

	[l] = μ̊l(τ ), τ ∈ [0,l], l ∈ �, μ̊l ∈ �. (9)
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The uncertainty underlying this mapping is represented by
another map 	σ , which relates l = μl to the circular standard
deviation profile σ̊l(τ ):

	σ [l] = σ̊l(τ ), l ∈ �, σ̊l ∈ [0,1]. (10)

Figures 5(b) and 5(c) show the maps 	 and 	σ in the example
considered.

C. Part 3: Estimate of burst onset probability

The last part of the method is a procedure that allows
estimating burst onset probability for a generic input phase
profile ϑ(τ ) starting at the beginning of an IBI. Let

ϑl(τ ) =
{
ϑ(τ ) for 0 � τ � l

0 otherwise (11)

denote a part of ϑ(τ ), defined in the interval [0,l]. We want to
estimate the probability of burst onset at τ = l, given a phase
profile ϑl .

Let ϕ̃l be the phase profile that causes burst onset after an
IBI length l, according to (9):

ϕ̃l(τ ) = 	[l], τ ∈ [0,l]. (12)

Since � is a metric space, we can always define the circular
distance between ϑl(τ ) and ϕ̃l(τ ) [according to Eq. (E5)]:

D[ϑl,ϕ̃l] =
∣∣∣∣∣∣
√

1 − 1

2l

∫ l

0
|ejϑl (τ ) + ejϕ̃l (τ )|dτ

∣∣∣∣∣∣. (13)

Hence D ∈ [0,1] and, for any length l, we can express the
probability of burst onset at time τ for the neuron stimulated
with an input with phase profile ϑl(τ ) as

rl(τ ) = 1 − D[ϑl,ϕ̃l], l ∈ �. (14)

Indeed, if D[ϑl,ϕ̃l] = 1 (maximum distance), the probability
of burst onset at τ is rl(τ ) = 0, whereas if D[ϑl,ϕ̃l] = 0 (i.e.,
ϑl = ϕ̃l), the probability is rl(τ ) = 1. However, we have to take
into account the uncertainty of the decoding process through
the circular standard deviation profile 	σ [l], which is usually
higher in the central part of the IBIs, as shown in Fig. 5(c).

In order to redefine the circular distance to account for
this uncertainty, it is reasonable to give a higher weight to
the distances D corresponding to the lowest values of σ̊l(τ ),

since they correspond to the lowest uncertainty. The decoding
reliability function χl : [0,l] �→ [0,1] is defined as follows, for
any τ ∈ [0,l]:

χl(τ ) = 1 − σ̊l(τ ). (15)

Therefore, we can define a weighting function Wl(τ ), which
represents the reliability of the probability of burst onset for
any τ , given l,

Wl(τ ) = χl(τ )∫ l

0 χl(τ )dτ
, (16)

such that
∫ l

0 Wl(τ )dτ = 1. Then the weighted circular distance
DW ∈ [0,1] can be defined as follows:

DW [ϑl,ϕ̃l] =
∣∣∣∣∣∣
√∫ l

0

[
1 − 1

2
|ejϑl (τ ) + ejϕ̃l (τ )|

]
Wl(τ )dτ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
√

1 − 1

2

∫ l

0
|ejϑl (τ ) + ejϕ̃l (τ )|Wl(τ )dτ

∣∣∣∣∣∣. (17)

Consequently, the phase-conditional time-dependent firing
probability is redefined as follows:

rl(τ ) = 1 − DW [ϑl,ϕ̃l]. (18)

Figure 7(a) shows the raster plot of rl(τ ) corresponding to the
phase profiles ϕk shown in Fig. 5(a). We notice that rl(τ ) → 1
for τ → l and it is nonzero only for τ > l̃1 (minimum IBI
length).

Observing phase profiles with l > 250 ms, ϕ(τ ) oscillates
at least twice in �. For instance, Fig. 7(b) shows two phase
profiles corresponding to lengths la (red curve) and lb (black
curve): The similarity of the two profiles is apparent in the
first 120 ms, which justifies the yellow (high probability of
burst onset) segment around this τ value in Fig. 7(a). More
in general, a phase profile ϑl(τ ) with l ∈ [120,200] ms is
associated with high values (greater than 0.6) of rl(τ ); indeed,
in this range the profile ϕ̃l(τ ) allows the burst onset also after
a single phase oscillation.

FIG. 7. (a) Raster plot of rl(τ ) corresponding to the phase profiles ϕk(τ ) shown in Fig. 5(a); the black vertical segments mark two lengths
la and lb. (b) Circular mean profiles of the phases corresponding to la (gray curve) and lb (black curve).
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FIG. 8. Comparison of different kinds of raster plots (columns) for different frequency bands (rows). Raster plots of phase profiles ϕk(τ )
(first column), circular mean phase profile μ̊l(τ ) (second column), circular standard deviation profile σ̊l(τ ) (third column), and phase-conditional
firing probability rl(τ ) (fourth column) extracted from the neural response to stochastic stimulation with all four kinds of synaptic stimuli
considered, filtered in the bands [1,5] Hz (first row), [5,9] Hz (second row), [9,13] Hz (third row), [13,17] Hz (fourth row), and [17,21] Hz
(last row). Since the τ axis (in ms) is common to all figures and the k axis is common to each row of figures, we show them only in the leftmost
and bottom figures. The other figures keep only the axis ticks, as reference.

III. RESULTS

The proposed method has been tested with different inputs
and neuron models. For the stochastic input, the parameters
are detailed in Appendix B. The parameter ε has been set to
15 ms. The stimulation length is 1000 s.

A. Response to synaptic stimuli in other frequency bands

First of all, we describe the results obtained by employing
the pyramidal neuron model with filtered stochastic stimula-
tions in partially overlapping frequency windows of bandwidth
4 Hz, contained in the interval [1,21] Hz. Panels in the first

column of Fig. 8, from top to bottom, show raster plots of
ϕk(τ ), obtained [as in Fig. 5(a)] from the neural responses
to stochastic stimuli in [1,5], [5,9], [9,13], [13,17], and
[17,21] Hz frequency bands, respectively. The corresponding
maps 	 and 	σ are shown in the second and third columns,
respectively, whereas panels in the last column show the
corresponding phase-conditional time-dependent burst onset
probability rl(τ ).

These results evidence the correlation between input phase
profiles in different frequency bands and burst onset timing in
the corresponding neural responses. As expected, for higher
input frequencies the number of phase oscillations in �
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FIG. 9. Raster plot of ϕk(τ ) (first column), μ̊l(τ ) (second column), σ̊l(τ ) (third column), and rl(τ ) (fourth column) extracted from the
neural response to stochastic stimulation obtained by using all four kinds of synaptic stimuli considered, filtered in the bands [3,7] Hz for the
pyramidal (first row), adaptive exponential integrate and fire (second row), and Izhikevich (third row) neuron models. See Fig. 8 caption about
the axes.

(i.e., the number of oscillations needed to activate a burst)
increases. Furthermore, highest values of decoding uncertainty
are always located in the central part of the IBIs, i.e., far from
bursts. The figure points out that the mean IBI value decreases
(i.e., the burst are activated more frequently) by increasing the
frequency band (it is 277 ms in [1,5] Hz, 171 ms in [5,9] Hz,
136 ms in [9,13] Hz, 124 ms in [13,17] Hz, and 115 ms in
[17,21] Hz), even if the related energy decreases, as apparent
from Figs. 2(e)–2(h).

As a first check of the method robustness, we repeated the
same test employing two other neuron models: the adaptive
exponential integrate and fire model [23] and the Izhikevich
model [24]. By applying the same stochastic stimulations, we
obtained results (shown in Fig. 9) very similar to those of Fig. 8,
although these models are simpler than the pyramidal one.

B. Response to sinusoidal synaptic stimulus

As a second test, after identification of the maps 	 and
	σ related to the frequency window [3,7] Hz, we attempted
to reconstruct the phase profile of a pure sinusoidal input,
which caused burst onset. The results are summarized in
Fig. 10. Figure 10(a) shows a detail of the neural response
to the synaptic input I (t) = A sin(2πf0t) [Fig. 10(b)] with
amplitude A = 5 nA and frequency f0 = 5 Hz (central value
of the frequency band). The corresponding phase profile ϕI (t)
(detail) is shown in Fig. 10(c), where, like in Fig. 3, each black
piece evidences a phase profile ϕk that causes a burst onset; for
this specific input, all the ϕk(τ ) are identical, of length L. Then

we can compute ϕ̃L(τ ) = 	[L], the phase profile of length L

that should cause a burst onset according to the decoding map
	. Figure 10(d) shows ϕ̃L(τ ) and ϕk(τ ). The two profiles are
very similar, since, due to the circular symmetry, the phase lag
can be neglected. Finally, Fig. 10(e) shows rL(τ ), computed
by Eq. (18). As expected, rL(τ ) tends to 1 for τ tending to L.

C. Response to up-down states

As a final test, we checked if the proposed phase coding
holds also for an up-down state input [18]. The input signal
has two possible states: A1 = 0.5 (up state) and A0 = −0.5
(down state). The conditional probabilities of transition have
been set as follows: For the up state to down state transition
they are 0.001 for the first 12 ms of the up state, 0.02 from
12 to 160 ms, and then 0.25; for the down state to the up
state transition they are 0.0003 for the first 12 ms of the down
state, 0.003 from 12 to 55 ms, and then 0.03. To smooth the
transitions, the obtained signal has been low-pass filtered with
a FIR filter of order 300 and cutoff frequency of 4 Hz.

Observing the phase profiles ϕk that cause burst onset, one
can notice that, when the synaptic input has two (e.g., from up
to down and back to up) or more transitions, the time length
needed to cause burst onset is shorter than when the input is
always up; this is evident in Fig. 11(a), which shows a detail
of the neuron response V (t) (black line) to the corresponding
up-down state input I (t) (thick gray line). This suggests that
burst onset timing in the considered model depends on the input
phase profile and not on a simple integration of synaptic current
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FIG. 10. Detail of the neural response [membrane potential V (t)] to (a) the synaptic input I (t), corresponding to (b) the phase profile ϕI (t).
(c) Phase profiles ϕk [zoom of ϕI (t)] and ϕ̃L(τ ) = 	[L]. (d) Phase conditional time-dependent burst-onset probability rl(τ ).

(as for integrate-and-fire neuron models). Figures 11(b)–11(e)
show the same plots [ϕk , 	, 	σ , and rl(τ ), respectively] as in
the other examples, related to phase coding and decoding of
the considered up-down state input.

IV. DISCUSSION AND CONCLUSIONS

The first result of this paper is a possible mechanism of
phase coding relating the burst onsets of a neuron to the
phase profile of the input current. Moreover, we defined the
corresponding method of phase decoding and a procedure to
estimate the likelihood of burst onset given the input state.
Our results evidenced that the proposed methods provide

good performances with neuron models of different kinds
(the two-compartment pyramidal neuron model, the adaptive
exponential integrate and fire model, and the Izhikevich model)
and also with input stimuli of different nature (stochastic, sinu-
soidal, up, and down states). The chosen stochastic stimulation
reproduces in the band [1,21] Hz the main typical features of
low-frequency LFPs. In Sec. III C we simulated a neuron in a
dynamic regime exhibiting up and down states, since this kind
of activity involves large fluctuations of LFP and bursting
activity [18] and is of obvious neurophysiological interest.
However, we did not model any mechanism to originate
such transitions (as was done, for instance, in [25,26]),
but we simply designed an ad hoc stimulus to generate
them.
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FIG. 11. (a) Detail of the input stimulus I (t) (gray line, right axis) and corresponding membrane potential V (t) (black line, left axis). Also
shown are the raster plots of the phase profiles (b) ϕk , (c) μ̊l(τ ), (d) σ̊l(τ ), and (e) rl(τ ) obtained from the complete stimulation (of length 1000
s). Since the k axis is common to (b)–(e), it is shown only in the leftmost figure.

A. Limits of the proposed method

The method proposed in this paper critically depends
on some assumptions and parameters. The first assumption
(related to the phase coding method) is about the power of the
stimuli, which must be high enough to induce bursting, but not
too high to have a good distribution of IBI lengths. In other
words, the more output behaviors of the neuron are excited
by the generated input stimuli, the more efficient the coding
procedure is.

The second assumption (related to the phase decoding)
is concerned with the one-to-one association between phase
profiles and lengths, implying also that the IBI maximum
and minimum lengths must be among those measured during
the coding. This is of course related once more to the
richness of the stimuli used in the coding method. The
degree of fulfillment of this assumption is measured by 	σ :
The more fulfilled the assumption, the lower the circular
variance.

About the parameters, the most critical to be set are ε (see
Sec. II B) and σx (see Appendix B). The parameter ε defines
the amplitude of the subinterval λl and then influences the
statistics of the functional subspace φl . By increasing ε, we
increase the number of lengths l̃k ∈ λl , thus inducing both a
smoother circular mean μ̊l(τ ) and a larger circular variance
σ̊l(τ ), i.e., a larger uncertainty in estimating the burst onset
probability. The chosen value of ε = 15 ms turned out to be

a good trade-off between smoothness of map 	 and limited
uncertainty in map 	σ .

The parameter σx is the standard deviation of the stochastic
stimulus and influences its power. Consequently, σx influences
the IBI lengths: By decreasing σx , the upper limit of � becomes
larger due to the presence of longer IBIs, which are associated
with higher uncertainties. The chosen values of σx turned out
to be a good trade-off to both induce burst onset and have IBI
lengths lower than 600 ms in most cases (and then not to high
uncertainty in the map 	σ ).

B. Comparisons with previous works

In [16] the authors correlate the phase value of the input
stimulus at the burst onset with the number of spikes per burst,
i.e., they propose a spike-count-based coding. In this paper, on
the contrary, the coding is based on the phase profiles causing
the burst onset. In other words, the phase coding mechanism
proposed in this paper is based on phase pattern matching,
rather than on punctual phase information.

In [7] it was suggested that, in sensory coding through
LFPs, phase plays a role more important than energy in terms
of information coding. This is the core of our method, where
phase profiles play a key role. Indeed, how the information
contained in the phase of the LFP could be transmitted is
still an open question. Even phase-of-firing codes assume that
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neurons receiving spikes are somehow aware of the LFP phase
at which they were emitted. Here we showed how a robust and
reliable association between input phase and burst onset can
be identified, hence we propose that burst activity could be an
effective way to inform postsynaptic neurons of the current
phase of the LFP.

C. Neurophysiological validation and application

We adopted here the model of spiking neuron introduced in
[21], which is an efficient model of bursting neuron. To verify
and possibly refine the model the following neurophysiological
test could be designed: By injecting (in isolated neurons)
current with selected spectral content while recording the
membrane potential (and hence the spiking activity), the
relationship between LFP phase and burst onset can be char-
acterized and compared with the results presented here. Model
parameters could then be tuned to match the bursting behavior
of specific neuron types. The application of our results to
neurophysiological studies is instead straightforward when
investigating bursting dynamics in vivo with extracellular
recordings. From an extracellular recording both LFP and
spiking activity can be extracted [2,27]. In standard conditions,
LFP can be considered a first-order approximation of the
average input to the local neurons [27,28], even if the set of
neural dynamics contributing to LFP is much more complex
[4]. Consequently, from a single extracellular recording both
the phase of the input and the bursting activity can be identified
and combined to derive a phenomenological description of
phase coding mechanisms as described in Sec. III.
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APPENDIX A: PYRAMIDAL NEURON MODEL

The considered pyramidal neuron model [21] is governed
by the state equations

Cm

dV

dt
= −IL − IK − INa − gc(V − Vd )

p
(A1)

for the action potential V of the soma compartment and

Cm

dVd

dt
= −IL − IKS − INaP − gc(Vd − V )

(1 − p)
+ I (t) (A2)

for the action potential Vd of the dendrite compartment. The
ionic currents are

INa = gNam
3
∞h(V − ENa), (A3)

IK = gKn4(V − EK), (A4)

INaP = gNaP r3
∞(Vd − ENa), (A5)

IKS = gKSq(Vd − EK), (A6)

IL = gL(V − EL), (A7)

where I (t) is the synaptic stimulus. The gating variables are
governed by the following kinetic equations:

dh

dt
= φh[αh(1 − h) − hβh], (A8)

dn

dt
= φn[αn(1 − n) − nβn], (A9)

dq

dt
= q∞ − q

τq

, (A10)

where

m∞ = αm

αm + βm

, (A11)

r∞ = 1

1 + e−(Vd+57.7)/7.7
, (A12)

q∞ = 1

1 + e−(Vd+35)/6.5
, (A13)

τq = τq0

e−(Vd+55)/30 + e(Vd+55)/30
. (A14)

The kinetic coefficients are

αm = −0.1(V + 31)

e−0.1(V +31) − 1
, (A15)

βm = 4e−(V +56)/18, (A16)

αh = 0.07e−(V +47)/20, (A17)

βh = 1

e−0.1(V +17) + 1
, (A18)

αn = −0.01(V + 34)

e−0.1(V +34) − 1
, (A19)

βn = 0.125e−(V +44)/80. (A20)

The chosen model parameters are shown in Table I, where gL,
gNa, gK, gNaP , and gKS are maximum conductances; gc is the
coupling conductance connecting the two compartments; Ek ,
EL, and ENa are the reversal potentials; Cm is the membrane
capacitance; φm and φn are temperature scaling factors; p is the
relative area between the somatic and dendritic compartments;

TABLE I. Parameters of the pyramidal neuron model.

Name Value

gL 0.18 mS/cm2

gNa 45 mS/cm2

gK 20 mS/cm2

gNaP 0.12 mS/cm2

gKS 0.8 mS/cm2

gc 1 mS/cm2

Ek −90 mV
EL −65 mV
ENa 55 mV
Cm 1 μF/cm2

φn 3.33
φh 3.33
p 0.15
τq0 250 ms
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and τq0 is a time constant, which influences the lifetime of
bursts.

APPENDIX B: STOCHASTIC PROCESSES

The methods to generate realizations of the four considered
stochastic processes are briefly summarized here.

White noise. The white noise xw(t) has been generated as a
realization Nt drawn at time t from a Gaussian random variable
with null mean and unitary variance N (0,1).

Pink noise. Since the PSD Sp(f ) of pink noise must be
proportional to 1

f α (with 0 < α < 2), a pink noise realization
xp(t) can be obtained from a white noise realization xw(t) as

xp(t) = F−1

{
1√
f α

F{xw(t)}
}
, (B1)

where F is the Fourier transform operator and we fixed α = 1.
Brown noise. The brown noise (or Brownian noise) realiza-

tion xb(t) has been generated as

xb(t) =
∫

dWt, (B2)

i.e., as the integral of the Wiener increment

dWt = Wt+dt − Wt �
√

dtN(0,1), (B3)

which approximates a Gaussian distribution with zero mean
and variance dt . The PSD Sb(f ) of xb(t) is proportional to 1

f 2 ,
as shown in Fig. 2(d).

Ornstein noise. An Ornstein noise realization xo(t) has been
computed by solving the SDE (Ornstein-Uhlenbeck process)

dxt = θ (μ − xt )dt + σdWt (B4)

through the Eulero-Maruyama method [29], with θ = 0.05,
μ = 1.2, σ = 0.3, and dWt defined in Eq. (B3).

Stochastic stimulus. Let xr (t) be the generic realization of
one of the four processes described above (r ∈ {w,p,b,o}).
Then we computed the stochastic stimulus x(t), with zero
mean and standard deviation σx , by applying the scaling

x(t) = σx

xr (t) − 〈xr (t)〉√〈
x2

r (t)
〉 − 〈xr (t)〉2

, (B5)

where 〈·〉 denotes the mean value (over a given interval) of
the argument function. Since the brown noise has almost all
power concentrated in the neighborhood of f = 0, we fixed
σx = 10 for r ∈ {w,p,o} and σx = 300 for the brown noise
term, in order to have comparable energies for the four signals
in the frequency band [1,21] Hz.

The M-length (M = 2 × 105) discrete versions of the
described signals have been obtained by sampling xw(t), xp(t),
xb(t), and xw(t) with step �t = 5 ms. Therefore, the total time
length of x(t) is M�t = 106 ms.

APPENDIX C: POWER SPECTRAL DENSITY OF
STOCHASTIC PROCESSES

The PSD Sx(f ) of a generic stochastic process x(t) is
defined as

Sx(f ) = lim
Tw �→∞

E

{∣∣∣∣ 1√
Tw

∫ Tw/2

−Tw/2
x(t)ej2πf tdt

∣∣∣∣
2
}

x

, (C1)

where Tw is a time window and E is the mean over realizations
of x(t). We estimated Sx(f ) by using 700 realizations of length
Tw = 14 s.

APPENDIX D: PHASE PROFILE DERIVATION

The complex envelope Ĩ (t) of a synaptic stimulus I (t) is
defined as

Ĩ (t) = I (t) + jIQ(t) = ρ(t)ejϕI (t), (D1)

where ρ(t) and ϕI (t) are the modulus and phase of Ĩ (t) and
IQ(t) is the quadrature component of I (t), computed by using
the Hilbert transform H:

IQ(t) = H{I (t)} = 1

π
P.V.

∫ +∞

−∞

I (t)

t − τ
dt. (D2)

The phase profile ϕI (t) (whose values are defined in the
circular space � : [−π,π ]) is then computed as arg[Ĩ (t)].

APPENDIX E: CIRCULAR STATISTICS

In this appendix we briefly recall the elements of circular
(or directional) statistics [30] necessary to compute the circular
phase of the synaptic inputs. Let � : [−π,π ] be the circular
domain of the random variable θ with circular PDF f̊ (θ ). Then
we can define the following quantities.

(i) The circular mean of θ is

μ̊ = arg

[∫
�

f̊ (θ )ejθdθ

]
, (E1)

where arg extracts the argument of a complex number and
ejθ uniquely identifies a specific point on the unit circle, for
any θ ∈ �.

(ii) The circular distance between two values θx,θy ∈ � is

d̊θx ,θy
=

√
1 − 1

2 |ejθx + ejθy |, (E2)

with d̊θx ,θy
∈ [0,1]. Owing to this definition, d̊θx ,θy

= 0 if ejθx =
ejθy (i.e., θx and θy are the same element of �) and d̊θx ,θy

= 1
if ejθx = −ejθy (i.e., the phase shift |�θ | = |θy − θx | = π on
� is maximum).

(iii) The circular variance (which quantifies the mean-
square deviation in �) is

σ̊ 2 = 1 −
∣∣∣∣
∫

�

f̊ (θ )ejθdθ

∣∣∣∣. (E3)

(iv) Since

0 �
∣∣∣∣
∫

�

f̊ (θ )ejθdθ

∣∣∣∣ �
∫

�

|f̊ (θ )||ejθ |dθ =
∫

�

f (θ )dθ = 1,

(E4)

the circular variance σ̊ 2 ranges in the interval [0,1], which
allows defining the confidence interval of θ in � as
[μ̊ − πσ̊ ,μ̊ + πσ̊ ].

(v) Let � = {θ : I �−→ �,I ⊂ R} be the functional space
containing stochastic processes θ (t) with circular codomain
�, characterized by the PDF f̊ (θ,t). Then we can compute
first-order time-variant statistics μ̊(t) and σ̊ 2(t) from (E1) and
(E3), by replacing f̊ (θ ) with f̊ (θ,t). Since � is a metric
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space, we can always define the circular distance D : � �−→ [0,1] between two generic realizations θx(t),θy(t) ∈ � with
t ∈ [a,b] ⊆ R by integrating over time the circular distance

D[θx,θy] =
√〈

d̊2
θx ,θy

(t)
〉 =

√
1 − 1

2(b − a)

∫ b

a

|ejθx (t) + ejθy (t)|dt. (E5)
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