
A Protocol for Programmable Smart Cards

T. Cucinotta, M. Di Natale
Scuola Superiore Sant’Anna, Pisa (Italy)

E-mail:
�
cucinotta,marco � @sssup.it

D. Corcoran
Schlumberger Smart Card Research, Austin (TX)

E-mail: corcoran@linuxnet.com

Abstract

This paper presents an open protocol for interoperability
across multi-vendor programmable smart cards. It allows
exposition of on-card storage and cryptographic services to
host applications in a unified, card-independent way. Its
design, inspired by the standardization of on-card Java lan-
guage and cryptographic API, has been kept as generic and
modular as possible. The protocol security model has been
designed with the aim of allowing multiple applications to
use the services exposed by a same card, with either a co-
operative or a no-interference approach, depending on ap-
plication requirements.

Existing protocols for smart card interoperability define
powerful and sophisticated card services, intended to be
hard-coded into the device hardware. The presented pro-
tocol, instead, is intended to be implemented in software on
programmable smart cards. By defining simple functional-
ities, it allows to achieve a small management code that,
once loaded onto a card, leaves enough free memory for
application data, cryptographic keys or further programs.

A card-side implementation of the protocol has been de-
veloped as an open source Applet for Java Card 2.1.x com-
pliant cards. On the host-side, the protocol has been im-
plemented into an open-source, modular smart card mid-
dleware, portable among Unix like platforms, that exposes
a new smart card API to the upper software layers. Vari-
ous open source programs have been developed using the
new middleware, including digital signature, console login,
remote terminal, and card management tools, proving ef-
fectiveness of the new protocol in the context of widely used
applications, despite its reduced functionalities.

1. Introduction

Data security is one of the basic requirements in com-
puter software design, and it is most commonly achieved
by means of cryptographic algorithms and protocols. These
techniques do not suffice to guarantee security of applica-
tions unless cryptographic keys are securely managed. The

most effective means for protecting keys, today, is the adop-
tion of smart card technology, that delegates management
of cryptographic keys to external trusted devices. Even if
smart cards have been widely adopted and supported on
proprietary platforms, they are not being used on open plat-
forms due to the lack of open solutions. On these systems
open source libraries and applications allow the use of cryp-
tography for data protection, but the achieved security level
is strongly limited because of the use of software-only cryp-
tography. A few solutions exist supporting only one or a
limited set of smart card devices.

In our opinion, the reasons for this limitation have been,
among others, the differences among devices from differ-
ent vendors, trying to differentiate products with respect to
concurrency, and the lack of open standards for interoper-
ability. The MUSCLE1 Card protocol, which is being in-
troduced in this paper, constitutes a step toward openness in
smart card middleware design and implementation. We be-
lieve that this protocol, along with the open framework that
is being developed around it for smart card development,
will promote adoption of these devices on open platforms.

This paper is structured as follows. Next section intro-
duces common issues involved in smart card interoperabil-
ity, and section 3 briefly discusses how existing standards
approached them. Section 4 presents the new protocol, un-
derlining and motivating the main choices at the base of its
design. Section 5 introduces some practical aspects related
to protocol implementation, showing how they have been
dealt with in the implementation for Java Card devices. Sec-
tion 6 shows some of the extensions that could be embedded
in the protocol to make it suitable for a wider range of ap-
plications.

2. The problem of smart card interoperability

In spite of the growing need for smart card integration
into applications and the advantages arising from their use,
smart card devices are struggling for a wider use in net-
work security applications. This is especially true for open

1Movement for the Use of Smart Cards in a Linux Environment.

1



platforms, where a strong demand by the developers’ com-
munity exists for the use of unrestricted libraries and ap-
plications. Open source software and open solutions are
probably the right match for this demand. Although many
open source programs exist which embed cryptographic ser-
vices, most of them still lack the support for external cryp-
tographic smart cards due to the complexity in integrating
such devices. This complexity exists for several reasons:
different types of card devices exist, including storage only,
crypto-enabled, GSM enabled, with general purpose CPU,
programmable in Java, Assembler, Basic, etc...; in spite of
the efforts made by various organizations in defining com-
mon standards [3, 1, 5, 8, 7, 6] for interoperability at a pro-
tocol level, different card devices have partial implemen-
tations with many restrictions, proprietary extensions and
uncommon filesystems; many smart cards have closed pro-
tocols and functionalities: this makes their use within open
solutions impossible; the card life cycle is short, and by the
time a device is supported on less common systems like
most Unix variations, it ceases to be manufactured.

Today many smart card aware applications exist on
closed platforms that use smart cards for the only purpose of
securely storing and managing user cryptographic keys and
a few related data. Some examples are PKI2 based appli-
cations, like digital signature programs, secure on-line web
services, secure e-mail. These applications face with the in-
teroperability problem by adopting common interfaces at a
software level, like the PKCS#11 [13] or PCSC [4] ones.
Unfortunately, the modules implementing these interfaces
are usually provided by card vendors only for those plat-
forms that are considered of interest. Rarely they provide
an implementation for open platforms. This situation dis-
courages smart card integration and has the consequence of
a reduction in the overall smart card usage, hindering their
evolution in security software and frameworks.

On the other hand, programmable smart cards have al-
ways been used in the context of secure solutions with dif-
ferent and application specific tasks to be performed by the
external device. Usually a custom program is loaded on
the card implementing a custom protocol to exchange data
with the specific application. A common example is a pre-
paid card, where the on-board program is used to manage
an electronic wallet.

In this paper an hybrid approach is introduced, where a
program is loaded onto a programmable card allowing ex-
posure of cryptographic and storage services to generic ap-
plications by means of an open protocol. The advantage of
this approach is that it is possible to both use the generic
services provided by the program, and to implement cus-
tom commands in order to satisfy specific application re-
quirements. Existing standard protocols are too much com-
plex to be implemented on such devices, where the on-card

2Public Key Infrastructures.

program must be of contained size in order to leave enough
space on the card for cryptographic keys, user data and other
extensions.

3. Existing solutions

In this section some existing protocols for smart card in-
teroperability are described. These protocols define proto-
col data units (APDUs) that are exchanged between a host
and a smart card, relying on the T=0 or T=1 [2] lower
level protocols. T=0 and T=1 define, respectively, an asyn-
chronous half duplex character transmission protocol and a
block one for exchanging data among an interface device (a
smart card reader), and a smart card. Most times the inter-
face device only acts as a gateway between the host and the
card, so in the following we will improperly say that proto-
col data units are exchanged between the host and the card.
These protocols require that each action is started by the
host by sending a command APDU to the card, composed
of a mandatory header and an optional, variable length, data
field. After having performed some internal computations,
the card sends a response APDU to the host, composed of
an optional variable length data field and a mandatory status
word (SW), reporting success or possible error conditions
occurred during the operation.

Probably the most commonly implemented standard pro-
tocol for smart cards is the ISO 7816-4 [3]. In short,
this document defines commands to browse an on-board
filesystem, read/write data from/to files, allow reciprocal
authentication of the card and external users and appli-
cations, manage multiple logical communication channels
with a card, and perform authenticated and/or encrypted
APDU exchanges (secure messaging). Different types of
files are defined: dedicated files store directory informa-
tion, while elementary files store application data. Elemen-
tary files are also distinguished in transparent if the content
is merely a sequence of bytes, linear if the content is a se-
quence of records, with the possibility to have both fixed-
size and variable-size records, and cyclic if the records are
to be handled in a cyclic fashion. Authentication of external
users/applications can be performed by means of a PIN code
verification, or cryptographic challenge-response protocol.
In the first case the user or host application is required to
prove knowledge of a PIN code, typically a short alphanu-
meric string, that is compared by the card with the on-board
one. In the second case, a host application is required to
prove knowledge of a cryptographic key, by using it to en-
crypt a random sequence of bytes, called challenge, gen-
erated by the card itself. The card decrypts the encrypted
challenge using the on-board key, then compares it with the
original generated challenge. A challenge-response authen-
tication protocol can be performed by using both symmetric
and asymmetric cryptography. In the first case the host-key

2



and the on-board key are the same, while in the second case
they are respectively the private and the public key of a key
pair. Also authentication of the card to external applications
can be performed by means of challenge-response proto-
cols. The ISO 7816-4 standard addressed from inception
only issues related to card use, while commands for creat-
ing the on-card filesystem, as well as the ones for loading,
using and managing cryptographic keys on the card, were
completely missing. Only later the ISO 7816-8 [5] and ISO
7816-9 [8] standards fixed the missing specifications, when
tenths of card devices were already on the market with pro-
prietary protocol extensions. The final protocol arising from
ISO standards is very powerful and flexible. It has com-
mand APDUs for: calculation of cryptographic primitives
and hash functions; calculation and verification of digital
signatures; verification of on-board public key certificates;
data encryption and decryption; and creation and manage-
ment of security environments (SE) and security associa-
tions (SA), allowing the definition, for each card resource
and operation, of complex access control rules (ACRs). It
is possible to require multiple authentication mechanisms,
with an and or or semantics, and, in the expanded format,
ACRs can be combined into arbitrarily complex boolean ex-
pressions. Furthermore, an inheritance mechanism is de-
fined that allows ACRs associated to directories to hold for
all the contained elements.

On a related note, the PKCS#15 standard [6] defines, in
the context of an ISO on-card filesystem, a file and directory
format for storing security-related information on crypto-
graphic tokens, like digital certificates, cryptographic keys,
and authentication data (i.e. PIN codes).

The ISO 7816-7 standard [1] defines a set of command
APDUs that allow a smart card to expose advanced data
retrieval facilities to applications. This way an application
can specify a SQL-like search query, and retrieve only those
records that match the query. With incoming smart cards
with more and more on-board memory, this is supposed to
leverage the needed transfer bandwidth between the card
and the applications by performing searches on the card-
side, and transferring to the host only the required data.

A further protocol for smart cards is the US Government
SC Interoperability Specification [7], defining specific com-
mands for an interoperable use of smart cards in the US
Government context. In example, file formats are defined
for the general information file, containing personal user
information like name, surname, title, etc. . . , for the pro-
tected personal information file, containing Social Security
Number, date of birth, etc. . . , and for the X.509 certifi-
cate files. The standard defines a set of ISO 7816-4 com-
pliant commands for on-card filesystem, PIN verification
and host/card authentication, plus additional commands for
computing RSA digital signatures and encryption opera-
tions, and for retrieval of a public key certificate associated

with an on-board key. The card access control model allows
a predefined set of protection modes for card resources: al-
ways allowed, allowed after PIN verification, allowed after
strong external authentication, a simple and or or combina-
tion of last two modes, allowed only when a secure channel
is used, and never allowed. This protocol is tied to a spe-
cific context, and does not provide extension mechanisms
for allowing, in example, different key types than RSA to
be used for public key operations in the future.

Interoperability issues among cryptographic smart card
devices are faced with in a different way by the Java
Card ������� standards [9, 10, 11]. These documents refer to
cards with an on-board Java Virtual Machine (JVM), that
are able to execute custom Java programs, called Applets.
The standards define a subset of the Java language and Run-
time Environment (JRE) that must be supported by the on-
card JVMs, and a standard API that must be exposed to the
Applets in order to allow access to on-board crypto facili-
ties. This way it is possible to write a program that runs on
any compliant smart card, implementing a custom protocol
for communicating with the host. Fortunately this standard
is being adopted by different card manufacturers. Both for
its success, and for the well designed on-card cryptographic
API, this platform has been chosen for implementation of
the protocol introduced in this paper.

4. Protocol Overview

This section features a technical overview of the proto-
col, underlining how the project goals have been accom-
plished. The discussion only addresses protocol’s main
features, and explains main design choices. The complete
protocol specification [14] is available for download at the
URL: http://www.musclecard.com.

4.1. Objectives and design choices

The project has been focused from inception on the re-
lease of an open, simple, card independent, complete and
freely available card protocol that allows a host application
to talk to any programmable smart card, in order to access
cryptographic and storage facilities on the card. The main
goal in protocol design was retaining enough generality to
catch and satisfy requirements of a multitude of target appli-
cations, comprising digital signature, secure e-mail, secure
login, secure remote terminal and secure on-line web ser-
vices, both PKI based and not. These requirements have
been identified in having a means of generating, importing,
exporting, and using cryptographic keys on the card. Also
required is having a means of creating, reading, and writing
generic data on the card in separate “containers”. This is
useful, for example, to store a public key certificate asso-
ciated with a private key on the card. The access to some

3



of these resources needs to be granted only after host appli-
cation and user authentication. Another requirement is the
independence of the managed data chunks from the lower
level T=0 APDU size limitations, so to preserve the ability
to handle large keys and data chunks that will be needed
in a near future. The fundamental constraint on the proto-
col design was due to the limited card memory of todays’
programmable devices (ranging from 16 to 64 KBytes), re-
sulting in the requirement of a size-contained code for the
on-board protocol implementation. This resulted in serious
constraints on the protocol complexity, that needed to be as
simple as possible.

The result has been a simple and light protocol that is
more suitable than already existing ones to be implemented
on programmable card devices, given the limited amount of
available memory and computational resources. As a re-
mark, the developed Applet, implementing the entire pro-
tocol, has a code size of around 10 KBytes. On a Schlum-
berger Cyberflex Access 32K card, this leaves enough free
space on the card for keys, certificates, additional applica-
tion data, and further Applets to be loaded on the card for
additional services to be used in a joint or alternative fash-
ion.

The protocol design explicitly addresses initialization is-
sues, such as how data or key objects are created on the card,
and what authorizations are needed for these operations to
succeed. The protocol does not address sophisticated card
services that can be required by some specific applications.
For example applications for “digital money” or “pre-paid
cards” can require special operations to be performed on
stored data. Multi-key digital signatures and authentication
schemes can require specific cryptographic protocols to be
performed on multiple cards. These applications can still
benefit of the exposed protocol and open implementation,
by extending them with the required functionalities.

4.2. Protocol command set

With respect to the T=0 and T=1 protocols, standing at
the transport layer according to the terminology defined in
[12], section 7, our protocol stands above, at the application
layer, identifying a set of commands that a smart card pro-
gram should support. The protocol specification exactly de-
fines what class, instruction, parameter and data bytes must
be provided by the host for each command, and what data
is expected in response, if any, from the card, along with
the possible error codes that identify abnormal conditions
during command execution.

A general overview of the commands available in our
protocol specification is reported in table 1, while specific
details about various commands are reported in the follow-
ing sections.

Data Storage
Services

CreateObject, DeleteObject
WriteObject, ReadObject

ListObjects

Cryptographic Key
Management

GenerateKeyPair, ComputeCrypt
ImportKey, ExportKey

ListKeys
PIN Management
Services

CreatePIN, ChangePIN
UnblockPIN, ListPINs

Security Status
Management

VerifyPIN, ISOVerify
GetChallenge, ExtAuthenticate

GetStatus, LogOutAll

Table 1. MUSCLE Card Protocol command
set.

4.3. Data storage services

The protocol encapsulates applications’ data into simple
containers, called objects, identified by means of a 32 bit
object identifier (OID). Access control is enforced on a per-
object and per-operation basis, distinguishing among cre-
ate, read, write and delete operations. More details on this
are given in section 4.6. The defined data storage service
suffices to the target applications cited above, by allowing
them to store, retrieve and manage data onto a card in a se-
cure and controlled way.

The protocol does not provide hierarchic arrangement of
objects, nor typed objects, conversely to other approaches
[7] in which both special file types and special file contents
have been standardized for a particular application context.
However, a range of object identifiers has been reserved for
future use and cannot be used by applications. This could
be used in the future to support extended features, like file
or certificate directories, that could be managed by the card
with a set of extension commands.

The protocol specification does not address issues like
how objects should be created and managed on the card,
how many objects are allowed to exist due to management
constraints (i.e. allocation tables), how free object mem-
ory is to be handled by applications (i.e. by use of com-
paction or full defragmentation of free blocks). Applica-
tions have only a view of the total available memory, and
whether an object of that size can be really created or not
depends on the specific on-board memory management that
is performed on the card.

4.4. Cryptographic services

The protocol allows up to 16 keys to be stored and man-
aged on the card, identified by means of a numeric key iden-
tifier. A full key pair can also be stored using two key iden-

4



CreateObject(InObj)

Host
Application

Smartcard
Program

Ok

WriteObject(InObj,KeyBlobData)

...
ImportKey(KeyID)

Ok

Ok

Figure 1. Use of the input object during a key
import operation.

tifiers. Key types are those provided by the Java Card 2.1.1
API: RSA, DSA, DES, Triple DES, Triple DES with 3 keys.
The protocol is designed in such a way to allow further key
types to be easily added in the future.

Operations provided on cryptographic keys are im-
port/export from/to the host, calculation of cryptograms,
and listing of keys, that provides size and type informa-
tion. All key operations but key listing can be allowed only
after proper host application/user authentication. The pro-
tocol allows asymmetric key pairs to be directly generated
on board guaranteeing the private key can never be exposed
outside of the card. In this case the public key can be ob-
tained by the host application with an ExportKey operation
to be performed after the key pair generation. When a key
pair is created on-board, the host application specifies under
what conditions subsequent reading, overwriting and use
operations are allowed for each of the keys in the pair. The
same rules can be specified when importing a new key from
the outside world by means of an ImportKey command. Fur-
ther details on access control and security model enforced
by the protocol will follow in paragraph 4.6.

4.5. Input and output objects

Objects have also been used to overcome the T=0 proto-
col’s limitation of 256 bytes per APDU exchange3. When
dealing with reading or writing an object contents, the prob-
lem has been solved by introducing an offset field as a pa-
rameter to the ReadObject and WriteObject commands, so
that reading or writing of a long data chunk can be per-
formed by invoking multiple times the commands with in-
creasing offset values. When dealing with exchange of

3Extended data length fields and the Envelope command, as defined in
[3], are not implemented on all smart cards

cryptographic keys or cryptograms, instead, this limit was
overcome by reserving two object identifiers for an input
object and an output object. These are used for providing
and retrieving long data to and from other commands. For
example, in order to import a key into the card, the key data
must be provided into the import object, then an ImportKey
command simply reads the key data from that object (see
figure 1). Similarly, to export a key, the ExportKey com-
mand calculates the key data and leaves it into the export
object to be retrieved in subsequent commands by the host
application. In the latter case it’s also up to the application
to delete the output object after retrieval of contained infor-
mation.

I/O objects can contain sensitive information like key
values or application plain text data, so special attention
must be paid to their management. In fact operations us-
ing the I/O objects must be split in 3 or more protocol com-
mands, where only the last one deletes the involved I/O ob-
ject. If execution of the command sequence is interrupted
for any reason, this object would not be deleted, retaining
its contents. These problems have been avoided by request-
ing that the I/O objects should be deleted as soon as possi-
ble, and at the card reset. For example, each operation that
uses the input object must delete it before returning. When
granting security of operations involving the export object,
instead, it’s up to the host application to read the contained
data as soon as possible, and to finally delete the object from
the card. In both cases security of the composite operation
is granted both by the operative system resource manager
that does not allow other applications to interfere with the
current multi-command operation, and by the object dele-
tion at card reset that avoids attacks relying on a sudden
extraction of the device by the user before the object has
been deleted. In order for these mechanisms to achieve the
desired security level, the application must acquire access
to the smart card reader in an exclusive mode before start-
ing any composite operation. This is also required before
issuing any authentication command to the card, like a Ver-
ifyPIN or an ExtAuthenticate command, in order to avoid
that other applications access protected on-card resources.

4.6. Security model and access control enforcement

A simple Access Control List (ACL) is defined, allow-
ing operations to be performed only after proper host ap-
plication and user authentication. This may be performed
by means of a PIN code verification, a challenge-response
cryptographic protocol, or a combination of both of these
methods. Furthermore the protocol has been designed to
allow future support for other identification schemes like
fingerprint verification or generic biometric verification. As
a proof of concept, a prototype implementation has been re-
cently developed for on-board fingerprint verification. Even

5



Unauthenticated

PIN n.2
Verified

Key n.1
Verified

VerifyPIN
with PIN n.2

ExtAuth
with key n.1LogOutAll

PIN 2 and Key 1
Verified

ExtAuth
with key n.1 VerifyPIN

with PIN n.2

PIN n.2 and n.3
Verified

VerifyPIN
with PIN n.3

Card
Reset

Figure 2. Subset of possible security state
transitions allowed by the protocol.

though additional commands have been added to the proto-
col for biometric template management, the new authenti-
cation mechanism fits well into the protocol, allowing, in
example, the restriction of a key use or an object reading
only after a successful fingerprint verification.

Access rules for on-card resources are specified in terms
of the authentication needed to access each operation on
each key or object. This has been achieved by defining
the concept of identity. This term refers to one of sev-
eral authentication mechanisms that host applications and
users can use to be authenticated to a smart card. Identities,
PINs, and cryptographic keys are referred to by means of
numeric identifiers. Different types of identity are defined:
identities n.0-7 are said PIN-based and are associated, re-
spectively, with PIN codes n.0-7; identities n.8-13 are said
strong and are associated, respectively, with cryptographic
keys n.0-5 for the purpose of running challenge-response
cryptographic authentication protocols; identities n.14-15
are reserved, their behavior is not defined by the actual ver-
sion of the protocol and is reserved for other authentication
schemes to be incorporated in the future4.

A successful run of one of the authentication mecha-
nisms causes the log in of the associated identity, in addi-
tion to identities already logged in. This way a host appli-
cation can gradually switch to a higher security level that
grants access to more and more of the card’s capabilities, as
it runs additional authentication mechanisms. Furthermore
the LogOutAll command allows a host application to return
back to the unauthenticated security status. A little subset
of possible security states and transitions due to successful
authentication commands is shown in figure 2.

Logged identities control which operations are allowed
on an object or on a key by means of an ACL specifying
which identities are required to be logged in to grant access
to each operation of each object or key. Object operations
are read, write and delete. Key operations are overwrite

4The fingerprint verification mechanism recently developed uses iden-
tity n.14.

(either by means of regeneration or by means of import),
export, and use. An ACL associated with an object or key is
specified by means of three Access Control Words (ACW),
each one relating to an operation. An ACW has each bit
corresponding to one of the 16 total identities that can be
logged in. An all-zero ACW means that the operation is
publicly available, that is a host application can perform
it without any prior authentication. An ACW with one or
more bits set means that all of the corresponding identities
must be logged in at the time the operation is performed.
An all-one ACW means that the operation is disabled and
cannot be performed, independently of the connection secu-
rity status. This is useful to disable reading of private keys,
for example.

The discussed security model has enough freedom to al-
low at least four levels of protection for card services. An
operation can be always allowed if the ACW requires no
authentication, PIN protected if the ACW requires a PIN
verification, strongly protected if the ACW requires a strong
authentication, and disabled if the ACW is all-ones, forbid-
ding its execution. As an example, use of a private key onto
a smart card is usually PIN protected, but some applications
could require a strong protection. Reading of a private key
is usually disabled. Public objects may always be readable,
but their modification could be PIN protected. Private ob-
jects could require PIN protection for reading and possibly
strong protection for writing. The model has enough flexi-
bility to allow all of these access policies, and more, to be
enforced.

4.7. PIN management

APDUs have been defined for PIN management, en-
abling to create, verify, change and unblock PINs. Several
PIN codes are allowed to exist and be managed onto a sin-
gle card. A special PIN (transport PIN, n.0) is assumed to
already exist right after the program has been loaded and
instantiated on a card, and it must be verified to allow a host
application to create further resources on the card. This has
been imposed to prevent allocation of card resources with-
out the user knowledge.

The protocol has been designed to allow multiple appli-
cations to use the same card and, on that card, the same
program instance, without interfering each other. While
on a Java Card device this could be allowed in a simple
way by creating multiple instances of the same Java Ap-
plet, such an approach would suffer of a static allocation of
card resources. In fact the total memory to be reserved for
an Applet instance must be specified at instantiation time.
By allowing multiple applications to use the same Applet
instance, we allow a dynamic allocation of card resources
to single applications as needed5. The general idea is that

5A static pre-allocation of part of the object space can still be performed

6



each application must be able to have and manage its own
PIN, data objects and keys. This has been accomplished
in two ways: requiring verification of the transport PIN
to allow creation of new PINs, objects and cryptographic
keys, and allowing an application to create additional iden-
tities by means of creating further PIN(s) or cryptographic
key(s); these identities can be required in ACLs of appli-
cation specific objects and keys that are “sensitive” for the
application. For example, when “formatting” the card, an
application should create a new PIN and require all of its
data and keys to be protected by that PIN. This way every
time the user interacts with that application, she is required
to only enter the new PIN value, resulting in the guarantee
that the application cannot manipulate other application’s
resources or create further resources on the card.

4.8. Transactions and related issues.

Different kind of error conditions can occur during a
smart card operation. It is possible that the host provides
an incorrect class code for the currently inserted card, an
incorrect instruction code for the specified command class,
or incorrect parameters to the specified command. Further-
more, a host can cause an access violation when trying to
access a resource/operation on the card that is forbidden
with privileges of the actual session. It can happen that the
software component that is currently either providing data
to or retrieving data from the card suddenly interrupts its
operation (i.e. an application crash or a system shutdown).
Finally, the card can be suddenly extracted by the user dur-
ing a command execution.

The protocol specification explicitly deals with first four
conditions, by specifying, for each command, what error
codes must be returned by the device when some of these
conditions occur. These can be regarded as “graceful” fail-
ures because they assume that both the host and the card are
still operating correctly and can run the needed error recov-
ery procedures to handle the condition. Last two error types
are also very important with respect to a smart card life, be-
cause they raise transactions issues due to a sudden reset or
power down of the device. In fact after a host-side appli-
cation crash, usually, the device is again under control of
the resource manager, that should issue a “reset” or “power
down” command to the reader in order to guarantee secu-
rity of data and keys that were handled by that application
(if it was using the device in exclusive mode). Furthermore
a card extraction always powers down the card. If the device
was updating its internal data during the command execu-
tion, it is very important that this is done in a transactional
way, so to guarantee consistency of data in such cases.

The provided implementation of the protocol is a Java

by an application by creating a “fake” object with the required size and
properly resizing it when additional objects must be created.

Card Applet running into the Java Card Runtime Environ-
ment [10], that already implements transactions on every
updates to permanent card data during a single command
execution, up to a maximum amount of changed bytes. This
allowed to write the Applet without any additional code for
implementing the transactional behavior.

When implementing the protocol onto a programmable,
non Java Card, device, it is of fundamental importance that
the program explicitly addresses transactional issues, guar-
anteeing consistency of at least internal key and object “di-
rectories”, and access control data.

4.9. Extendibility

Our protocol does have limitations. These are due to the
main purpose of its design: to allow new generation pro-
grammable cards to expose basic cryptographic and data
storage facilities to host applications in a way that does not
depend on the specific card. So particular attention has been
paid to extensions that could be needed in the future.

In order to allow such extensions to be performed with-
out compromising software that has already been written
and will eventually be written, the protocol has versioning
built into it. The version information is available through
the GetStatus command, by means of minor and major ver-
sion numbers. An increment in the minor version number
should still retain compatibility with already written soft-
ware. This could occur, for example, if commands needed
to be added to the protocol itself, without changing behavior
of already existing ones. An increment in the major version
number, instead, would not retain such a compatibility, and
would mean a change in some of the protocol core features.

5. Implementation notes

The introduced protocol has been implemented and used
with various applications. On the card-side, an open source
Java Card Applet has been developed, fully compliant to
the protocol specification, and tested both on Schlumberger
Cyberflex Access 32K and Gemplus P11/PK cards. On
the host-side, a new smart card middleware has been de-
veloped, exposing to upper layer software an open smart
card API that almost maps one to one with the protocol it-
self. The API resulted to be enough generic to allow devel-
opment of plug-ins for different types of cards, within the
same middleware. On the top of this layer, an open source
PKCS#11 module has been developed, allowing integra-
tion of all available applications supporting this standard
on open platforms. Mozilla and Netscape Communicator
are example softwares now able to perform secure access to
web sites (by means of the HTTPS protocol) and to sign e-
mail messages using the exposed Applet and protocol. Fur-
thermore, the new smart-card API has been used to directly

7



integrate smart card technology into the OpenSSH software,
an open source implementation of the Secure Shell proto-
col [16] for secure remote terminal. An open source Plug-
gable Authentication Module[15] (PAM) has also been de-
veloped, allowing smart card based secure login, and smart
card based access to all applications using this mechanism.
A command line application for digital signatures has also
been developed directly with this new API. XCardII, a GUI
based smart card manager, and MuscleTools, a command
line one, have also been developed directly on the top of the
new smart card API. All software components have been
developed and tested on a variety of open platforms, in-
cluding various Linux distributions and Mac OS/X, and are
available for free download either from the Muscle Card
web site (http://www.musclecard.com), or from the Smart
Sign web site (http://smartsign.sourceforge.net).

As a proof of concept, the protocol extension mechanism
has been used recently for providing a biometric extension
to the Applet. This allows management of a new identity
type, that logs in after a successful run of an on-card finger-
print verification algorithm. The extended Applet allows,
for example, to use an on-board private key or to read an
on-board object contents, only after the user has been au-
thenticated by matching the fingerprint template provided
by the host against the on-board stored one. A scheduled
task is integration of other applications with this biometric
extension.

6. Conclusions and future work

In this paper a new open protocol for smart card interop-
erability has been introduced, allowing programmable card
devices to expose storage and cryptographic services to host
applications in a generic way. Design choices and project
goals have been described. With respect to existing proto-
cols for smart card interoperability, the exposed one has re-
duced functionalities, aiming at being implemented in soft-
ware on programmable devices, like Java Card platforms.
The reduced functionalities suffice to most smart card en-
abled applications that use card devices for authentication
and digital signature purposes, comprising PKI based ap-
plications, constituting a better solution to be implemented
on programmable card devices due to the on-board resource
constraints. This has been shown by briefly describing some
software components developed around the protocol, and
showing how some crypto aware applications have been in-
tegrated with them and with the protocol, at last. In the au-
thors’ opinion, the open protocol specifications, along with
the open source components developed, make a step to-
ward simplification in engaging smart card technology into
crypto aware applications on open platforms.

Still the efforts have been focused on target applications
mainly dealing with user authentication and digital signa-

tures, while security services exist that require special oper-
ations to be performed by a smart card and do not actually
fit into the protocol’s model. One possible investigation di-
rection could be finding those minimal set of operations that
could be added as separate commands to the defined proto-
col in order to extend it and allow deployment of a wider set
of security services to applications, while maintaining per-
fect backward compatibility. Another possibility could be
standardization of object identifiers in order to allow appli-
cations to share most widely used information onto a smart
card, in a fashion that is similar to what PKCS#15 [6] does
today with ISO7816-4 filesystem enabled cards. Further,
a proper mapping between PKCS#15 file IDs and object
OIDs could allow interoperability with PKCS#15 enabled
smart cards.

References

[1] Iso/iec 7816-7: Information technology - identification
cards - integrated circuit(s) cards with contacts - part 7: In-
terindustry commands for structured card query language
(scql). 1999.

[2] Iso/iec 7816-3: Information technology - identification
cards - integrated circuit(s) cards with contacts - part 3:
Electronic signals and transmission protocols. 1989.

[3] Iso/iec 7816-4: Information technology - identification
cards - integrated circuit(s) cards with contacts - part 4: In-
terindustry commands for interchange. 1995.

[4] Interoperability specification for iccs and personal computer
systems. December 1997.

[5] Iso/iec 7816-8: Information technology - identification
cards - integrated circuit(s) cards with contacts - part 8: Se-
curity related interindustry commands. 1999.

[6] Pkcs-15: A cryptographic token information format stan-
dard. April 1999.

[7] Government smart card interoperability specification: Con-
tract modification. August 2000.

[8] Iso/iec 7816-9: Information technology - identification
cards - integrated circuit(s) cards with contacts - part 8:
Additional interindustry commands and security attributes.
2000.

[9] Java card 	�
 2.1.1 application programming interface. May
2000.

[10] Java card 	�
 2.1.1 runtime environment (jcre) specification.
May 2000.

[11] Java card 	�
 2.1.1 virtual machine specification. May 2000.
[12] Etsi ts 102 221 v4.3.0: Smart cards; uicc-terminal interface;

physical and logical characteristics (release 4). July 2001.
[13] Pkcs-11 version 2.1.1 final draft: Cryptographic token inter-

face standard. June 2001.
[14] D. Corcoran and T. Cucinotta. Muscle cryptographic card

definition for java enabled smartcards. August 2001.
[15] V. Samar and R. Schemers. Request for comments 86.0:

Unified login with pluggable authentication modules (pam),
October 1995.

[16] T. Ylonen, T. Kivinen, M. Saarinen, and S. Lehtinen.
Internet-draft: Ssh protocol architecture. January 2002.

8


