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Abstract. Human activity recognition plays an important role in the
context of Ambient Assisted Living (AAL), providing useful tools to
improve people quality of life. This work presents an activity recognition
algorithm based on the extraction of skeleton joints from a depth camera.
The system describes an activity using a set of few and basic postures
extracted by means of the X-means clustering algorithm. A multi-class
Support Vector Machine, trained with the Sequential Minimal Optimiza-
tion is employed to perform the classification. The system is evaluated
on two public datasets for activity recognition which have different skele-
ton models, the CAD-60 with 15 joints and the TST with 25 joints. The
proposed approach achieves precision/recall performances of 99.8 % on
CAD-60 and 97.2 %/91.7 % on TST. The results are promising for an
applied use in the context of AAL.

Keywords: Activity monitoring systems · Human activity recognition ·
Depth camera · RGB-D camera · Ambient Assisted Living · Assistive
technologies

1 Introduction

Human activity recognition is one of the most important areas of computer vision
research today. It can be described as the spatiotemporal evolutions of differ-
ent body postures and its main goal is to automatically detect human activities
analyzing data from various types of devices (e.g. color cameras or range sen-
sors). Regarding the assistive technologies, the possibility of application is really
wide, in particular, they can include surveillance and monitoring systems, and a
large range of applications involving human-machine interactions [1]. Although
the recognition of human actions is very important for many real applications,
it is still a challenging problem. In the past, the research has mainly focused
on recognizing activities from video sequences by means of color cameras. How-
ever, capturing articulated human motion from monocular video sensors results
in a considerable loss of information [2]. These solutions are often constrained
in terms of computational efficiency and robustness to illumination changes [3].
Another approach is to use 3D data from marker-based motion capture or stereo
camera systems, i.e. capturing 2D image sequences from multiple views to recon-
struct 3D information [4]. Nowadays, the use of depth cameras has become very
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popular, because the technological progress has made available devices that are
cost effective providing also 3D data at suitable resolution rate. Recently, this
kind of sensors has led several new works on activity recognition from depth
data [5,6]. These inexpensive devices, such as Microsoft Kinect or Asus Xtion,
allow capturing both color and depth information. Moreover, specific tracker
software can efficiently detect the human skeleton directly from the depth maps
[7]. These features can be exploited in order to develop effective solutions for
Ambient Assistive Living applications, simplify the problem of human detection
and segmentation. In particular, the depth maps are not affected by environ-
ment light variations and, at the same time, they guarantee the user privacy
more than the color information [8]. Although there are several types of research
on this topic, challenges still remain on how to process these kinds of data to
effectively detect actions in real world scenarios.

The present work describes a human activity recognition system based on
skeleton data extracted from a depth camera. The activity is represented with
few and basic postures obtained with the X-means clustering algorithm. The
Sequential Minimal Optimization (SMO) is used to train a multiclass SVM in
order to classify the different activities. The system is trained on two publicly
available datasets, the CAD-60, widely used for activity recognition and the
TST, a dataset created for assistive technologies. The performances outperform
the state-of-the-art on these datasets making the system suitable for Ambient
Assistive Living real applications.

The remainder of the paper is organized as follows. Section 2 summarizes
activity recognition methods, while the Sect. 3 details the developed system.
The experimental results are presented in the Sect. 4 and Sect. 5 concludes the
paper.

2 Related Works

In the past, human activities recognition methods have been focused on the
processing of color images from traditional cameras. Some authors focus on the
extraction of the human silhouettes from images using HMMs [9,10] or SVMs [11]
to classify different postures. The drawbacks of these methods are low robust-
ness in the case of complex environments and light variations. Other approaches
are based on the detection of scale-invariant spatiotemporal features [12]. These
features are convenient to detect moving objects, but problems arise in the pres-
ence of multiple persons and dynamic background. Wearable sensors are another
alternative for activity recognition [13,14]. Usually, they provide more accurate
information, but they are too intrusive for most people.

Recently, depth cameras are become very popular on the activity recognition
topic, because they offer several advantages over traditional video cameras. First
of all, they are inexpensive devices able to work also in poor light conditions.
In addition, the RGB-D cameras provide human skeleton information that can
significantly simplify the task of human detection. Wang et al. [15] introduce the
concept of actionlet, which is a particular sequence of features, so-called local
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occupancy features. An activity is described as a combination of actionlet. In
[16], action recognition is performed extracting human postures. The postures
are represented as a bag of 3D points and the actions are modeled as a graph,
whose nodes are the extracted postures. Sung et al. [17] represent an activity as
a set of subactivities, which is modeled using more than 700 features computing
the Histogram of Oriented Gradient both on color images and on depth maps. A
hierarchical maximum entropy Markov model is used to associate sub-activities
with an high-level activity. Other authors focus on the use of multimodal fea-
tures, i.e. combining color and depth information [18,19]. Space-Time Occupancy
Patterns is proposed in [20] that divides space and time axes in multiple seg-
ments in order to embed a depth map sequence in multiple 4D grids. In [21]
the EigenJoints feature descriptor is proposed, combining static posture, motion
property and dynamics. They use motion energy to select the informative frame
and use a Naive-Bayes-Nearest-Neighbor classifier for classification. Koppula
et al. [22] use also object affordances and a Markov Random Field to repre-
sent their relationship with sub-activities. Zhu et al. [23] employ several spatio-
temporal interest point features extracted from depth maps in combination of
skeleton joints to classify actions with an SVM. These methods can reach good
results, but usually, their performances depend on the complexity of the back-
ground scene and on the noise present on the depth data.

Other approaches use only the 3D human skeleton model to extract informa-
tive features to classify. Several joints representations have been proposed, Gan
and Chen [24] propose the APJ3D representation computing the relative posi-
tions and local spherical angles from the skeleton joints. The HOJ3D, presented
in [25], associates each joint to a particular area using a Gaussian weight func-
tion. The temporal evolution of the postures is modeled with a discrete Hidden
Markov Model. Gaglio et al. [26] estimate the postures using a multiclass SVM
and create an activity model using discrete HMM. Other works consider also
trajectories of joints [27]. Some researchers focus on the selection of the most
informative joints to improve the classification results [28,29]. In [30] a clustering
method is applied to extract relevant features and a multiclass SVM is used for
classification.

Looking at the aforementioned works, it is possible to understand that some
authors try to extrapolate relevant features from multimodal data, while others
exclusively rely on the human skeleton obtained from tracker software. Using
more data not always yields better results, and sometimes simple solutions are
preferable. The present work belongs to the latter case and it is based on the
concept of informative postures known as “key poses”. This concept has been
introduced in [31] and extensively used in the literature [32,33]. Some authors
identify key poses calculating the kinetic energy [34,35] to segment an activity in
static and dynamic poses. But not all the activities can be represented by alter-
nating static and dynamic motions. Our approach is similar to [30], which uses
clustering techniques to extrapolate the key poses, but conversely, our method
represents an activity with a set of features based on few and basic informative
postures.
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3 Activity Recognition System

The aim of the implemented system is to infer the user activity using a combi-
nation of machine learning techniques. As already said in Sect. 1, we develop a
system based only on the 3D skeleton data in order to deal with less number
of features compared to color images. Moreover, using only skeleton data allows
having much high privacy for the user. The idea is to describe an activity with
a sequence of few and informative basic postures.

Fig. 1. The system is composed of 4 steps. The skeleton data are obtained from the
sensor, and the posture features are processed. Informative postures are extracted from
the sequence. Then, the activity features are generated from the basic postures. Finally,
a classifier is applied.

The system is composed of four main steps (see Fig. 1). First of all, the
relevant skeleton features (i.e. spatial joints) are extracted from the RGB-D
device. Then, the basic and informative postures are selected using a cluster-
ing method. Afterwards, a new sequence of cluster centroids is built to have a
temporal sequence of cluster transitions and an activity window is applied in
order to create the activity feature. Finally, a classifier is trained to perform the
recognition of the activity.

3.1 Posture Features

The coordinates of the human skeleton are extracted from the depth maps cap-
tured by the RGB-D sensor [7]. A human pose is represented by a number of
joints that varies depending on the skeleton model of the software tracker (usu-
ally it can be 15, 20, or 25). The Fig. 2(a) shows a skeleton made of 15 joints. Each
joint is described with three-dimensional Euclidean coordinates with respect to
the sensor. The posture features are extracted directly from this skeleton model.
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(a) (b)

Fig. 2. Representation of the human skeleton: (a) Original 15 joints (b) Subset of joints
for the posture feature (white), and the reference joint (torso) is in gray.

These raw data cannot be used directly, since they are dependent on the
position of the human with respect to the sensor and also on the subject dimen-
sion, such as height and limb length. Therefore, the skeleton data are normalized
following a widely used method [26,30,34]. The reference system is changed from
the camera to the torso joint, in order to have data that are independent of the
position of the sensor. Then, the joints are scaled with respect to the distance
between the neck and the torso joint. This allows having data that are more
independent with respect to the person specific size.

Formally, considering a skeleton with N joints, the skeleton feature vector f
is defined as:

f = [ j1, j2, . . . , jN−1 ] (1)

where each ji is the vector containing the 3-D normalized coordinates of the ith
joint Ji detected by the sensor. Therefore, ji is defined as

ji =
Ji − J0

‖J1 − J0‖ , i = 1, 2, ..., N − 1 (2)

where J0 and J1 are the coordinates of the torso and the neck joint respectively.
These normalized skeleton features can be seen as a set of distance vectors with
respect to the torso joint and the number of attributes of the feature vector
f in (1) is 3(N − 1). Many works use a reduced set of joints since not all of
them are really informative for the recognition of an activity. Moreover, using
all the joints leads an increase of the complexity of the problem affecting the
performances of the recognition phase. In Sect. 4, we will show results using
different subsets of joints. However, our best results are obtained using a feature
vector with N = 7, namely the head, the neck, the hands, and the feet (see
Fig. 2(b)) and the torso as a reference. It is worth to note that we have tested
our system on two datasets containing a different representation of the skeleton
(15 and 25 joints) and we obtained our best performances with the same value
of N . This restricted set of joints has shown to be the most discriminative for
activity recognition, allowing also to reduce the complexity of the further steps
of computation. As a consequence, in this case, a posture feature is made by
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18 attributes. The next section describes how the most informative postures are
selected from the all activity sequence.

3.2 Selection of Postures

The aim of the system is to represent an activity as multiple sequences of few
and basic postures, i.e. key poses. This phase is in charge of select general and
informative postures for each activity. Some authors [23,34] identify key poses
calculating their kinetic energy and then considering a template of static and
dynamic postures. This approach can be successfully used to discriminate some
kinds of actions, but it is not necessarily the most suitable for others. In fact,
some action samples may not have identifiable poses with zero kinetic energy,
as also pointed out in [34]. Conversely, our approach aims to extrapolate few
postures that are able to describe a specific activity by means of a clustering
technique. One of the most used algorithms is the K-means, introduced in [36]
and developed in many variations [37,38]. However, one of the main issues of
this method is that the number of desired K clusters needs to be known a priori.
Another possible approach is to run the K-means algorithm repeatedly for dif-
ferent values of K. However, this method is time consuming. As an alternative,
we adopt the X-means algorithm [39], which is an optimized version of the pre-
vious one. It attempts to split the centers into regions and to select the number
of clusters using a probabilistic scheme called Bayes Information Criterion. The
X-means is much faster that run repeatedly K-means with a different number of
clusters and it has proved to be less prone to local minima than its counterpart.
In addition, it automatically finds the optimal number of clusters [40].

For each activity, the X-means is applied using the Euclidean distance func-
tion as a metric. In detail, given an activity composed by M posture features
[f1, f2, . . . , fM ], the X-means gives k clusters [C1,C2, . . . ,Ck], so as to minimize
the intra-cluster sum of squares

arg min
C

k∑

j=1

∑

fi∈Cj

‖fi − µj‖2 (3)

where µj is the mean value of the cluster Cj . At this stage, the set of posture
features fi representing an activity sequence is replaced with the centroid that
the posture feature belongs, hence the centroids can be seen as the key poses of
the activity.

3.3 Activity Features Generation

The aim of this step is to generate suitable features able to encode an activity.
At this stage, the activity is composed of a set of centroids representing the
most important postures for the sequence aligned in temporal order. The car-
dinality of this set is equal to the number of frames constituting the original
action data. The features computed in the Sect. 3.2 need to be reduced in order
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to lower the complexity and increase the generality of the representation. An
important aspect to take into account is also the speed invariance of the feature
since different person performs activities at different speed. In other words, this
step considers only the transitions between key poses, i.e. transitions between
centroids. For this reason, the temporal sequence obtained in Sect. 3.2 is now
simplified in order to include only the transitions between clusters. This means
that all the equal centroids that are consecutive in temporal order are discarded.
This new compressed sequence allows to have a more compact representation of
the activity and it is also speed invariant. At the end of the process, an action
sequence is encoded in a temporally ordered sequence of centroids transitions. In
order to be as general as possible, our aim is to characterize an activity defining
several n-tuples composed of n poses. Therefore, the problem is to segment the
obtained sequence. But, what exactly characterize an activity? Let consider a
person who is drinking a glass of water. Does the action start when he is actually
drinking? Or does it start when he begin to move his hand close to the mouth?
And also, a person can drink in one or several gulps. To obtain our n-tuples, we
adopt a sliding window on the sequence and we generate a set of new instances
to represent the whole activity sequence. Consequently, the new instances are
composed of a set of features with a size of 3L(N − 1), where L is the length of
the sliding window and N is the number of the selected skeleton joints.

Fig. 3. Subset example of activity feature instances using a window length equals to 5
and a skeleton of 7 joints (torso omitted).

To clarify with a simple example, if an activity has 3 clusters, a possible
compressed sequence can be

A = [C1,C3,C2,C3,C2,C3,C2,C3,C2] (4)

if the length of the sliding window is L = 5, the cardinality of the activity feature
instances is 3:

A1 = [C1,C3,C2,C3,C2]
A2 = [C3,C2,C3,C2,C3]
A3 = [C2,C3,C2,C3,C2]

(5)

The cardinality of the instances is related to the number of different transi-
tions between different key poses. This means that actions which are repetitive
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during the time will have fewer features instances than the ones with more vari-
ability between key poses. However, the newly generated instances are directly
proportional to the window size in most of the cases. Figure 3 shows some activ-
ity feature instances of the drinking action using L = 5 and N = 7 (torso is
omitted). For the training phase of the classifier, a dataset of activity feature
instances has been built. The weight of the instances is increased if the same
tuple appears in the sequence.

3.4 Activity Recognition

The activity recognition step involves the use of a classifier to associate the fea-
tures created in the Sect. 3.3. Usually, machine learning techniques are applied
to accomplish this task. In this work, we adopt the Sequential Minimal Opti-
mization (SMO) [41] to train a multiclass Support Vector Machine (SVM) [42].
SVMs are supervised learning models used for binary classification calculat-
ing the optimal hyperplane that separates two classes in the feature space,
while SMO makes use of improved internal structures and linear kernels in
order to optimize the training phase. The multiclass SVM version is imple-
mented by combining several binary SVMs using, in our case, a one-versus-one
strategy [43].

4 Experimental Results

The system is implemented in Java using the Weka library [44], which is an open
source software containing a collection of machine learning algorithms for data
mining tasks. We have tested our system on two publicly available datasets, the
first one is the well-known Cornell Activity Dataset (CAD-60) [17], widely used
in activity recognition, while the second one is the fairly new TST dataset [45],
specifically created for Activities of Daily Living (ADL). The skeleton model of
these datasets are quite different, the first one represents it with 15 joints, while
the second one uses 25 joints.

4.1 CAD-60 Dataset

The dataset focuses on realistic actions from daily life. It has been collected using
a depth camera and contains actions performed by four different human subjects,
two males, and two females. Three of the subjects use the right hand to per-
form actions, while one of them uses the left hand. There are 12 types of actions
in the dataset, which are: “talking on the phone”, “writing on whiteboard”,
“drinking water”, “rinsing mouth with water”, “brushing teeth”, “wearing con-
tact lenses”, “talking on couch”, “relaxing on couch”, “cooking (chopping)”,
“cooking (stirring)”, “opening pill container”, and “working on computer”. The
dataset contains RGB, depth, and skeleton data, with 15 joints available. Each
subject performs the activity twice, so one sample contains two occurrences of
the same activity.
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Table 1. Overall precision and Recall (%) values using 4 clusters and different window
activity sizes on CAD-60.

Window size “new person”

Precision Recall

5 98.5 98.4

6 98.9 98.6

7 99.4 99.4

8 99.2 99.2

9 99.5 99.5

10 99.6 99.5

11 99.8 99.8

12 99.8 99.8

To be able to compare the results, we employ the same experimental settings
of [17]. It consists of two cases: the “have seen” and “new person” setting. In the
first case, the classification is done with the data of all the four persons, splitting
the data in half. The latter uses a leave-one-out cross-validation approach for
testing. This means that the classifier is trained on three of the four people and
tested on the fourth. Since one person is left-handed, all the skeleton data are
mirrored with respect to the sagittal plane of the skeleton. Conversely from [34],
in which the right and left-handed samples are trained and tested separately,
our samples contains both original and mirrored data. As for the other works on
the CAD dataset, the performance is reported in terms of the average precision
and recall among all the activities according to the “new person” test case.

At the beginning, the posture features are extracted as explained in the
Sect. 3.1. After extensive tests, we have found that the most informative joints for
our system are the head, the neck, hands and feet (N = 7). The output of the X-
means algorithm (Sect. 3.2) gives 4 clusters as results for the majority of the activ-
ities. The activity features are generated following the procedure detailed in the
Sect. 3.3. The last parameter that needs to be find is the size of the sliding window.
We trained our classifier using different window size, ranging from 5 to 12. There-
fore, the length of activity features has a minimum value of 90 and a maximum of
216, according to the window size.

In the “have seen” setting, the overall precision/recall reach always the 100 %
for all the values of the clusters and the window size. This is coherent with the
other works on the same dataset, in which most of them reaches the same result.
More interesting is the outcome of the “new person” test case. The precision
and recall values for all the tested window size are reported in Table 1. All of
them produce high values in terms of precision and recall. Considering that the
number of generated activity instances increases with the size of the window,
we decided to select N = 11 to minimize the number of instances and maximize
the performance. In this case, the total number of activity features is 199, i.e.
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Table 2. Precision and Recall values for each activity, using 4 clusters and a window
size of 11 elements on CAD-60.

Activity “new person”

Precision Recall

talking on the phone 1.0 1.0

writing on whiteboard 1.0 1.0

drinking water 1.0 1.0

rinsing mouth with water 1.0 1.0

brushing teeth 1.0 1.0

wearing contact lenses 1.0 1.0

talking on couch 1.0 1.0

relaxing on couch 1.0 1.0

cooking (chopping) 1.0 .977

cooking (stirring) .969 1.0

opening pill container 1.0 1.0

working on computer 1.0 1.0

Overall .998 .998

Table 3. The confusion matrix of the “new person” test case using K = 4 clusters and
N = 11 window activity size on CAD-60.

talking on the phone 1 0 0 0 0 0 0 0 0 0 0 0
writing on whiteboard 0 1 0 0 0 0 0 0 0 0 0 0

drinking water 0 0 1 0 0 0 0 0 0 0 0 0
rinsing mouth with water 0 0 0 1 0 0 0 0 0 0 0 0

brushing teeth 0 0 0 0 1 0 0 0 0 0 0 0
wearing contact lenses 0 0 0 0 0 1 0 0 0 0 0 0

talking on couch 0 0 0 0 0 0 1 0 0 0 0 0
relaxing on couch 0 0 0 0 0 0 0 1 0 0 0 0

cooking (chopping) 0 0 0 0 0 0 0 0 .98 .02 0 0
cooking (stirring) 0 0 0 0 0 0 0 0 0 1 0 0

opening pill container 0 0 0 0 0 0 0 0 0 0 1 0
working on computer 0 0 0 0 0 0 0 0 0 0 0 1
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Table 4. Precision and Recall values for different joint configuration on CAD-60.

Joints “new person”

Precision Recall

15 0.826 0.851

11 0.816 0.823

7 0.998 0.998

Table 5. State of the art precision and recall values (%) on CAD-60 dataset.

Precision Recall

Zhu et al. [23] 93.2 84.6

Faria et al. [46] 91.1 91.9

Shan et al. [34] 93.8 94.5

Parisi et al. [47] 91.9 90.2

Cippitelli et al. [30] 93.9 93.5

Our method 99.8 99.8

size of the window equals to 11, and 7 joints, plus the activity attribute. The
Table 2 shows the precision and recall values according to each activity using
K = 4 clusters and N = 11 window activity size for the “new person” test case
as usually reported for the CAD-60 dataset, while Table 3 shows the relative
confusion matrix. The “cooking (chopping)” activity has been misclassified with
the “cooking (stirring)” in only a few instances, indeed these activities are very
similar. The algorithms have been run on a machine with a 2.4 GHz quad-core
i7 processor and 8 Gb RAM. The activity features extraction took 70 millisec-
onds per activity. In the “new person” test case, the time to train the classifier
was 1.24 s on 3564 instances. The time took for the test phase was 0.13 s on
920 instances. We have also conducted additional tests using different joint con-
figuration: all 15 skeleton joints and 11 joints (excluding only shoulder and hip
joints). Results prove that adding more joints does not improve the classification
rate (see Table 4). The overall precision and recall value is 0.998 and this result
outperforms the other works on the CAD-60 dataset. In the Table 5 is reported
the current 5 best results of the CAD-60 dataset.

4.2 TST Dataset

We have tested our system also on the fairly new TST Fall detection database (ver-
sion 2) [45]. The dataset has been collected using Microsoft Kinect v2 and IMU
(Inertial Measurement Unit). It is composed of ADL and fall actions simulated by
11 volunteers. The people involved in the test are aged between 22 and 39, with
different height (1.62–1.97 m) and sizes. The actions performed by a single person
are separated into two main groups: ADL and Fall. Each activity is repeated three
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Table 6. Overall precision and Recall values using 4 clusters and different window
activity sizes on TST dataset.

Window size “new person”

ADL Fall

Precision Recall Precision Recall

5 1 1 .960 .955

6 .962 .958 .955 .947

7 .951 .944 .95 .938

8 .940 .929 .946 .929

9 .938 .923 .942 .923

10 .938 .917 .938 .917

11 .938 .917 .938 .917

12 .938 .917 .938 .917

Table 7. Precision and Recall values for each activity, using 4 clusters and a window
size of 5 elements on TST Dataset.

“new person”

Activity Precision Recall

ADL sit on chair 1.0 1.0

walk and grasp 1.0 1.0

walk back and forth 1.0 1.0

lie down 1.0 1.0

Overall 1 1

Fall frontal fall 1.0 .667

backward fall .889 1.0

side fall 1.0 1.0

backward fall and sit 1.0 1.0

Overall .972 .917

times by each subject involved. The database contains 264 different actions for a
total of 46k skeleton samples and 230 k acceleration values. Each person performs
the following movements: “sit on chair”, “walk and grasp an object”, “walk back
and forth”, “lie down”, “frontal fall and lying”, “backward fall and lying”, “side fall
and lying”, “fall backward and sit”. Also for this dataset, we obtain the best per-
formances using N = 7 joints. Applying the X-means algorithm we have an aver-
age number of clusters of K = 4 as for the CAD-60 dataset. We employ the same
experimental settings as before, testing the classifier with the “new person” config-
uration. The Table 6 reports the overall precision and recall values of the ADL and
Fall samples. In this case, the best window size is 5. This is coherent with the fact
that each sample of the TST dataset contains a subject that performs the action
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only once, while the subjects of the CAD-60 dataset perform the actions twice. We
report inTable 7 the precision and recall values for each activity using 4 clusters and
a window size of 5 elements. Only few frontal fall samples are misclassified with a
backward falling, while the other samples are correctly classified.

5 Conclusion

This paper describes an activity recognition system using skeleton data obtained
from an RGB-D sensor. The developed system is based on the idea of representing
an activity with few and basic key poses, i.e. informative skeleton postures. The
key poses are extracted using the X-means algorithm, and the activity features
are built considering the centroid transition during the action. A multiclass SVM,
trained with the SOM optimization, is used for the classification step. The system
is tested on two publicly available datasets, the CAD-60 and the TST (version 2).
The first is a well-known and widely used dataset for activity recognition. The
results outperform the state-of-the-art, achieving an overall precision and recall
of 0.998. The TST is a new dataset more close to the assistive technologies
containing ADL and also Fall samples. The system does not misclassify sample
of ADL case, and the overall precision and recall for the falling samples are
0.97 and 0.92 respectively. In particular, the misclassification happens with the
frontal fall detected as backward fall. It does not represent a real issue from
the perspective of a monitoring application for the ambient assistive living since
these actions are essentially the same. It is also worth to note that the most
informative skeleton joints are the same for both datasets, despite the fact that
the original model is different, 15 against 25 joints.

These encouraging results make it feasible to use the presented system for
assistive application and it will concern our future works. Anyway, one of the
main drawbacks of the adopted classifier is that it is not able to handle unknown
classes. In fact, it will always return one of the classes that better adapts to the
observed one. Further study will be conducted in order to develop a real-time
system for assistive scenarios exploiting the presented system.
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