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Abstract  
In the last years the impact of stress on the society has been increased, resulting in 

77% of people that regularly experiences physical symptoms caused by stress with a 
negative impact on their personal and professional life, especially in aging working 
population. This paper aims to demonstrate the feasibility of detection and monitoring 
of stress, inducted by mental stress tests, through the analysis of physiological data 
collected by wearable sensors. In fact, the physiological features extracted from heart 
rate variability and galvanic skin response showed significant differences between 
stressed and not stressed people. Starting from the physiological data, the work pro-
vides also a cluster analysis based on Principal Components (PCs) able to showed a 
visual discrimination of stressed and relaxed groups. The developed system would 
support active ageing, monitoring and managing the level of stress in ageing workers 
and allowing them to reduce the burden of stress related to the workload on the basis 
of personalized interventions. 
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1 Introduction 

Stress is a physiological response to the mental, emotional, or physical challenge and 
it can be defined as the reaction of a person to the environmental requests or 
influences (Sun et al., 2010). Stress conditions can cause physical and emotional 
exhaustion that leads to symptoms such as headaches, stomach complaints and 
difficulties in sleeping. A study conducted by the American Institute of Stress 
(Statistic Brain Research Institute, NY) has shown as in 2015 the 48% of people feels 
that their stress condition has increased over the past five years. 77% of people 
regularly experiences physical symptoms caused by stress with a negative impact on 
their personal and professional life (Statistic Brain, 2015). The influence of stress and 
its consequences on society concerns also the economic aspect. According to the 
recent EU-funded project 2013, the cost to Europe of work-related stress and 
depression was estimated to be €617 billion annually. The total amount includes loss 
of productivity, health care costs and social welfare costs (EU-OSHA, 2016). The 
early detection of stress can positively affect personal wellbeing and society affluence. 

Traditionally, the level of personal stress has been established using some psycho-
metric instruments and scales (Ulstein et al., 2007), which are subjective. Subsequent-
ly the correlation between the variation of the physiological signals and stress was in-
vestigated in order to make the measurement more objective. 

1.1 Physiological Signals and Stress Concept 

Physiological phenomena are extremely correlated with stress and anxiety, such as 
heart rate variability and galvanic skin response. Human stress response can be de-
scribed through Psychoneuroimmunology that tries to link together the physiological 
systems involved in the stress response: the nervous system, the endocrine system and 
the immune system (Seaward, 1999). 

Several studies have shown that stress has an impact on the Autonomic Nervous 
System (ANS) (Watkins et al., 1999). The ANS provides a rapidly responding mecha-
nism to control a wide range of functions and organs, including heart, skin resistance, 
digestive tract, lungs, bladder and blood vessels (Tsigos & Chrousos, 1994). The ANS 
has two components, the sympathetic nervous system (SNS) and the parasympathetic 
nervous system (PNS). In particular, the response "fight-or-flight" is associated with 
SNS, through the release of adrenaline and noradrenaline (Seaward, 1999), while PNS 
is involved in relaxation process. Stress response is structured into 3 main stages: im-
mediate effects of stress involve the SNS, with releasing of adrenaline and noradrena-
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line in 2-3 seconds; intermediate effects are characterized by 20-30 seconds time activ-
ity, in which adrenal medulla releases epinephrine and norepinephrine.  

That is why alteration of physiological signals and variables can be related to a 
change of stress condition such as cardiac activity (de Santos Sierra et al., 2011), elec-
trodermal activity (EDA) (Park, 2009; Haapalainen et al., 2010), electro-myographic 
activity (Lundberg et al., 1994), breathing (Rottenberg, 2002), skin temperature 
(Karthikeyan et al., 2012), electrical brain activity (Lim & Chia, 2015), eye blink 
(Haak et al., 2009). In particular SNS and PNS regulate the EDA, the heart rate varia-
bility (HRV) and the brain waves that are commonly used in literature to investigate 
the levels of stress during different tasks (Sharma & Gedeon, 2012). 

1.1.1 Electrodermal activity 

Psycho physiological measures have been recently used in HRI studies, in which, in 
addition to HRV, Galvanic Skin Response (GSR) has been used. The neural mecha-
nism and pathways involved in the central control of electrodermal activity are numer-
ous and complex. EDA is related to the level of arousal elicited by an extended range 
of psychological and emotional states with either positive or negative valence. Differ-
ent studies investigating anxiety, anger, fear and also joy experiences report increased 
EDA (Ritz et al., 2000; Stemmler et al., 2001). It is also an indicator of the cognitive 
load, stress and arousal (Park, 2009; Haapalainen et al., 2010), because of the variation 
of the skin electrical resistance in response to various emotional stimuli. When a sub-
ject is under mental stress, sweat gland activity is activated and increases skin con-
ductance (SC). Since the sweat glands are also controlled by the SNS, SC acts as an 
indicator for sympathetic activation due to the stress reaction (Sun et al., 2010). 

GSR has already been used in previous works in combination with other physiolog-
ical parameters. For example, SC has been combined with electro cardiac activity, 
electromyographic activity and respiration activity in order to monitor drivers’ behav-
iours through open roads (Haley & Picard, 2005). In particular, the parameters provid-
ed were the number of stressors in a given temporal window, the sum of the amplitude 
of all the stressors counted in that temporal window, the sum of the response durations 
and the sum of the areas under the peaks counted as stressors. Finally, the integration 
of GSR, HRV and accelerometer data has been implemented in the work of Sun et al. 
(2010), with the aim to differentiate between physical activity and mental stress. In 
particular, electrodermal activity has been analysed through three main parameters: the 
number of the stressor, the related amplitude and the sum of the duration of the re-
sponses. 



                     Giorgia Acerbi and Erika Rovini 

 

4

1.1.2 Electro cardiac activity 

There are two types of neuro-modulatory receptors in cardiac cells: one is for acetyl-
choline (SNS) and the other is norepinephrine (PNS). These receptors interact with in-
hibitory or excitatory proteins, which, through chemical exchanges, can modify the 
Calcium concentration in the heart cells membrane and inhibit or stimulate heart rate 
(HR) and the strength of contraction (Clifford, 2002). HR describes the cardiac activi-
ty when the ANS attempts to tackle with the human body demands depending on the 
stimuli received. Concretely, ANS reacts against a stressing stimulus provoking an in-
crease in blood volume within the veins, so rest of the body can react properly, in-
creasing the number of heartbeats (de Santos Sierra et al., 2011). In confirmation of 
this aspects, over recent years clinical researches have shown that one of the most im-
portant indicators of stress is HRV. It is the variation in the time interval between one 
heartbeat and the next one. To study the effect of SNS and PNS activities, starting 
from ECG signal, it is necessary to analyse the HRV signal both in time and frequency 
domains. Generally cardiac parameters as mean of Inter-Beat Interval (IBI), HR, sig-
nal power in low frequency (LF) and high frequency (HF) bands are used to analyse 
stress. The HRV analysis has already been used in different studies to detect stress in 
various condition as mental task (Taelman et al., 2009), high workload (Orsila et al., 
2008) , car driving (Healey & Picard, 2005) and other common daily tasks. 

1.2 The aim of the study 

This paper presents an experimental methodology to collect and analyse physiological 
data to detect the stress status of the user. The methodology has been applied in a test 
for the Trans.Safe (The AmbienT Response to Avoid Negative Stress and enhance 
SAFEty) European research project which has the aim to detect stress levels, through 
the monitoring and interpretation of physiological signals. 

EDA and HRV were the physiological signals measured during the tests since they 
are two of the most important indicators of stress (see par. 1.1.1 and 1.1.2) and they 
can be revealed through portable and non-invasive devices. Thus, the stress detection 
activity carried out in this experimentation has been performed through a combination 
of two wearable sensors, Shimmer GSR Sensor and Zephyr BioHarness™. 

A new experimental protocol for the collection of physiological data in different 
conditions has been defined. It consisted of alternated stages of rest and stress induc-
tion phases combined with the administration of psychometric instruments. Then, the 
data collected was properly processed and analysed in order to investigated the signifi-
cance of the physiological features in distinguishing stress and relax conditions. 
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Since the main goal of this study is the monitoring of stress using a ultra-low inva-
siveness system, it is reasonable to think that improving the comfort, the user could 
wear the system for a long time, both during work or daily activities. 

In the future a such system, using a real time classifier, could act as a portable sys-
tem control, like medical devices as cardiac holter or pressure monitoring devices (24 
hours). Furthermore it could also be useful for the user in order to predict the rise of 
stress and act to reduce it. The feedback for stress presence and any suggestion or in-
tervention to decrease it would allow benefits for the user's health and a reduction in 
health care costs for stress-related illnesses. 

2 Materials and Methods 

In this section the sensor devices used for the acquisition of physiological signals, the 
experimental protocol developed and adopted and the methodology chosen for data 
analysis are described in detail. 

2.1 Instrumentation 

The choice of the wearable sensor devices to be included into the test has been per-
formed according to two criteria: accuracy of measurements and unobtrusiveness of 
the sensors. There are several devices on the market that claim the measurement of 
cardiac and electro-dermal activity in a unobtrusive way. Unfortunately, not all these 
devices are accurate enough for a reliable assessment of stress conditions. In order to 
find a reasonable trade-off, we selected two devices: Zephyr BioHarness™3 and 
Shimmer GSR Sensor (Fig. 1). 

 

 
Figure 1. Zephyr BioHarness™ 3on the left and Shimmer GSR Sensor on the right 

Zephyr BioHarness™3 (BH3) (Medtronic, 2015) is a Bluetooth chest belt capable 
of retrieving signals derived from the ECG such Heart Rate and R-R Intervals. The 
ECG signal is sampled at 250 Hz. Moreover, the BH3 is able to collect other signals 
such as breathing rate, posture information and skin temperature. For the data analysis 
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and the development of the stress detection algorithm the Inter-Beat-Interval data pro-
vided by the device has been used. The GSR Module developed by Shimmer (Shim-
mer, 2016) is a wearable sensor composed by two special finger electrodes and a main 
unit that streams data related to the galvanic skin response with a sample frequency of 
51.2 Hz using a Bluetooth connection. 

2.2 Participants 

Twelve voluntary students (3 men, 9 women) with a mean age of 26.0 years old (SD= 
4.8 years, range = 21-30 years old) participated on purpose in this study. All the partic-
ipants did not meet the exclusion criteria that consisted in neurological disorders that 
made unable the subjects to complete the mental tasks proposed or cardiac diseases 
that could deface the physiological response in electro cardiac activity. 

Participants completed the experimental session in the Scuola Superiore Sant'Anna 
(Pisa, Italy) and in the Telecom Italia WHITE Joint Open Lab (Pisa, Italy). Written in-
formed consent was obtained from all the participants before starting the tests. 

2.3 Experimental Protocol 

The experimental protocol was intended to put the subjects in a state of emotional and 
cognitive stress, in order to measure the variations of their physiological parameters 
induced by stress. 

The experimentation consisted in three phases: a baseline, a stress induction and a 
recovery stage. During baseline the subjects relaxed in a separate room, for 10 
minutes, without using mobile phone, without music or external sounds, without stim-
uli and without closing their eyes. This phase was indispensable in order to acquire the 
personal baseline of each subject, since physiological parameters show a wide inter-
subjects variability. At the end of baseline recording, the psychologist administered 
psychometric instruments to the participants to obtain a subjective perception about 
the level of stress, anxiety and drowsiness. Then the subjects performed the stress 
phase, during about 15-20 minutes, completing a series of extremely demanding cog-
nitive tests handed out by the psychologist in order to induce the stress. People were 
not aware that this phase was part of the experiment: the psychologist indeed pretend-
ed to be sent by University to detect the intelligence quotient (IQ) for a poll. The in-
vestigator assumed a very aggressive behaviour towards the subject, behaving rude 
and correcting the person even when the he accomplished the task properly. Further-
more, the user performed the required tasks by listening a noisy sound in background 
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that simulates high intensity traffic jam. At the end of this phase, the subjects filled out 
the psychometric instruments again. Afterwards a recovery period of 10 minutes was 
performed, in the same conditions as in the baseline phase. 

During the whole experimental session (baseline, stress and recovery phases), the 
tested subjects wore the kit of wearable sensors described in par.2.1, in order to record 
electro cardiac and electrodermal activities. 

2.3.1 Tests for stress induction 

The aim of this experimental protocol was to arouse stress in tested subjects that 
would produce major changes in the level of physiological signals. For this reason, in 
the experimental protocol the stress induction phase consisted of two paths: (i) the use 
of validated neuropsychological tests that caused a great cognitive effort; (ii) the crea-
tion of a stressful social situation that would put the subject under pressure causing a 
strong emotional reaction. 

The five different following tasks (Fig. 2), were executed by the tested subjects: 

• Digit Span: it is a common measure of short-term memory to evaluate working 
memory’s number storage capacity. In the test of Reverse Digit Span a list of ran-
dom numbers was read out loud to the person who had to immediately repeat it in a 
backward order.  

• Stroop Color Test: it is a common test to measure selective and divided attention, 
cognitive flexibility and processing speed (Lansbergen et al., 2007). This test is a 
demonstration of interference in the reaction time of a task in which the subject was 
asked to read out loud and as fast as possible either the written word or the ink col-
or.  

• Corsi Reverse: The Corsi block-tapping test is a psychological test that assesses 
visual-spatial short term memory. The experiment is done typically by using a 
wooden base where nine identical spatially separated blocks are present. In the Re-
verse Corsi Test (Gillet, 2007) the experimenter indicated a sequence of blocks by 
tapping them and the subject was requested to reproduce the spatial succession of 
boxes in the reverse way.  

• Kohs Block Design Test: this is a performance test designed to be an IQ test and to 
measure visual-spatial skills (Barbeau, 1980). The subject was asked to replicate 
the patterns displayed on a series of test cards by using colored cubes (each side has 
a single color or two colors divided by a diagonal line).  

• Tower of Hanoi: this is a mathematical game, common to test problem solving and 
executive capacity of the subject (Miyake et al., 2000). It is composed by three rods 
and a number of disks of different sizes which can slide onto any rod. The subject 
had to move the entire stack to another rod, following simple rules: only one disk 
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could be moved at a time; only the upper disk from one of the stacks could be 
moved and placed on top of another stack; no disk could be placed on top of a 
smaller disk.  

 
Figure 2. Stress induction test set administered during the experimental session 

2.3.2 Psychometric Instruments 

In order to measure the emotional state and the level of stress of the subjects, the 
following psychometric instruments were administered before and after stress induc-
tion phase: 

• State-Trait Anxiety Inventory (STAI): this scale is one of the most frequently, re-
liable and sensitive used measures of anxiety in applied psychology research. In 
this study the short-form of the STAI scale was used, consisting of only six items 
(STAI-6) since the objective was to establish the level of stress and anxiety pro-
duced during the stress phase (Marteau et al., 1992). Higher STAI scores suggest 
higher levels of anxiety. 

• Karolinska Sleepiness Scale (KSS): it is one of the most common sleepiness state 
tests and it is a 9-point Likert scale based on a self-reported assessment of the per-
son’s level of drowsiness at the moment (Åkerstedt & Gillberg, 1990). The subject 
had to choose his level of sleepiness from 1="very alert" to 9="very sleepy". KSS 
was originally developed to constitute a one-dimensional scale of sleepiness and 
was validated against alpha and theta electroencephalographic activity (Kaida et al., 
2006).  
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• Shortened State Stress Questionnaire (SSSQ): The 24-item SSSQ (Helton, 
2004), based on the 90 Question Dundee Stress State Questionnaire (DSSQ), pro-
vides a rapid, reliable, self-report assessment of the three primary stress dimen-
sions: distress, task engagement and worry (Pfaff et al., 2012). 

2.3 Data Analysis 

The physiological data acquired during the whole experimentation have been offline 
analysed using Matlab® R2012a. 

The acquired data have been examined for baseline phase (10 minutes of record-
ing), stress phase (ranging from 15 to 20 minutes, depending from the attitude and be-
haviour of the tested subject). Thus, for each phase, we obtained a dataset composed 
by a set of GSR features for each participant and another dataset consisting of features 
extracted from HRV signal. All these data were analysed in order to investigate varia-
tions in physiological parameters that could be attributed to stress statutes of the tested 
subjects. 

2.3.1 Galvanic Skin Response (GSR) 

The EDA has been recorded using Shimmer GSR sensor which provides as output the 
galvanic resistance, that has been converted into galvanic skin conductance. In the fea-
tures extraction algorithm, the signal has been analyzed with temporal windows of 2 
minutes, after a filtering process, using a moving average filter. The features extrac-
tion algorithm is based on startle detection that can lead to a set of computable fea-
tures. The method used is referred to the scoring multiples response method of 
Boucsein (Boucsein, 2012), that establishes a local baseline at the level of the onset of 
the second response and measures the distance from that baseline to the following 
peak. The detection algorithm identifies all the occurrences of when the first derivative 
exceeded to a certain threshold. It was empirically determined as 0.005 µS. Given the 
variability of GSR signal among subjects, this threshold is not absolute but it has 
found to be adequate for the 12 subjects analyzed. Furthermore, to ensure to not con-
sider subsequent startles, a minimum distance has been chosen as in (Shumm et al., 
2008, considering that a startle event is expected to last about 1-3 s. Once the response 
was detected, the zero-crossing of the derivative preceding and following the response 
were identified as the onset and end of the startle (Haley & Picard, 2000). Starting 
from the startle detection, the following parameters have been calculated (Table 1): 
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Table 1. Features extracted from GSR signal calculated within a temporal window. 

Feature Name Description 

Num_Startle Number of the stressors 

Sum_Amplitude Sum of the amplitude of the stressors 
Sum_RiseTime Sum of the rise duration of the stressors 
Sum_RecTime Sum of the decrease duration of the stressors 

Rise_Rate Mean value of the rise duration of the stressors 
Decay_Rate Mean value of the decrease duration of the stressors 
Area_GSR Mean of the area under each stressor 

Mean_GSR Mean value of GSR signal 
Std_GSR Standard deviation of GSR signal 

. 

2.3.2 Electro cardiac activity 

Electro cardiac activity has been recorded using the chest belt Zephyr BioHarness™ 
BH3. The device provides as output the raw ECG signal and the HRV data that speci-
fies the temporal distance between a beat and the following one. Starting from Inter-
Beat-Interval (IBI), the algorithm to extract the main features has been developed. The 
IBI signal has been modified identifying and correcting ectopic rhythm, which is an ir-
regular heart rhythm due to a premature heartbeat. The analysis of cardiac signal has 
been structured investigating both the time domain and the frequency domain. Regard-
ing the time domain, the following parameters have been selected and computed (see 
Table 2) 

Table 2. Features extracted from HRV signal in the temporal domain. 

Feature Name Description 

IBI_mean Mean of Inter-Beat-Interval corresponding to R-to-R interval 

SDNN Standard deviation of all Normal RR intervals (NN intervals) 
HR_mean Mean of Heart Rate 
SDHR Standard deviation of the Heart Rate 

RMSSD Square root of the mean of the squared differences between adjacent normal RR 
intervals 

pNN50 Percentage of differences between adjacent normal RR intervals exceeding 50 ms

#ECT Number of ectopic intervals (abnormal RR intervals) 
%ECT Percentage of ectopic intervals on the total number of RR intervals 
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By identifying and correcting ectopic rhythm, a Normal-to-Normal (NN) interval 
sequence appropriate for HRV analysis is obtained. Since the NN interval sequence is 
an irregularly sampled time sequence, for spectral analysis it had to be therefore con-
verted to an equidistantly sampled sequence (Mali et al., 2014). After a smoothing of 
the signal, the NN interval sequence has been resampled at 4Hz. For the analysis in 
frequency domain, the following parameters have been computed (see Table 3): 

Table 3. Features extracted from HRV signal in the frequency domain. 

Feature Name Description 

Peak VLF Frequency peak in very low frequency (VLF) range (0.04–0.15 Hz) 
Area VLF Signal power by Power Spectral Density (PSD) in VLF 
%VLF Percentage of signal power in the VLF respect to the total signal power 

Peak LF Frequency peak in low frequency (LF) range (0.04–0.15 Hz) 
Area LF Signal power by PSD in LF 
%LF Percentage of signal power in the LF respect to the total signal power 

Peak HF Frequency peak in high frequency (HF) range (0.15–0.4 Hz) 
Area HF Signal power by PSD in HF 
%HF Percentage of signal power in the HF respect to the total signal power 

LF/HF Ratio between LF and HF powers 

2.3.3 Data processing and Statistical Analysis 

After extracting features from physiological signals, Kolmogorov-Smirnov test was 
applied in order to verify the normal distribution of data. A non-parametric statistical 
analysis was used because the test showed data were not normally distributed. Then, 
Kruskal-Wallis (KW) test was used for comparing data acquired in baseline phase and 
those recorded during stress phase in order to verify a significant difference (p-
value<0.05) on the basis of the extracted parameters. Furthermore the linear correla-
tion between the significant parameters was calculated using the Pearson's coefficient. 
If the value of correlation between two features was at least rho=0.8, the less signifi-
cant one was deleted. Then, the remaining features were used for Principal Component 
Analysis (PCA) in order to identify how the groups investigated, related to different 
phases of the experimental protocol, could be visualized and separated in the space of 
the principal components (PCs). Finally, the most important PCs, that included more 
than 80% of the overall variance of data, were taken into account in order to train and 
test a Support Vector Machine (SVM) classifier which had to be able to correctly clas-
sify a subject as stressed or not-stressed. 
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Regarding the analysis of the psychometric instruments, a T-test has been conduct-
ed in order to assess if significant differences between after and before the stress in-
duction phase could be revealed. 

Finally, a linear regression analysis has been implemented with the aim to look for 
a correlation between the results obtained by the psychometric instruments adminis-
tered and the physiological parameters measured. 

3 Results and Discussion 

In this section the results obtained from both the analysis of physiological data and the 
psychometric instruments are reported and widely discussed, examining the most 
important features extracted, the evaluation of the psychometric instruments and the 
algorithm for data classification. 

3.1 Physiological Parameters Assessment 

Features extracted by physiological parameters are reported in Tables 4-5 both for 
baseline phase and stress phase as mean values and standard deviations. Furthermore 
p-values, calculated with KW test for non parametric data, are also disclosed because 
they represent if there are significant differences between the two investigated groups. 

Table 4. Features extracted from GSR signal: mean values ± standard deviations and significance. 

Parameters Baseline Stress p-value  

Num_Startle (#) 15.97 ± 4.71 17.95 ± 3.06 0.119  
Sum_amplitude (μS) 11.18 ± 12.40 11.18 ± 6.79 0.453  

Sum_RiseTime (s) 32.25 ± 6.94 41.25 ± 5.61 0.004 * 
Sum_RecTime (s) 61.96 ± 8.73 64.81 ± 2.52 0.488  
Rise_Rate (μS/s) 3.61 ± 0.90 3.08 ± 0.39 0.141  
Decay_Rate (μS/s) 9.36 ± 4.32 5.59 ± 1.21 0.003 * 
Area_GSR (s·μS) 2.55 ± 1.95 2.11 ± 1.16 0.773  
Mean_GSR (μS) 11.56 ± 5.34 16.83 ± 5.99 0.028 * 
Std_GSR (μS) 1.62 ± 1.33 1.30 ± 0.73 0.862  

* Significant difference between groups (p<0.05) 

Table 5. Features extracted from HRV signal: mean values ± standard deviations and significance. 

Parameters Baseline Stress p-value  
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IBI_mean (s) 0.788 ± 0.126 0.642 ± 0.096 0.005 * 
SDNN (s) 0.065 ± 0.021 0.071 ± 0.025 0.544  

HR_mean (bpm) 78.45 ± 12.38 95.54 ± 13.69 0.005 * 
SDHR (bpm) 6.43 ± 1.15 10.48 ± 3.88 0.001 * 
RMSSD (s) 0.04 ± 0.02 0.03 ± 0.01 0.018 * 

pNN50 (%) 22.89 ± 19.44 7.35 ± 4.98 0.043 * 
#ECT (#) 11.42 ± 14.57 25.33 ± 24.18 0.182  
%ECT (%) 1.30 ± 1.77 1.29 ± 1.31 0.885  

Peak VLF (Hz) 0.033 ± 0.014 0.011 ± 0.017 0.005 * 
Area VLF (s2) 195.03 ± 253.25 185.88 ± 106.16 0.326  
%VLF (%) 16.93 ± 9.87 28.85 ± 9.41 0.009 * 

Peak LF (Hz) 0.077 ± 0.019 0.053 ± 0.022 0.016 * 
Area LF (s2) 509.75 ± 364.71 317.93 ± 147.23 0.184  
%LF (%) 55.07 ± 16.94 51.15 ± 9.45 0.194  

Peak HF (Hz) 0.219 ± 0.078 0.203 ± 0.096 0.486  
Area HF (s2) 284.78 ± 276.02 120.66 ± 59.22 0.106  
%HF (%) 27.99 ± 20.94 20.01 ± 8.88 0.525  

LF/HF 3.53 ± 2.79 3.27 ± 2.28 0.908  

* Significant difference between groups (p<0.05) 

Significant differences are observed in some parameters, both for features extracted 
by electro dermal and electro cardiac activities, representing a concrete variation in 
physiological response to a psychological stress induction. 

In particular for the first signal, Sum_RiseTime, Decay_Rate and Mean_GSR are 
the significant parameters. For the second signal IBI_mean, HR_mean, SDHR, 
RMSSD and pNN50 are the significant features in the temporal domain, whereas Peak 
VLF, %VLF and Peak LF are the ones in the frequency domain. 

Discussing significant parameters derived by electrodermal activity, 
Sum_RiseTime is a parameter that gives an indication of how the global GSR level is 
varying as time progresses. If the sympathetic branch of the ANS is highly aroused, 
then sweat gland activity also increases. This fact leads to an increase of skin conduct-
ance, that can be then a measure of emotional and sympathetic responses. A signifi-
cant variation of this parameter from baseline to stress phase can be explained as an 
increase of arousal level of the subject, probably due to an increment of stress level 
during the execution of the stressor tasks. A significant variation has been observed 
from baseline phase to stress phase for other two parameters: Decay_Rate and 
Mean_GSR. Regarding the mean value of GSR, it reflects the variation of the signals 
in terms of arousal, cognitive load and stress in general. So, an increase of cognitive 
load corresponds to an increase of the mean value of the signal, related to a bigger 
sweat gland activity that modifies SC. Finally a considerable variation in decay rate, 
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which represents an indirect measure of the relaxation pattern experienced by the sub-
ject (Singh et al., 2012) could mean that when the arousal level is high, the GSR needs 
more time to assume values similar to baseline ones. So it is reasonable to have a vari-
ation of the time needed to obtain a relaxation, during a stress phase, respect to the 
baseline. 

Regarding electro cardiac activity variations in the mean values of IBI and HR from 
baseline to stress phase are absolutely congruent with an increase of stress level: the 
number of beats in a minute increases, with a related reduction of the time between a 
heartbeat and the following one. According to Orsila et al. (2008) in which RMSSD 
parameter changed its values among different phases of the experimental session de-
scribed, this parameter presents a variation from baseline to stress phase. The lower 
value in the stress stage may suggests the subjects’ perceived stress was effectively 
higher during this phase of the protocol. The difference between baseline and stress 
conditions in pNN50 was expected, as in (Taelman et al, 2009). It is probably due to 
the short term variability, which is lower with a cognitive task than during rest. Also 
SDHR changes between the phases, being a measure for long term variability. Analys-
ing frequency domain parameters, it is known that sympathetic and parasympathetic 
activities are reflected into LF and HF power, so a variation in one of the parameters 
linked to these frequency contributions is justified. The activation of SNS is indeed re-
flected in the variation of peak LF, peak VLF and %VLF. 

3.2 Psychometric Instruments Evaluation 

A comparison between the scores of the state tests administered before and after stress 
induction has been performed (Table 6) using the T-test. The KSS scores did not show 
significant differences between before and after stress induction phase, whereas the 
STAI-6 scores showed statistically significant differences between the two phases 
(p<0.05) indicating a recognisable level of anxiety in the tested subjects. The SSSQ 
scores also showed significance differences between pre and post stress induction tests 
(p<0.01) In particular, a highly statistically significant result (p<0.01) emerged from a 
subscale of SSSQ called "distress" that is the most important factor of SSSQ measur-
ing the negative effect of the situation (Helton, 2004). A statistically significant result 
related to the variation of this subscale could mean that the stress induction phase ef-
fectively provided a negative effect on participants. 

Table 6. Questionnaires results: mean values ± standard deviations and t-test significance. 

Scale Baseline Stress p-value  

KSS 3.8 ± 1.3 3.3 ± 0.6 0.089  
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STAI-6 10.9 ± 2.2 13.7 ± 4.1 0.031 * 

SSSQ 93.4 ± 19.5 117.6 ± 34.2 0.001 * 
Distress 19.9 ± 10.9 39.5 ± 20.1 0.001 * 

Task Management 36.5 ± 4.1 35.8 ± 6.1 0.639  

Worry 37.0 ± 12.9 42.3 ± 19.5 0.174  

* Significant difference at T-test between groups (p<0.05) 

3.3 Correlation between physiological parameters and psychometric 

instruments 

From the analysis of both physiological data and psychometric instruments it has been 
possible to notice a significant difference among the baseline phase and the stress one, 
indicating that these are valuable instruments to appreciate the arousal of anxiety and 
stress. The further step has been to assess the correlation between physiological fea-
tures obtained from electro cardiac and electro dermal activities and questionnaires, in 
order to establish if it was possible to classify the stress level using psychometric in-
struments as reference. Unfortunately, the correlation between these two instruments 
was not high. The p-values calculated and disclosed in Table 7, did not show a signifi-
cant correlation between physiological data and psychometric instruments. 

Table 7. Correlation between psychometric instruments and physiological data 

Scale R2 p-value  

KSS 0.77 0.019 * 

STAI-6 0.53 0.373  
SSSQ 0.55 0.312  

Distress 0.53 0.357  

Task Management 0.40 0.695  
Worry 0.57 0.278  

* Significant statistical values (p<0.05) 

Among the psychometric scales used, KSS scale is the most correlated, showing a 
significant p-value. It is indicated to assess the level of sleepiness of the subject. The 
correlation with the variation of physiological data could explain that the stress induc-
tion phase provided a reduction of sleepiness, increasing the level of alarm and atten-
tion. The lack of significant correlation with the other scales has been probably due to 
the fact that, generally, self-reports provide valuable information but there could be 
problems with validity. Users of experimental studies often may not answer exactly 
how they are feeling. Rather, they answer questions as they feel others would answer 
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them, or in a way they think the researcher wants them to answer. Furthermore, the 
psychometric responses could be dependent on participants' mood and state of mind on 
the day of the study (Elmes et al., 2011, Burke & Christensen, 2004). 

In this study it has been chosen to use physiological measures because, as primary 
advantage, the participants can not consciously manipulate the activities of their ANS 
(Kidd & Breazeal, 2005, Picard et al., 2001, McCreadie & Tinker, 2005). Additional-
ly, physiological measures offer a non-invasive method that can be used to determine 
the stress levels and reactions of participants interacting with technology (Picard et 
al.2001, Liu et al., 2006). Even if psychometric instruments did not provide a remark-
able correlation with physiological response, it is possible to assert that physiological 
measures provide an indication about the variation in stress level of the tested subjects. 

3.4 Data Classification 

According to the aim of the paper, a classifier was implemented in order to identify the 
status of the subjects on the basis of the measured physiological signals. Basically, the 
classifier should be able to distinguish if a person is stressed or not. 

For this purpose, the datasets acquired both in baseline and stress phases were used 
and, in particular, the parameters resulted significant at the KW test in distinguishing 
between the two phases have been taken into account (see par. 3.1). 

The linear correlation between the significant parameters was calculated using the 
Pearson's coefficient and results were reported in Table 8. 

Table 8. Pearson's coefficient of correlation between significant features 

Feature 

Name 
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IBI_mean 1.00 -0.98 -0.55 0.77 0.73 0.34 -0.29 0.28 -0.29 0.56 -0.38

HR_mean -0.98 1.00 0.62 -0.73 -0.68 -0.35 0.31 -0.30 0.29 -0.50 0.34

SDHR -0.55 0.62 1.00 -0.22 -0.22 -0.53 0.56 -0.50 0.44 -0.32 0.17

RMSSD 0.77 -0.73 -0.22 1.00 0.96 0.16 -0.23 0.10 -0.20 0.53 -0.27

pNN50 0.73 -0.68 -0.22 0.96 1.00 0.15 -0.28 0.07 -0.22 0.55 -0.35

peakVLF 0.34 -0.35 -0.53 0.16 0.15 1.00 -0.75 0.95 -0.36 0.37 -0.37

%VLF -0.29 0.31 0.56 -0.23 -0.28 -0.75 1.00 -0.77 0.33 -0.38 0.39

peakLF 0.28 -0.30 -0.50 0.10 0.07 0.95 -0.77 1.00 -0.35 0.39 -0.33

Sum_RiseTime -0.29 0.29 0.44 -0.20 -0.22 -0.36 0.33 -0.35 1.00 -0.76 0.30

Decay_Rate 0.56 -0.50 -0.32 0.53 0.55 0.37 -0.38 0.39 -0.76 1.00 -0.49



A wearable system for stress detection through physiological data analysis  

 

17 

Mean_GSR -0.38 0.34 0.17 -0.27 -0.35 -0.37 0.39 -0.33 0.30 -0.49 1.00

 
If the value of correlation between two features was at least 0.80, the less signifi-

cant one was deleted. 
Thus, a reduced number of eight parameters has been selected and used for Princi-

pal Component Analysis (PCA) that allowed to visualize the separation between sub-
jects in baseline and stress phases in the space of the PCs as shown in fig. 3. 

 

 
Figure 3. PCA synthesizes the differences in physiological parameters between baseline 

(blue markers) and stress phase (red markers). The first four PCs contains the 87.8% of the 
overall variance.  

 

4 Conclusion 

The presented work described features extraction and processing techniques used for 
HRV and GSR signals. In particular, the aim was to demonstrate the possibility to 
monitor stress condition through physiological signals variations. Among the 
physiological features extracted, significant differences have been observed in some 
parameters, both for electrodermal activity and electro cardiac activity. This fact can 
be conferred to a concrete variation in physiological response due to a psychological 
stress induction. The PCA analysis has shown the capability of the system in 
distinguishing stressed and not stressed clusters. Then, it is possible to conclude that 
through physiological features it could be feasible to establish if a subject is stressed or 
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not. The significant difference between the scores obtained by the subjects before and 
after the stress induction in both the STAI-6 questionnaire and SSSQ questionnaire 
confirms that the stress protocol designed reaches the goal of inducing a cognitive and 
emotional arousal. The evidence of the efficacy of the protocol is even more evidenced 
by the results of the distress subscale which seems very effective in evaluating the 
situational stress experienced by the subject.  

Since physiological signals are influenced by a high level of variability among sub-
jects, it is important to collect even small variations of signals in order to calculate the 
related features. For this purpose it is needed to take into account both the quality and 
accuracy of the devices used and the precision of the algorithms implemented. 

Regarding psychometric instruments, there was not a remarkable correlation be-
tween physiological variations and scores obtained from the questionnaires. The only 
significant p-value obtained was related to the KSS scale, focused on the level of 
sleepiness, that probably changed among the different phases of the test, with a reduc-
tion in the stress induction phase. 

In future, the extraction features will be improved and classification algorithms 
could be implemented in order to obtain a real time system, able to detect stress levels 
of the user. The system will suggest also interventions such as physical exercises in 
order to reduce the stress level. This will support active ageing, allowing also to elder-
ly to work until the retirement, under controlled conditions that could reduce the bur-
den of stress related to the workload on the basis of personalised interventions. 

 
Acknowledgments: This work was supported by research funding provided by 
Trans.Safe (AmbienT Response to Avoid Negative Stress and enhance SAFEty, 
www.transsafe.eu) project - 6th call of the Ambient Assisted Living Joint Programme 
(AAL JP) with the topic “ICT-based Solutions for Supporting Occupation in Life of 
Older Adults” 

References 

1. Åkerstedt, T., & Gillberg, M. (1990). Subjective and objective sleepiness in the active individu-
al. International Journal of Neuroscience, 52(1-2), 29-37. 

2. Barbeau A. (1980) Lecithin in Parkinson's disease. J Neural Transm Suppl. 1980;(16):187-93. 
3. Boucsein, W. (2012). Electrodermal activity. Springer Science & Business Media. 
4. Burke, J., & Christensen, L. (2004). Educational research: Quantitative, qualitative, and mixed 

approaches. Boston: Pearson Education, Inc. Campbell KT, Forge E, Taylor L (2006). The ef-
fects of principal centers on professional isolation of school principals. School Leadership Re-
view Summer/Fall, 2(1), 1-15. 

5. Clifford, G. D. (2002). Signal processing methods for heart rate variability(Doctoral disserta-
tion, Department of Engineering Science, University of Oxford). 



A wearable system for stress detection through physiological data analysis  

 

19 

6. de Santos Sierra, A., Ávila, C. S., Pozo, G. B. D., & Casanova, J. G. (2011, October). Stress de-
tection by means of stress physiological template. In Nature and Biologically Inspired Compu-
ting (NaBIC), 2011 Third World Congress on (pp. 131-136). IEEE. 

7. Elmes, D., Kantowitz, B., & Roediger III, H. (2011). Research methods in psychology. Nelson 
Education. 

8. EU-OSHA (2016). European Agency for Safety and Health at Work. Retrieved from 
https://osha.europa.eu/en/tools-and-publications/publications/literature_reviews/calculating-the-
cost-of-work-related-stress-and-psychosocial-risks 

9. Gillett R. (2007) Assessment of working memory performance in self-ordered selection, Cor-
tex. 2007 Nov;43(8):1047-56. 

10. Haak, M., Bos, S., Panic, S., & Rothkrantz, L. J. M. (2009). Detecting stress using eye blinks 
and brain activity from EEG signals. Proceeding of the 1st driver car interaction and interface 
(DCII 2008), 35-60. 

11. Haapalainen, E., Kim, S., Forlizzi, J. F., & Dey, A. K. (2010, September). Psycho-physiological 
measures for assessing cognitive load. In Proceedings of the 12th ACM international confer-
ence on Ubiquitous computing (pp. 301-310). ACM. 

12. Healey, J. A., & Picard, R. W. (2005). Detecting stress during real-world driving tasks using 
physiological sensors. Intelligent Transportation Systems, IEEE Transactions on, 6(2), 156-166. 

13. Healey, J., & Picard, R. (2000). SmartCar: detecting driver stress. In Pattern Recognition, 2000. 
Proceedings. 15th International Conference on (Vol. 4, pp. 218-221). IEEE. 

14. Helton, W. S. (2004, September). Validation of a short stress state questionnaire. In Proceed-
ings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 48, No. 11, pp. 
1238-1242). SAGE Publications. 

15. Kaida, K., Takahashi, M., Åkerstedt, T., Nakata, A., Otsuka, Y., Haratani, T., & Fukasawa, K. 
(2006). Validation of the Karolinska sleepiness scale against performance and EEG varia-
bles. Clinical Neurophysiology, 117(7), 1574-1581. 

16. Karthikeyan, P., Murugappan, M., & Yaacob, S. (2012). Descriptive analysis of skin tempera-
ture variability of sympathetic nervous system activity in stress.Journal of Physical Therapy 
Science, 24(12), 1341-1344. 

17. Kidd, C. D., & Breazeal, C. (2005, April). Human-robot interaction experiments: Lessons 
learned. In Proceeding of AISB (Vol. 5, pp. 141-142). 

18. Lansbergen MM, Kenemans JL, van Engeland H. (2007) Stroop interference and attention-
deficit/hyperactivity disorder: a review and meta-analysis. Neuropsychology. 2007 
Mar;21(2):251-62. 

19. Lim, C. K. A., & Chia, W. C. (2015). Analysis of Single-Electrode EEG Rhythms Using 
MATLAB to Elicit Correlation with Cognitive Stress.International Journal of Computer Theory 
and Engineering, 7(2), 149. 

20. Liu, C., Rani, P., & Sarkar, N. (2006, October). Affective state recognition and adaptation in 
human-robot interaction: A design approach. In Intelligent Robots and Systems, 2006 
IEEE/RSJ International Conference on (pp. 3099-3106). IEEE. 

21. Lundberg, U., Kadefors, R., Melin, B., Palmerud, G., Hassmén, P., Engström, M., & Dohns, I. 
E. (1994). Psychophysiological stress and EMG activity of the trapezius muscle. International 
journal of behavioral medicine, 1(4), 354-370. 

22. Mali, B., Zulj, S., Magjarevic, R., Miklavcic, D., & Jarm, T. (2014). Matlab-based tool for ECG 
and HRV analysis. Biomedical Signal Processing and Control, 10, 108-116. 

23. Marteau, T. M., & Bekker, H. (1992). The development of a six‐item short‐form of the state 
scale of the Spielberger State—Trait Anxiety Inventory (STAI).British Journal of Clinical Psy-
chology, 31(3), 301-306. 

24. McCreadie, C., & Tinker, A. (2005). The acceptability of assistive technology to older peo-
ple. Ageing and society, 25(01), 91-110. 



                     Giorgia Acerbi and Erika Rovini 

 

20

25. Medtronic (2015). Zephyr™ Performance System. Retrieved from 
http://www.zephyranywhere.com/products/bioharness-3 

26. Miyake A, Emerson MJ, Friedman NP (2000) Assessment of executive functions in clinical set-
tings: problems and recommendations. Semin Speech Lang. 2000;21(2):169-83. 

27. Orsila, R., Virtanen, M., Luukkaala, T., Tarvainen, M., Karjalainen, P., Viik, J., ... & Nygård, 
C. H. (2008). Perceived mental stress and reactions in heart rate variability—a pilot study 
among employees of an electronics company.International Journal of Occupational Safety and 
Ergonomics, 14(3), 275-283. 

28. Park, B. (2009). Psychophysiology as a tool for HCI research: promises and pitfalls. In Human-
Computer Interaction. New Trends (pp. 141-148). Springer Berlin Heidelberg.. 

29. Pfaff, M. S. (2012). Negative affect reduces team awareness the effects of mood and stress on 
computer-mediated team communication. Human Factors: The Journal of the Human Factors 
and Ergonomics Society, 54(4), 560-571. 

30. Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: Analy-
sis of affective physiological state. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 23(10), 1175-1191. 

31. Ritz, T., Steptoe, A., DeWilde, S., & Costa, M. (2000). Emotions and stress increase respiratory 
resistance in asthma. Psychosomatic Medicine, 62(3), 401-412. 

32. Rottenberg, J., Wilhelm, F. H., Gross, J. J., & Gotlib, I. H. (2002). Respiratory sinus arrhythmia 
as a predictor of outcome in major depressive disorder.Journal of affective disorders, 71(1), 
265-272.. 

33. Seaward, B. L. (1999). Managing stress: Principles and strategies for health and wellbeing. 
Jones & Bartlett Pub. 

34. Sharma, N., & Gedeon, T. (2012). Objective measures, sensors and computational techniques 
for stress recognition and classification: A survey.Computer methods and programs in biomedi-
cine, 108(3), 1287-1301.. 

35. Shimmer (2016). Shimmer3 GSR + Unit. Retrieved from 
http://www.shimmersensing.com/shop/shimmer3-wireless-gsr-sensor 

36. Schumm, J., Bachlin, M., Setz, C., Arnrich, B., Roggen, D., & Troster, G. (2008, January). Ef-
fect of movements on the electrodermal response after a startle event. In Pervasive Computing 

Technologies for Healthcare, 2008. PervasiveHealth 2008. Second International Conference 

on (pp. 315-318). IEEE. 
37. Singh, R. R., Conjeti, S., & Banerjee, R. (2012, February). Biosignal based on-road stress 

monitoring for automotive drivers. In Communications (NCC), 2012 National Conference 
on (pp. 1-5). IEEE. 

38. Statistic Brain (2015). Stress Statistic. Retrieved from http://www.statisticbrain.com/stress-
statistics 

39. Stemmler, G., Heldmann, M., Pauls, C. A., & Scherer, T. (2001). Constraints for emotion speci-
ficity in fear and anger: The context counts.Psychophysiology, 38(02), 275-291. 

40. Sun, F. T., Kuo, C., Cheng, H. T., Buthpitiya, S., Collins, P., & Griss, M. (2010). Activity-
aware mental stress detection using physiological sensors. In Mobile computing, applications, 
and services (pp. 211-230). Springer Berlin Heidelberg. 

41. Taelman, J., Vandeput, S., Spaepen, A., & Van Huffel, S. (2009). Influence of mental stress on 
heart rate and heart rate variability. In 4th European conference of the international federation 
for medical and biological engineering(pp. 1366-1369). Springer Berlin Heidelberg. 

42. Tsigos, C., & Chrousos, G. P. (1994). Physiology of the hypothalamic-pituitary-adrenal axis in 
health and dysregulation in psychiatric and autoimmune disorders. Endocrinology and metabo-
lism clinics of North America, 23(3), 451-466.  



A wearable system for stress detection through physiological data analysis  

 

21 

43. Ulstein, I., Wyller, T. B., & Engedal, K. (2007). High score on the Relative Stress Scale, a 
marker of possible psychiatric disorder in family carers of patients with dementia. International 
journal of geriatric psychiatry, 22(3), 195-202.. 

44. Watkins, L. L., Grossman, P., Krishnan, R., & Blumenthal, J. A. (1999). Anxiety reduces baro-
reflex cardiac control in older adults with major depression. Psychosomatic Medicine, 61(3), 
334-340. 


