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1.1 Introduction: healthcare and technology

The population of the EU is expected to reach 526 million by 2050, and the demo-
graphic old-age dependency ratio (number of people age 65 or above compared to
those age 15-64) projected to rise from the current 28% to 50% by 2060 [4]. This
evident demographic shift foretells that understanding healthy aging and age-related
diseases will be a future challenge. Additionally, the decrease of working-age popu-
lation will lead to an increase in the demand for nurse practitioners (+94% in 2025)
[16l] and physicians assistants (+72% in 2025) [37], as well as an increased need
for a higher level of care and for future assistance. Today, having a good quality of
care and highly sustainable health-care services are increasingly imperative in EU
countries citerobotfuture2016.

Several research efforts conducted in recent years highlight the primary needs
of elderly people and stakeholders [[1][2]. Elderly citizens suffer from cognitive and
physical disorders due to natural decline, and mental and physical impairments [2].
People with cognitive disorders could have problems in keeping control of their lives,
and in effect, recent studies correlate changes in the daily behavior of older persons
with cognitive problems [25]. Additionally, older individuals need to reduce the risk
of accidents at home and may require assistance in managing chronic diseases [1].
Due to all these reasons, over the past few years, requests for home-care services
have increased [[72].

The main objective of Ambient Assisted Living (AAL) is to provide adequate
technological solutions which could increase the level of quality of life [56]. AAL
applications span both helping the different stakeholders in preventing accidents and
monitoring elderly people at home [75]. Recent advances in mobile internet, the
Internet of Things (IoT), and telehealth services increase the perception abilities of
the devices, thus providing an efficient ”’Continuum of Care” and assistance every-
where. The users will be monitored constantly, without the necessity for a person to
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live with them [79]. In effect, a recent study [34]] underlines that the improvement in
the management of health conditions, remote feedback from nurses, and feeling of
safety and self-confidence about their status are all improving the use and acceptance
of telehealth technologies.

The understanding of human movements, behavior, and body language is of ob-
vious importance in AAL applications. It can assist in using technological solutions
for prevention or monitoring and can also help the communication between the users
and the technological devices.

This chapter presents a general overview of the importance of the recognition of
human gestures to deliver personalized and efficient services to promote the inde-
pendent living of elderly individuals. After a brief introduction about smart sensors
(Section 1.2) and gesture recognition applications in AAL (Section 1.3), the authors
describe the primary technologies used to capture the hand motion (Section 1.4), data
processing, and classification algorithms used in gesture recognition (Section 1.5).
Additionally, the authors present two concrete applications of gesture recognition
(Section 1.6).

1.2 Growth of smart sensors, wearables, and IoT

The rising demand for sustainable healthcare systems has increased the importance
of AAL developments, services, and products. The market for medical electronics
is expected to reach USD 4.41 billion by 2022 [6], whereas the smart home market,
which has been experiencing steady growth, is expected to reach USD 121.73 billion
by 2022 [[7].

Similarly, the telehealth market was valued at $2.2 billion in 2015 and is pre-
dicted to reach $6.5 billion by 2020, with an annual growth rate of 24.2% [8]. The
home healthcare industry is also testing tele-homecare and tele-monitoring services
that represent a valuable opportunity to balance quality of care with cost control. In
effect, according to [34], the possibility to be monitored continuously and the evi-
dence of reduced costs are considered some of the facilitators of telehealth. In this
manner, caregivers and family could be connected constantly by smartphone, tablet,
or other connected device.

According to [9]], more than 10,000 healthcare apps are available in the Apple/-
Google store. These statistics also reveals that approximately 85% of doctors use
smartphones and medical apps, and 80% of them would like their patients to mon-
itor their health status at home. Moreover, the digital impact on userexperience is
clear, as more than 78% of users are interested in mobile-health solutions.

The number of worldwide mobile subscriptions was equal to 7.3 billion in 2015
and is predicted to reach 9 billion in 2021 with an annual growth rate of 5%. We are
now living in the IoT era, where not only are people connected to internet, but also
the number of connected devices was equal to 15 billion in 2015 and is expected to
reach 28 billion in 2021 with an annual growth rate of 27% [3]].

Wearable devices are now coming to market with form factors that increase com-
fort during various daily activities. CCS Insight has updated its outlook on the future
of wearable tech, indicating that it expects 411 million smart wearable devices to be
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sold in 2019 and that fitness and activity trackers will account for more than 50% of
the unit sales. Particularly, smartwatches will account for almost half of wearables
revenue in 2019 [3]].

All these smart devices can provide a significant amount of information that
could be used in the AAL context to support the understanding of human move-
ments, behavior, and body language, without being invasive, but simply as a part of
daily living.

1.3 Application scenarios

Recognition of human movements and gestures plays an important role in AAL so-
lutions. Using them, caregivers and family could monitor and assist elderly persons.
In particular, different scenarios can be identified that span from human-robot inter-
action (HRI) to monitoring applications, as shown in Fig. [I.1}]

Gesture recognition in human-robot interaction

One of the challenges in HRI is make the robot understand human behavior as
it occurs in human-human interaction. Thus, the robot could be able to perceive
the action or intention of the user without the person communicating directly to
the robot. Inter-personal communication includes non-verbal cues, such as facial
expressions, movements, and hand gestures that are used to express feeling and give
feedback. Having the abilities to sense and respond appropriately to the users is
important to tailor the content of the interaction, increasing the robots social abilities
[79]. The robot could be able to perceive what the user is doing, whether he is eating
or drinking or talking to somebody, or simply alone on the sofa becoming bored;
in this way, it could approach the user in a tailored manner and attempt to interact

properly.

Prevention of physical and cognitive degeneration

Typical AAL scenarios that involve the use of gesture recognition systems are the
ones that aim at preventing early degeneration or dangerous situations by stimulat-
ing cognitive and physical abilities [56]. AAL solutions can help elderly people by
providing personalised games, made also of different sensors that can detect human
movements. In this way, elderly individuals, and others as well, can perform spe-
cial games that are enjoyable and also provide assistance with physical and cognitive
exercises. Through recognition of human movements, caregivers will be able to de-
termine if the person is doing the movement correctly. In this way, people will be
able to perform exercises and activities while being monitored by experts. Thanks
to these applications, elderly people will be able to train themselves and keep them-
selves fit, decreasing the risk of degeneration of physical and cognitive abilities [1].
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Gesture recognition in monitoring applications

Recognition of movements and gestures plays an important role in monitoring ap-
plications, as well. This recognition can assist both in monitoring daily activities and
in rehabilitation purposes. Elderly people living alone can change their habits, and
this can be seen as a first symptom of a degeneration in cognitive abilities. Often,
people with dementia forget to eat and drink or to carry out simple activities of daily
living such as personal hygiene behaviors [25]. Having the ability to recognize daily
gestures would allow remote monitoring of elderly people to determine whether peo-
ple can still maintain their daily routines [70]. Alternatively, many persons, and in
particular, the elderly, could have to perform exercises at home as assessment tools
or for rehabilitation purposes. In this case, the recognition of movements and ges-
tures could help in enabling a continuum of care. After the first training sessions
accomplished with the therapist, the patient could perform the activities at home
while being monitored. In this way, the user could increase the amount of sessions
spent doing the exercises, without the need for a session with the physician [2]].

Gesture recognition to control robots and smart appliances

Gesture recognition could also be used to control smart appliances, thanks to the
recognition of different movements [2]]. These recognition abilities could be used to
interact with robots or other devices to enable the people to work longer or continue
engaging in personal hobbies and activities that can become difficult to perform after
a certain age. Concerning the work, AAL solutions can be used to compensate for
sensory and motor deficits, preventing work-related injuries as well. To maneuver
heavy or large objects, a remotely controlled robotic arm could be used, instead of a
joystick or mouse, by recognizing the gesture the worker is making [2].

1.4 Gesture recognition technology

The motion capture of human gestures is quite complex due to independent move-
ments of the five fingers [[60]. Thus, the technologies related to the capture of ges-
tures should be developed to be fully reliable and highly sensitive, with a low level
of invasiveness to minimize the discomfort of the monitoring task. In recent years,
many devices based on cameras and inertial sensors have been created to recognize
nonverbal behaviors that are important in human communication [35]]. Some of them
are research products, and others are available on the market. However, most of the
developed systems present strong limitations. For instance, regarding cameras, the
system based on the three-dimensional (3-D) infrared camera for finger recognition,
or other devices based on camera recognition, suffer from line-of-sight obstructions
and have heavy computation requirements [31]]. Recent research based on 3-D depth
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Figure 1.1: Example of AAL scenarios

sensors, such as the Leap Motion controller (LMC) and Microsoft Kinetic sensor
demonstrate a high degree of segmentation and 3-D hand gesture recognition [49]].

In contrast, wearable sensors overcome the limitation of obstruction and light.
Being worn by the user, they receive information directly from the movement of the
user. However, to use this type of sensor, the user has to wear something on the hand,
which can be felt as cumbersome and can limit the ability to perform gestures in a
natural way [52]. However, thanks to the miniaturization and affordability of these
sensors, particularly of Inertial Measurement Units (IMUs), wearable sensors have
demonstrated good potential in recognizing activities [45]]. The combination of dif-
ferent types of sensors can improve the accuracy of recognition tasks, but in the case
of wearable sensors, it is important to always pay attention to obtrusiveness, main-
taining a good trade-off between recognition performance and invasiveness [54]].

In this section, some technological solutions, also commercially available, are
introduced and described to provide a general overview of the current solutions used
for hand gesture recognition.

1.4.1 SensHand

The SensHand is a device developed by Cavallo et al. [22] [29] in 2013. This device
is composed of four, nine-axis inertial sensor units to be worn on the hand as rings
and bracelet. In particular, three modules are designed to be worn on three fingers
(typically thumb, index, and middle finger), and one module is designed to be worn
on the wrist.

The SensHand has gone through different improvements over the years (see
Fig[T.2] The last version is made of four inertial sensors integrated into four INEMO-
M1 boards with dedicated STM32F103xE family microcontrollers (ARM 32-bit
Cortex-M3 CPU, from STMicroelectronics, Milan, Italy). Each module includes
a LSM303DLHC (six-axis geomagnetic module, dynamically user-selectable full
scale acceleration, and a magnetic field, from STMicroelectronics, Milan, Italy), a
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L3G4200D (three-axis digital gyroscope, user-selectable angular rate, from STMi-
croelectronics, Milan, Italy), and I2C digital output. The integration of these sensors
enables three-dimensional mapping of the motion.

A Controller Area Network standard is used to implement module coordination
and data synchronization. The module placed on the wrist is the coordinator of the
system: it collects data and transmits them through the Bluetooth V3.0 communi-
cation protocol via the SPBT2632C1A (STMicroelectronics, Milan, Italy) Class 1
module toward a generic control station. A small, rechargeable, and light Li-Ion
battery supplies power to the device. This battery is integrated in the coordinator
module. A fourth-order low-pass digital filter with a cutoff frequency of 5 Hz has
been implemented and can be used to remove high-frequency noise and tremor fre-
quency bands in real time [66]. Data are collected on a PC by means of a custom
interface developed in C# language. This interface, beyond collecting the data, al-
lows selection of a low-pass filter if desired and the acquisition frequency. Data can
be sent at 100 Hz or 50 Hz, depending on the application.

The interface, together with embedded firmware, allows calibration of the three
sensors by following some simple rules indicated by the interface (that follows the
indication given by the manufacturer of the sensors). In this way, it is possible to
calibrate the sensors easily, without reprogramming the device, and removing offsets
and sensitivity that can affect the measurements.

Figure 1.2: Different version of the SensHand

1.4.2 Other Gloves

Over the past 30 years or more, researchers have begun developing wearable de-
vices, particularly glove-based systems, to recognize hand gestures. Different work-
ing principles have been studied during these years to find a good trade-off between
precision, accuracy, and obtrusiveness [27].

Glove-based system

Much attention has been given to glove-based systems because of the natural fit
of developing something to be worn on the hand to measure hand movement and
finger bending. A glove-based system can be defined as: a system composed of
an array of sensors, electronics for data acquisition/processing and power supply,
and a support for the sensors that can be worn on the users hand [27]. The various
devices can differ based on sensor technologies (i.e. piezoresistive, fiber optic, Hall
effect, etc.), number of sensors per finger, sensor support (i.e. cloth or mechanical
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support), sensor location (i.e. hand joints, fingertip positions, etc.), and others [27].
A typical example of a glove-based system is the CyberGlobe, a cloth device with 18
or 22 piezo-resistive sensors that measures the flexion and the abduction/adduction
of the hand joints (depending on the number of sensors, the measurable movements
increase). It is considered one of the most accurate commercial systems [27] and
has provided good results in recognizing sign language based on the biomechanical
characteristics of the movement of the hand [61] [53]]. CyberGlove showed good
results also in applications of robot control and 3-D modelling [47]].

Another example of a glove-based system is the SDT Glove, which is based on
optical fiber flexor sensors. The bending of the fingers is measured by measuring the
intensity of the returned light indirectly [27]. Each finger has a sensor that measures
the overall flexion of the finger. This device is famous for application in virtual
reality [41]], [47].

Other examples of glove-based systems used for sign language include cloth-
supported bend sensors based on the Hall Effect mounted together with an accelerom-
eter [24] as well as flex and contact sensors [64]. Carbonaro et al. [21] added textile
electrodes and an inertial motion unit to the deformation sensors of the glove-based
device to add emotion recognition made through electrodermal activity.

IMU-based system

Even though glove-based systems can be very accurate in measuring hand de-
grees of freedom, they also can be perceived as cumbersome by users because they
reduce the dexterity and natural movements. To reduce the invasiveness of the wear-
able sensors, different technologies have been introduced to recognize hand and fin-
ger gestures. One of the proposed solutions introduced the use of IMUs to recognize
gestures. In particular, these sensors are worn on the hand to perceive the movements
made by the fingers and the hand. The SensHand technology previously described
belongs to this category of sensor. Moreover, Bui et al. [20] used the AcceleGlove
with an added sensor on the back of the hand to recognize postures in Vietnamese
Sign Language. In this way, they were able to evaluate the angle between the fingers
and the palm and use it for identifying the gesture made.

Kim et al. [44] developed a device composed of three 3-axis accelerometers,
worn on two fingers and on the back of the hand to recognize gestures. With the help
of these sensors, they reconstructed the kinematic chain of the hand, allowing the
device to recognize simple gestures. In addition, an accelerometer and a gyroscope
were used on the back of the hand by Amma et al. [14] to recognize 3-D-space
handwriting gestures.

Lei et al. [46] implemented a wearable ring with an accelerometer to recog-
nize 12 one-stroke finger gestures, extracting temporal and frequency features. The
chosen gestures were used to control different appliances in the house [42].

Wearing two 3-axis accelerometers on the thumb and on the index finger, Hsieh et
al. [39] were able to recognize some simple gestures made using these fingers. Using
a nine-axis inertial measurement unit, Roshandel et al. [65] were able to recognize
nine different gestures with four different classifiers.

EMG-based and hybrid systems
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New sensors have been developed to read the surface electromyography (SEMG),
which is the recording of the muscle activity from the surface, detectable by surface
electrodes. In recent years, attention has been paid to this kind of signal to recog-
nize hand and finger gestures. Various technical aspects have been investigated to
determine the optimal placement of the electrodes, and select the optimal features
for the more appropriate classifier [59]. Naik et al. [59] used SEMG to recognize the
flection of the fingers, both alone and combined, obtaining good results (accuracy <
0.84). Using the same signal, Jung et al. [43] developed a new device that uses air
pressure sensors and air bladders to measure the EMG signal.

To increase the number and the kind of gestures to be recognized, often different
sensors are combined together. Frequently, EMG is combined with inertial sensors
worn on the forearm to increase the amount of information obtained by the device.
Wolf et al. [78] presented the BioSleeve, a device made of SEMG sensors and an
IMU to be worn on the forearm. By coupling these two types of sensor, the authors
were able to recognize 16 hand gestures, corresponding to various finger and wrist
positions that were then used to command robotic platforms. Lu et al. [?] uses
a similar combination of sensors to recognize 19 predefined gestures to control a
mobile phone, achieving average accuracy of 0.95 in user-dependent testing. Georgie
et al. [33]] fused the signals of an IMU worn on the wrist with EMG at the forearm
to recognize a total of 12 hand and finger gestures with a recognition rate of 0.743.

1.4.3 Leap Motion

The Leap Motion Controller (LMC), is a commercially available optical device that
can detect the hand motion and position in the 3-D space. Its weigh is 45 g and it is
composed of three light emitting diodes (LEDs) and two infrared (IR) cameras with
depth sensing abilities (resolution of 640x240 each). Both IR cameras are a distance
of 20 mm from the center of the LMC, as depicted in Fig[T.3]a. The field of view in
the hemispherical area is approximately 150.

The information regarding the user’s hand, fingers, and gestures is captured as
long as the hand is between 25 mm and 600 mm above the center of the sensor. The
hand position captured is relative to the center of LMC [69].

The Leap Motion software development kit (SDK) allows access of the data for
hand direction, speed, and rotation, in time-dependent frames with the average fre-
quency of 100 Hz/s, which is considered adequate to capture the movement of the
human hand with a high degree of accuracy. For hand movement detection, LMC
software uses an internal model of the human hand to estimate the position of the
hand, fingers, and gestures, even if the hand is not visible. This model uses dedi-
cated algorithms to collect the information from the visible part of the hand and past
observations to calculate the most likely position [12]]. LMC also is able to detect
the motion of each finger through dedicated algorithms. This aspect represents one
of the most important advantages of LMC, which make it more convenient for the
different applications.

Leap motion provides two types of APIs to acquire the data from LMC: na-
tive interface and WebSocket interface (I.3]b). The native interface provides dy-
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namic loaded libraries (DLL). These libraries contain sets of classes and datastruc-
ture which allows collection and analysis of data from the device. These libraries
can be connected directly with C++ and Objective-C applications, or through one of
the language bindings provided for Java, C#, and Python [12].

The WebSocket interface allows the interaction with LMC through the web server
and web browser. The communication protocol is hypertext transfer protocol (HTTP),
and the messages are codified in JavaScript object notation messages (JSON) to be
easy for humans to read and write [12].

1.4.4 Smartwatch

Smartwatches are commercial, wearable devices capable of measuring physiological
parameters like heart rate variability and temperature and capable of estimating the
movement of the wrist by means of three-axial accelerometers. These devices allow
a continual monitoring of the users daily activities. The acquired information could
be analyzed and used for different purposes such as wellness, safety, gesture recog-
nition, and the detection of an activity/inactivity period [[19]. Today, many different
smartwatches are available on the market. Apple watch, Samsung Gear S3, Huawei
Watch, and Polar M600 are several examples.

Because of the smartwatchs sensor functionality, the device enables new and
innovative applications that expand the original application field. Since 2001 [62]],
researchers have been paying attention to the movement of the wrist to estimate hand
gestures. Now, smartwatches are offering a concrete possibility to exploit the recog-
nition of gestures in real applications. For instance, Wile et al. [76] use smartwatches
to identify and monitor the Parkinson Diseases postural tremor in 41 subjects. The
results suggest that the smartwatch could measure the tremor with good correlation
with respect to other devices. In other research, Liu et al. [48] fuse the information
of an inertial sensor placed on the wrist with a Kinect camera to identify different
gestures (agree, question mark, shake hand) to improve the interaction with a com-
panion robot. Ahanathapillai et al. [10] use an Android smartwatch to recognize
common daily activities such as walking and ascending/descending stairs. The pa-
rameters that are extracted in this work include activity level and step count. The
achievements confirm good recognition of all the selected features.

Web Socket
Interface

Motion I d N Enal
Services
Controller ) Application
Native Interface

IR Cameras
= - Leap Leap Motion Leap-Enable

b

(a) (b)

Figure 1.3: (a) Internal structure of Leap Motion Controller; (b) Leap Motion Con-
troller system architecture
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1.5 Description of the main approaches for gesture classification

The data collected from the devices should be properly processed to extract sig-
nificant features and then used to built a recognition model via machine learning
techniques. This section describes the main features which could be extracted from
lip motion devices and IMU glove (SensHand), and discusses the main techniques to
select and classify the features adopted in AAL applications.

1.5.1 Features used in gesture recognition for AAL

To use the signals coming from the different devices, it is necessary to extract sig-
nificant features, which means: ” filtering relevant information and obtaining quan-
titative measures that allow signals to be compared” [43l].

Several features could be extracted from data, depending on the technology used.
In general, a statistical and a structural approach have been proposed to extract fea-
tures from the time series. The former approach uses quantitative characteristics
of the data (e.g. Fourier Transform) while the latter uses interrelationships among
the data. Whether to use one or the other depends on the signal to be analyzed [43].
However, the selection of features depends primarily on the application of the gesture
recognition system. In this context, the authors will present concrete applications of
various sets of features in different AAL solutions.

As described in the previous section, LMC devices used depth imaging to detect
the hand motion by using a hand skeletal model. Furthermore, appropriate depth
segmentation techniques, based on a computer vision algorithms, are able to recon-
struct hand motion, even if the full hand is not completely visible [58]. By default,
LMC provides the time-domain features from captured hand movements and can
recognize four different gestures.

The time-domain features include the physical properties of the hand, arm, and
fingers; motions like velocity, speed, distance, angle (pitch, roll, yaw), position
(x,y,2), length, and width; grab strength (hand opening and closing strength); and
pinch strength (colliding strength between fingers).

The recognized gestures are screen tap, key tap, swipe, and circle; they are used
to access specific movement patterns. The movement parameters provided by LMC
for circle gesture are minimum radius (mm) and minimum arc length (rad). For
swipe gesture, the parameters are minimum velocity and minimum length. Finally,
for screen tap and key tap, the extracted features are minimum velocity and finger
movements.

However, some problems were experienced with the LMC. The device cannot
detect the fingertip parameters when two (or more) fingers are very close to each
other or the hand is in neutral position. The LMC will stop detecting the hands and
fingers if the hands are tilted and the fingers are no longer in the field of view of
the device. Additionally, LMC often loses the focus during the hand motion, which
makes the features extraction procedures unreliable.

As confirmed from the state of the art, LMC gesture recognition is used in the
different rehabilitation games. Exploiting the gamification paradigm [26], it has been
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introduced in the rehabilitation therapy of stroke patients to motivate them to pull,
push, and grasp.

LMC is also often used to estimate the essential tremor in aging people and in
patients with Parkinsons disease (PwPD). The traditional clinical assessment is still
lacking in automated procedures able to quantify the severity of the hand tremor. In
this context, LMC could represent a valid tool which could be used by clinicians. It
is able to detect high-frequency movements such as tremor of the fingers and hand.
Chen et al. [23]] showed that the amplitude measured by LMC presents a strong linear
correlation with the amplitude revealed by an accelerometer. In [38], LMC was used
to overcome the limitations of the Kinetic sensor to assess the small movements of
the PwPD hand such as rest tremor and postural tremor.

Lu et al. [50] used hand palm direction, fingertip positions, palm center position,
and other relevant points to track the dynamic movements of daily activities such as
opening and closing the hand, movement of fingers, hand movement in circle, and
finger movements in upward or downward direction without requiring extra compu-
tation. Moreover, in the same study, other features were extracted from the hand
gesture: Poke, Pinch, Pull, Scrape, Slap, Press, Cut, Circle, Key Tap, and Mow.

Of note, IMU-based wearable devices allow extraction of the features in time
domain, frequency domain, time-frequency domain, and other based on the specific
application [18].

The time-domain features are the general statistical features of a signal. The ones
that are often used are mean, standard deviation, variance, mean absolute deviation
(MAD), root mean square (RMS), median, zero crossing, interquartile range (IQR),
correlation between axis, entropy, and kurtosis [45] [68]]. These features typically
play an essential role in movement classification and detection tasks if most discrim-
inative features are not known.

The frequency domain signal provides frequency patterns of different activities.
The frequency domain features analyze the frequency performance of the sensor
signals, which is usually the periodicity of the signal over a long duration. Typical
frequency domain features are the Fourier Transform, the spectral energy, and the
Discrete Cosine Transform [435] [68]]. Some of these features also can be employed
when IMUs are used for activity recognition.

The study of Zhang et al. [80] showed the potential of IMU to access the motor
disorder of upper limbs in PwPD and stroke patients. Objective assessment of upper
limbs for post-stroke patients with the dynamic time wrapping signal from the x,y,z
axis was estimated. The placement of the wireless IMU sensor was on the affected
hand wrist. A novel single-index-based assessment approach for quantitative upper-
limb mobility evaluation was proposed for post-stroke rehabilitation. Similarly, in
2013 Cavallo et al. [22] used the SensHand device to access the PwPD patients
tremors. To evaluate the severity of the disease, different biomechanical parameters
were evaluated from the signals coming from the accelerometers and the gyroscopes.
In particular, according to the different exercises performed by the patients, the fol-
lowing features were extracted by Rovini et al. [67] using the SensHand: movement
frequency, movement amplitude, movement velocity, variability of the movement in
frequency and amplitude, energy expenditure, signal power, fundamental frequency,
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and percentage of power band. The results of the preliminary study [S5] suggest
a strong correlation with some biomechanical features and the clinical scale, thus
providing an objective assessment of the disease.

1.5.2 Features Selections

Large-scale and high-dimensional data acquired from these wearable sensors re-
quired conversion of this data to meaningful information. Typically, these high di-
mensionalities are associated with high levels of noise. The two main causes of noise
are imperfection of technology that collected the data and the sources of the data it-
self [[71]. Feature selection procedures select a subset of features from the original
feature set without any transformation, maintaing the physical meanings of the orig-
inal features and selecting those features that are capable of discriminating between
the samples that belong to different classes.

Three main approaches are used for feature selection: filter, wrapper, and embed-
ded. Filter methods use statistical feature properties to filter out irrelevant attributes.
Wrapper methods explore the entire attribute space to score subsets of attributes
based on their predictive power. Embedded methods attempt to find an optimal sub-
set of features while constructing the predictive model at the same time [S1].

Dimensionality reduction is one of the most popular techniques. It is used to
select the features with less dimensionality, thus to improve the machine learning
classifier generalization ability and accuracy while lowering the computational com-
plexity. Principal Component Analysis (PCA) is a popular feature selection method
in terms of dimensionality reduction. PCA is a linear combination of all the original
variables; thus it is often difficult to interpret the results [81]. Alternatively, lasso is
a promising variable selection technique. It minimizes the residual sum of squares
subject to the sum of the absolute value of the coefficients being less than a con-
stant. Because of its nature, this constraint tends to produce some coefficients that
are exactly 0 and hence gives interpretable sparse models which make it favorable as
a variable selection method [73]. Another feature selection method is the Kruskal-
Wallis test. It is a non-parametric one-way analysis of variance (ANOVA) test that
is simple to implement and widely used in clinical data sets [13]. Another feature
selection method is the linear mixed effect model (LME), which is a powerful and
flexible tool used to reduce the feature set when we need to differentiate patients
on a clinical scale. The LME models are based on a restricted maximum likelihood
estimation method and have been widely used in medical diagnostics studies [77]].
Other feature selection methods are Pearson and Spearman correlations, which are
often used to assess the correlation between two variables. Pearsons correlation as-
sesses the linear relationship, whereas Spearmans correlation assesses the monotonic
relationship between variables. Chi-square also is one of the most effective methods
for feature selection; it measures the degree of independence between the feature and
the categories. It also is quite effective when the number of features is very small
[32].



Wearable Sensors for Gesture Analysis in Smart Healthcare Applications 13
1.5.3 Classification Algorithms

The main objective of the machine learning algorithms or classifications is to create
patterns to describe, analyze and predict data. These patterns are created from a set
of examples, instances, composed of the extracted features [45]]. Generally, there are
three different kinds of machine learning algorithms: supervised, unsupervised, and
reinforcement learning.

In supervised machine learning algorithms, the training of the pattern recognition
systems is made by a set of labeled data; in unsupervised machine learning, the sys-
tem is trained with unlabeled data. In reinforcement learning, the machine is trained
to make a specific decision. The machine learns from past decisions and tries to
determine the best possible solution according to the available and past knowledge
[28]. Different machine learning algorithms are used in the area of AAL applica-
tions. Some commonly used algorithms are thresholding-based classifiers, neural
networks, support vector machine (SVM), hidden Markov model, instance-based
(K-nearest-neighbors), and probabilistic (Nave Bayes (NB)).

Thresholding-based classifiers are often used in assisted living applications for
the binary classification problem. They classify one of the two states based on the
threshold. When the value of features is above the threshold, it will consider one
state, and for feature value below the threshold, it is for the other state. Among these
classifiers are decision trees (DT) and random forest (RF). Decision trees are widely
used in recognition problems and are based on test questions and conditions. Each
node represents a test; the branches represent outcomes, while the leaves are the final
labels [45]]. A random forest is made of a certain number of decision trees. Each tree
gives a classification output, and the final output will be the maximum voting among
the trees. Each tree is built on a vector of features built randomly from the starting
ones [30].

Instance-based classifiers such as K-nearest neighbors make decisions based on
the instance under test. These classifiers do not need training data, but they are
computationally intensive.

Neural networks are basically human brain inspired classifiers generally used in
deep learning for complex daily activities and also for clinical decisionmaking such
as healthy or unhealthy. It consists of a large set of nodes with weighted connec-
tions. It can provide high classification accuracy with a large set of training data.
However, typically in assisted living applications, a large set of training data often is
not available, which make it less favorable in the assisted living applications [[18]].

SVM is a very popular classification algorithm often used in assisted living ap-
plications. SVM is unique among the other machine learning techniques because of
its ability to distribute population in high-dimensional feature space. This algorithm
was initially applied only to binary classification, finding the optimal separating hy-
perplane between two datasets. In a multiclass problem, a one-versus-one strategy is
used to adopt SVM in multiclass problems [17]. SVM categorized the data based on
the trained model by using a unique technique known as kernel. Different kinds of
kernels can be found in advanced systems, including linear, polynomial, and radial
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basis function [63]. SVM does not need a large set for the training model, which is
an advantage compared to neural networks [[18].

HMM is the statistical Markov model, in which the system assumes the Markov
process with unobserved hidden states. HMM can be presented as the simplest dy-
namic Bayesian network. HMM is often used in speech recognition and gesture
recognition. It is commonly used in inertial measurement unit-based sensor data to
recognize the daily activities and sequence of movements [18].

To compare the performances of the different classification algorithms and have
a quantitative analysis of the results, different parameters can be evaluated beginning
with the confusion matrix (i.e. accuracy, F-measure, precision, recall, and specificity,
as described in [45]).

1.6 Use cases: two applications of SensHand

This section presents two concrete applications of gesture recognition based on wear-
able IMUs. The first application monitor daily activities to support senior citizens in
maintaining control over their lives. The second application aims to provide remote
decision support to clinicians. By means of the wearable sensors, the doctor could
remotely monitor a PwPD patience to quantitatively evaluate the performance of a
set of hand gestures.

1.6.1 SensHand for recognizing daily Gesture

In this application, the SensHand was used to recognize nine different gestures typ-
ically performed in activities of daily living (eat some crackers with the hand (HA);
drink from a glass (GL); eat some fruit with the fork (FK); eat some yogurt with a
spoon (SP); drink from a cup (CP); answer the phone (PH); brush the teeth with a
tooth brush (TB); brush the hair with a hair brush (HB); dry the hair with the hair
dryer (HD)). The study consisted of different phases: in the first step, the attention
was focused on finding the best combination of sensors that could recognize the
gestures [57]. Then, the optimal solution was analyzed in greater depth to reduce
the number of features to be used and use the new dataset as input for the machine
learning algorithms.

Experimental setting

The SensHand was used for the acquisition, but the finger sensors were placed on
the intermediate phalange of the index and middle finger instead of on the distal one.
Data from accelerometers and gyroscopes were collected at 50 Hz, already filtered
with a fourth-order low-pass digital filter with a cutoff frequency of 5 Hz. A more
detailed description of the acquisition protocol can be found in [57]. .

Data Processing and Analysis

After the acquisition, the signals coming from the sensors were segmented ac-
cording to the label to separate each gesture in the sequences. The complete dataset
consisted of 7200 gestures. Mean, standard deviation, root mean square, and MAD
were extracted from each axis of the accelerometer.
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As described in Moschetti et al. [57], two different machine learning algorithms,
i.e. DT and SVM, were applied to find the best combination of sensors able to recog-
nize the gestures. Two kinds of analysis were carried out, a personal analysis, where
the same user was used as training and testing, and a leave-one-subject-out analy-
sis (LOSO), where one participant was used as a test set on a model trained on the
19 participants. Results showed that the combination of sensors that use the index
finger and the wrist sensors gave good results compared to other configurations. Us-
ing these two sensors provided excellent results in terms of accuracy and F-measure
(0.89 and 0.884, respectively) while maintaining a low obtrusiveness for the users.

Starting from this configuration, further analyses were conducted. In particular,
the data set was reduced. Considering the sensor on the wrist and the one on the
index finger, our dataset was made of 7200 gestures and 24 features. To remove the
features that were too correlated, the Pearson correlation coefficient between each
feature was computed, and the features with a coefficient greater than 0.85 were
removed [[15].

The new dataset is composed of 15 uncorrelated features. The matrix of the
features was then normalized according to a Z-norm, to have zero mean and a unit
standard deviation, to avoid distortion due to data heterogeneity.

To find similarity between gestures, for each gesture the mean values and the
standard deviation were computed beginning with the reduced dataset. Then, PCA
was applied to improve the visualization of the features in the principal component
space. The standard deviation quantifies the variation in performing a specific ges-
ture.

A SVM with a third-order polynomial kernel was applied to the features dataset
to recognize the gestures and provide a quantitative analysis of the performances. A
LOSO analysis was carried out to evaluate whether the system trained on 19 users
was able to recognize the gestures performed by an unknown user. The system was
trained leaving one user out, in turn, and then tested on the left-out subject. Then,
a mean of the results was evaluated. This analysis was performed in Weka - Data
Mining Suite [36]].

Results

Results from previous work showed that using two sensors placed on the interme-
diate phalange of the finger and on the wrist allow recognition among nine gestures
of daily living [57]. In this further analysis, a reduction of the features was com-
puted, and a third-order polynomial kernel SVM was applied in a LOSO analysis to
evaluate the performances of the system. Precision, recall, specificity, accuracy and
F-measure were computed to have a quantitative analysis of the performance.

The analysis showed good results in terms of accuracy and F-measure (0.9232
4 0.05 and 0.9288 + 0.05, respectively).

In Fig. [I.4] the values for the precision, recall and F-measure are reported for
each gesture.

Considering the F-measure of each gesture, FK and HB are the worst recognized
gestures. Looking at the confusion matrix (Fig. [I.3), it can be seen that the FK
gesture is often confused with the SP one. The two gestures are often confused
between each other due to the similarity of the movements. Other two gestures
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Figure 1.4: Values of precision, recall, and F-measure for each gesture

with a low F-measure with respect to the others are HB and HD. Even in this case,
the confusion matrix shows how the two gestures are often mutually confused. In
addition, the CP gesture does not reach a high value of F-measure, as it is often
confused with GL. The highest values of F-measure are reached for HA, GL, and PH

(all >0.94).

Figure 1.5: Confusion matrix for SVM model in the LOSO analysis for the entire
dataset
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The same can be observed from the representation of the mean gestures in the
PCA-space (Fig[I.6). In accordance with the variance, the first two principal compo-
nents explain the 78.25% of the variance of the original dataset. HD and HB; PH and
TB; CP,GL and HA; are very similar gestures, and sometimes they could be mutually
confused, as shown in the confusion matrix. In Fig. [I.6] it is possible also to observe
how similarly the users performed the gestures. As a matter of fact, the circle around
the star represents the standard deviation from the mean value representing the ges-
tures. It can be seen that the SP gesture is the most precise gesture performed by the
20 users; the standard deviation has the lower values. On the contrary, FK and PH
are the gestures which have greater variability, meaning that the users had performed
the gestures in different ways.

Mean Value - Standard Deviation

e B @@B

2} @

?K Mean Value
Standard Deviation

2nd Principal Component
(=]

-6 -4 -2 0 2 4 6
1st Principal Component

Figure 1.6: Mean gestures in the PCA-space.

These results showed that using a sensor on the index finger and a sensor on
the wrist allows to recognize nine different gestures generally performed in activi-
ties of daily living. Recognizing these gestures could be useful to monitor persons
during daily life, without being too obtrusive. As a matter of fact, at the moment,
the SensHand was used to acquire the data, but further improvement could bring
the development of a smart ring and smart bracelets, therefore decreasing the intru-
siveness. The use of the same sensors could be further investigated to increase the
number of gestures and thus activities to be recognized, and it could also be used to
control robots and smart appliances.

1.6.2  SensHand for supporting clinical decisions

Gesture-based systems could be used to monitor the clinical status of the patients,
providing a supporting tool for the clinicians. In this context, this use case aims
to describe the development and evaluation methods for quantitative and automatic
scoring of the hand motor performance of PwPD. In this study, two different group
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of subjects were involved. The first group included both healthy subjects and PwPD,
whereas the second group included only PwPD subjects. This group was further di-
vided into two sub-groups based on the average score obtained from MDS-UPDRS
IIT scale given by clinicians across each exercise. The PwPD subjects belonging
to scale O or 1 according to averaged rated scale were merged in one group named
Slight-Mild (SM). The subjects with PwPD belonging to average rated scale 2 and 3
were merged in another group named Moderate-Severe (MS). The analysis is based
on the standard supervised and unsupervised feature selection and classification tech-
niques.

Examination of literature reveals a large number of techniques for the automatic
detection of PwWPD motor symptoms. However, generally machine learning algo-
rithms were used to detect a single motor symptom as described in [[1L1l]. Typically,
patients are likely to experience multiple symptoms, thus increasing the chance of
false positive and false negative. Current study has been therefore focused on the
multiple motor symptoms to improve the accuracy of machine learning algorithms
to classify the PwPD on a clinical scale. The methodology carried out in this study

is shown in Fig.

________________________________________________________________________

Figure 1.7: Flowchart showing classification methodology

Data acquisition

A total of 115 subjects were involved in the study after being evaluated by a
neurologist by means of MDS-UPDRS 111, for a general evaluation of the disease.

The first group was composed of 28 PwPD patients (18 men, 10 women; mean
age + SD, 66.2 + 10.2 years old; MDS-UPDRS 1II score: 14.5 + 7.5; Hoehn Yahr
(HY) score: 1.74 + 0.6; Levodopa Equivalent Dose: 407.2 mg + 311.5) and 28
healthy subjects (HC) (22 men, 6 women, mean age SD, 65.0 2.7 years old.

The second group was composed of 59 PwPD patients (42 men, 19 women; mean
age £ SD, 67.3 £ 8.8 years old). All patients were on their medication before and
during the experiments.
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All these subjects lived independently in the community and gave written in-
formed consent prior to the study. The studies’ procedures were approved by the
Medical Ethical Committee of ASL1 (Azienda Sanitaria Locale, Massa and Carrara,
Italy; approval n1148/12.10.10).

According to the neurologist and to the tasks required in the motor section of the
MDS-UPDRS (MDS-UPDRS III), an experimental protocol comprised of six exer-
cises has been proposed to analyze the motor skills of the upper limbs of the partic-
ipants [S5]. The selected exercises are: Thumb-Forefinger Tapping (THFF), Hand
Opening/Closing (OPCL), Forearm Pronation/Supination (PSUP), Resting Tremor
(REST). The protocol and the processing of the data are described in [67].

Features Section

The features extracted from the SensHand are the biomechanical features de-
scribed in [[67]]. To select the most significant features and to investigate the discrim-
inative ability of the parameters, two methods were used, as mentioned above: Lasso,
Kruskal-Wallis. Parameters which satisfied at least one feature selection criteria, as
mentioned above, was considered as a statistically significant parameter. Table [T.T]
shows the features which satisfied the feature selection criteria.

Exercise Features Lasso Kruskall-Wallis
THFFE Oper}lng veloqty 9.568 0.0052
Closing velocity 2.793 0.0028
Number of movements 0.021 0.0001
OPCL Opening velocity 5.702 0.0002
Closing velocity 6.677 2.3019
Power in tremor frequency 8.273 0.0038
REST
band from accelerometer
signal
Power in tremor frequency 1.662 0.0038

band [3.5-7.5] from gyro-
scope signal

Table 1.1: Most significant features extracted. THFF is the Thumb-
Forefinger Tapping exercise, OPCL is the Hand Opening-Closing exer-
cise, and REST is the Rest Tremor exercise [[67]]. A detailed list of the
parameters is reported in Appendix

Results To classify the healthy and PwPD individuals, multiple supervised ma-
chine learning classifiers was used. To train the classifiers, selected significant fea-
tures were paired with each other randomly to obtain the maximum classification
accuracy. To minimize the subjective effect in training model, leave-one-subject-out
cross validation has been used. SVM was used with sequential minimum optimiza-
tion (SMO) [40] algorithm used to support the kernel function to make the linear
boundary with the linear kernel.

Regarding the comparison between HC and PwPD, the maximum 83.63% ac-
curacy was obtained from the SVM with the following paired features: opening
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velocity(degs/s) of the forefinger, closing velocity of the forefinger, power in tremor
frequency band [3.5-7.5] from accelerometer signal, power in tremor frequency band
[3.5-7.5] from gyroscope signal (see Fig[I.§).

Classification Test : SVM

Receiver operating characteristics curves b/w Healthy and

Total Instances =55 PwPD

Correctly Classified = 46 0

Incorrectly classified =9 ; ——He
08 — FuFD

AUC=86%

[\7

3
PWPD | HC £ 06

5

2
PWPD 21 4 708
HC 5 25 Soe

H

Sensitivity | 85%
Specificity | 83%
Accuracy 83.63% 01

0 02 04 0.6 08 1
False Positive Rate

Figure 1.8: Classification between PwPD and healthy control with SVM

Two different supervised classification methods, SVM and logistic regression,
were used to classify the SM and MS subjects. LOSO cross validation was adopted
to avoid the subjective effect on the training dataset. Most significant features paired
with each other randomly to obtain the maximum classification accuracy. Maximum
classification accuracy was obtained from four paired features: opening hand veloc-
ity, opening closing number of movements of hand, power in the tremor frequency
band [3.5-7.5] from accelerometer signal, power in tremor frequency band [3.5-7.5]
from gyroscope signal.

As reported in Fig. the best performing method was the SVM classifier,
which classified SM and MS groups with an accuracy of 79.66%, sensitivity of 94%,
and specificity of 52%, respectively. Low specificity directs the highest variability in
slight and moderate patients samples due to highest severity level of the disease.

In this study, we proposed a method for quantifying PWPD motor symptoms in
both initial and advanced patients experiencing motor fluctuations. The symptoms
are quantified by calculating several biomechanical parameters from motor exercises
for upper limbs by device sensHandvl1. Different standard machine learning classi-
fiers, the support vector machine, and logistic regression were used.

Overall, the method had good test reliability and provided high discriminating
power between PwPD and control subjects with the 83% classification accuracy.
Similarly, for the SM and MS group classification, the 80% classification accuracy
was obtained. These results not only endorse the ability of sensHandV 1 to assess the
biomechanical parameters accurately from the upper limb exercises, but also suggest
that these biomechanical parameters have the potential to discriminate the PwPD on
a clinical scale.
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Classification Test

Logistic Regression
Total Instances =58
Correctly Classified =45
Incorrectly classified=13
AUC=71.93%

SVM
Total Instances =59
Correctly Classified =47
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AUC=280%
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Figure 1.9: Classification between Slight-Mild (SM) and Moderate-Severe (MS)
groups with Logistic Regression and SVM

In the previous studies [[L1], the lack of representative measures was an impor-
tant limitation in the objective measuring system, as most of the multi-dimensional
motions are presented in the form of separate physical parameters. At the same time,
none of the individual parameters would be representative to evaluate the motor per-
formance of the upper and lower limbs. Therefore, in the future, an integrated and
comprehensive matrix is needed to make a gold standard for the assessment of motor
performance for the upper and lower limbs to evaluate the PwPD subjects. Addition-
ally, the fusion of data acquired from different body parts seems to be the most log-
ical approach to improve the accuracy of biomechanical parameters and assessment
of PD as presented in the PERFORM system [[74].

1.7 Conclusion and brief roadmap

According to the demographic projection, the number of elderly people will in-
crease in the coming years, raising challenges to find new solutions to help them
stay healthy and independent. AAL technologies can provide solutions to help older
individuals stay longer in their own homes, monitored and supported, and to make
them and their caregivers feel safe. As described in Section 1.3, gesture recognition
can play an important role in the use of this technological solution.

In recent years, various technologies have been developed to recognize gestures,
spanning from wearable sensors to video-based sensors. The choice of the device
strongly depends on the application. In this chapter, two types of sensors for gesture
recognition have been presented: SensHand and LeapMotion. The first is a wearable
device based on inertial measurement units, while the second is a vision-based sen-
sor. Both of them showed good results in the applications where they were used, in
particular for recognition of daily gestures (SensHand) and in the objective evalua-
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tion of PwPD (SensHand and LeapMotion), showing that the same device could be
used for different aims.

Considering the presented applications, a few steps remain to bring these tech-
nologies into real life. In particular, regarding use of the SensHand for recognition
of daily gestures, the next steps will be to implement an online algorithm that will
allow the sensor to be used in daily living, and be able to discriminate among differ-
ent gestures. Moreover, other applications could be implemented so it can be used
for training purposes as well. In addition, regarding LeapMotion, further studies
should be conducted to perform all proposed clinical assessment protocols for mo-
tor disorders in PwPD. Moreover, a tutorial for the patients is needed to show them
where to place their hand during the data acquisition. People can indeed perform
exercises with this sensor while being at home, which will create a continuum of
care and increase the rehabilitation hours, making it more efficient. However, further
investigations should be performed to determine the most comfortable way to use
the different technologies for all the patients, with low to advanced stages of disease.

Future developments will look toward the implementation of different applica-
tions using the same sensors. The use of a set of sensors at home for monitoring,
training, and controlling smart appliances and devices would allow individuals to
have a set of tools to be used in daily life. In a house with many AAL technolo-
gies, for instance, robots could be controlled and teleoperated to make them perform
dangerous activities such as preventing people from falling and becoming injured.
The same sensors could be used by the robot to perceive what the user is doing and
the understand the non-verbal cues that people use to communicate, allowing a more
natural interaction. At the same time, sensors can be used as monitoring tools both
for clinicians in case of already existing diseases and also for checking daily habits
and preventing degeneration of cognitive and physical abilities. Therefore, gesture
recognition represents an important tool for several AAL applications.
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