
A Heuristic for Optimum Allocation of Real-Time Service Workflows

Tommaso Cucinotta and Gaetano F. Anastasi

Real-Time Systems Laboratory

Scuola Superiore Sant’Anna

Pisa, Italy

Email: {t.cucinotta,g.anastasi}@sssup.it

Abstract—In this paper, the problem of optimum allocation
of real-time service workflows over a set of heterogeneous re-
sources is tackled. In previous works, this problem was formally
stated in terms of a Mixed-Integer Non-Linear Programming
optimization program, that could be solved by recurring to
commercial solvers. However, due to the big dimension of the
solution space to be searched, finding the absolutely optimum
solution: might take too much time in order to be concretely
useful; it may preclude the use of these techniques in large-
scale infrastructures; it makes the technique hardly usable
adaptively in response to corrective actions that may be
needed when some bad event occurs while the services are
running (e.g., hardware-level failures). Therefore, in this paper
a heuristic algorithm based on graph-matching is introduced
that may find very efficiently a reasonably good, albeit non-
necessarily optimum, solution. The algorithm is described, and
its performance assessed by a set of synthetic experiments.

Keywords-real-time; workflow; resource allocation; heuristic

I. INTRODUCTION

Nowadays, more and more applications are being de-

veloped and deployed according to a distributed comput-

ing paradigm. Interactive and multimedia applications are

examples of real-time services that can be conveniently

virtualized [1] but they possess strict timing requirements

in terms of the maximum end-to-end latency that can be

tolerated by the users. In this context, it is useful to address

the problem of how to deploy distributed service workflows

with end-to-end deadline constraints over a network of het-

erogeneous computing resources, as they may be available

within a provider domain. In the decision process, multiple

factors may have to be accounted for, including the relative

importance among the workflows under admission, their as-

sociated revenues for the provider, as well as their associated

computation, networking and storage requirements.

This problem may be formally stated in terms of an

optimization program [2], maximizing a given objective-

function depending on the provider business policy, under

a set of constraints due to the availability of physical

resources within the domain, and to the maximum tolerable

application latencies. However, due to the big dimension

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7 under grant
agreement n.248465 S(o)OS Service-oriented Operating Systems.

of the solution space to be searched, finding the absolutely

optimum solution may not be convenient.

Therefore, in this paper this problem is tackled by design-

ing a proper heuristic based on a graph-matching algorithm.

This takes into account the information on the availability

of resources, the workload requirements of the workflows

as well as their timing constraints. The ability of the pro-

posed technique to meet end-to-end real-time constraints of

the workflow relies on a clear model of computation for

the workflows to be deployed, and on an algorithm that

compensates possible shortages in the resource allocation

for one service by increasing the allocation on the ones

that follow. For example, this allows for trading computing

and networking allocations for meeting a given end-to-

end deadline. At the same time, the algorithm has some

flexibility in that it allows a provider to maximize different

business-related objective functions during the allocation

process. The obtained execution times for the proposed

heuristic are smaller of orders of magnitude, compared to

the time needed for finding a theoretically optimum solution.

II. RELATED WORK

The problem of allocating physical resources to workflow

applications has been tackled many times in the past, es-

pecially in the Grid and service-oriented communities. For

example, Mika et al. [3] propose an application model that

resembles the one used in this paper. However, end-to-end

real-time constraints are not addressed in that work.

In the real-time community, many authors designed archi-

tectures for QoS-aware resource allocation and scheduling

for distributed applications [4]. However, in this kind of

approaches, services are already assigned to hosts, whilst this

allocation/mapping is one of the variables of our problem.

In the Cloud Computing, services are encapsulated in

Virtual Machines (VMs) and thus scheduling a service may

comprise finding enough resources for a VM to be deployed.

As an example, the work by Wang et al. [5] addresses

the problem of scheduling parallel tasks within a SOA

by taking into account multiple resources required by the

corresponding VMs. Our work considers multiple resources

as well. We assume the presence of underlying scheduling

mechanisms able to offer proper guarantees to individual

services or VMs [6], [7].



III. MODEL OF COMPUTATION AND NOTATION

In this section, the main notational elements used through-

out the paper are introduced. The physical resources consti-

tuting the provider infrastructure are defined as follows:

• A set of computing nodes: H = {1, . . . , NH} . Each

host h ∈ H is characterized by a computing capacity

Uh, expressed in terms of availability of processor(s)

share, and a memory capacity Ωh (in bytes1).

• A set of available subnets: S = {1, . . . , S} . Each

subnet is characterized by a maximum aggregate band-

width Bs (in bytes/s), and a latency Ls, that depend

on the adopted type of medium, packet scheduling

algorithm and protocol for QoS assurance.

• The network topology information, specifying what

hosts Hs ⊂ H are connected to each subnet s ∈ S.

In this work we focus on the problem of admitting a

single real-time application workflow A into the infrastruc-

ture. The application is a linear workflow of n services

A , {1, . . . , n} , denoted also as (τ1, . . . , τn) . Each service

performs some CPU-intensive computation, then transmits

some data to the next service in the workflow, which in turn

starts its own computations, and so on. Activation requests

to the workflow arrive with a minimum T inter-arrival time.

The following elements denote computing, memory and

networking requirements, as well as timing constraints, for

the considered set of applications:

• Computation time ci, j exhibited by each service τi of

application A, if deployed on physical node j ∈ H.
• Amount of (volatile or virtual) memory ωi (in bytes)

needed by τi on the node where it will be deployed.

• Number mi of bytes to be transmitted by each service

τi ∈ A, to τi+1, each time τi completes an activation,

with i ∈ {1, . . . , n− 1}.

• Response-time ρi of each service τi of A.
• End-to-end response-time ρ of the whole application.

A. Scheduling

Each service of the application workflow is assumed to

be implemented in form of a process being activated for

each workflow item that needs to traverse the whole chain of

computations. Also, it is assumed that each host is capable of

scheduling the CPU(s) by an algorithm achieving temporal

isolation among concurrently running services, and allowing

for the allocation of processor shares to the individual tasks.

Furthermore, each host must allow for a simple utilization-

based admission control test, i.e., ensuring that the allocation

of all the services deployed on the same processor (or

processor group) does not exceed a maximum capacity Uj.
Generally speaking, when using resource-reservation [8]

schedulers, an allocation is specified for each service in

terms of a budget of qi time units guaranteed every period

1This can be volatile or virtual memory. Note that the model can easily
be extended to consider both of them.

of di time units. It can be shown [9] that the time needed

by the service to complete is bounded by: ρi ≤
⌈

ci, j
qi

⌉

di.

However, if the budget is sufficient to sustain the worst-case

execution time (as assumed from here on), then such value

simply reduces to di.
It is also assumed that subnets exhibit proper packet

scheduling capabilities, so that a precise bandwidth bi can be

assigned to each data flow needed by τi for transmitting its

result (mi bytes) to τi+1, ensuring the temporal isolation

among multiple data flows. For example, weighted fair

queueing algorithms [10] would meet such a requirement.

Note that, as a corner case, a subnet may also represent a

point-to-point link, or the local “loopback” connection.

IV. FORMALIZATION OF THE PROBLEM

Using the definitions and notation introduced in Sec-

tion III, the problem under study may now be formalized. Let

{xi, j : i ∈ A, j ∈ H} represent unknown boolean variables

representing allocations of services to hosts: ∀i ∈ {1, . . . n} ,
∀j ∈ H, xi, j = 1 if τi is deployed on host j and 0
otherwise. Note that, ∀i ∈ A,

∑

j∈H xi, j = 1. Also,

let {yi, s : i ∈ A\ {n} , s ∈ S} represent the derivative un-

known boolean variables (introduced for clarity) represent-

ing allocations of services to subnets: ∀s ∈ S, yi, s = 1 if τi
is deployed on some node j ∈ Hs. The relationship between

the two sets of variables is given by: ∀i ∈ A, ∀s ∈ S,
yi, s =

∑

j∈Hs
xi, j . These variables need to be flanked by

other ones quantifying the resource allocations performed on

each one of the hosts. Finally, let ui =
∑

j∈H xi, jci, j/di
be the CPU share allocated for τi on host j.

The end-to-end response-time ρ of the application work-

flow to be admitted may now be formalized and constrained

to be lower than or equal to the maximum allowed end-to-

end value R, as coming from the SLA:

ρ =
∑

i∈A\{n}

(

di +
mi

bi
+
∑

s∈S

yi, sLs

)

+ dn ≤ R (1)

The resource allocation constraints to be respected are:











∑

i∈A uixi, j ≤ Uj ∀j ∈ H
∑

i∈A\{n} biyi, s ≤ Bs ∀s ∈ S
∑

i∈A ωixi, j ≤ Ωj , ∀j ∈ H

,

where Uj and Bs denote the available resource utilizations

at the time of admitting the new application. If the admission

test succeeds, then these values are updated as follows:











Uj = Uj − ui for j s.t. xi, j = 1

Bs = Bs − bi for s s.t. yi, s = 1

Ωj = Ωj − ωi for j s.t. xi, j = 1

(2)

Additionally, in order to ensure that each token is fully

processed before the next one arrives along the pipeline, we

2



need the further additional constraints (see also [2]): ∀i ∈
A, di ≤ T and ∀i ∈ A, mi

bi
+
∑

s∈S yi, sLs ≤ T.

V. ALGORITHM DESCRIPTION

In this section we propose an algorithm for allocating a

distributed real-time application A on a set of connected

nodes H while respecting an end-to-end constraint R, as

previously discussed. The proposed algorithm is capable of

returning the following information:

• the Boolean variables {xi,j} that specify whether or

not the service i is allocated on host j;

• the allocation parameters di and bi for each service i.

From a high-level perspective, the algorithm performs

a graph visit, searching for a path capable of hosting

the workflow services, given their workload requirements

and end-to-end deadline R. Specifically, a deadline-splitting

methodology (see Algorithm 3) is used to compute a tenta-

tive resources requirements along the various services. Then,

instead of merely failing the allocation when not enough

resources are available at a step of the algorithm, we exploit

the ability for the subsequent stages of the pipeline to com-

pensate for possible shortages in the current step. Therefore,

the allocation at each step is tuned so as to ensure that the

end-to-end response-time till the current service is within the

range [−αn thrR,αthrR] ≡ [−∆n thr,∆thr], with αn thr

and αthr tunable thresholds ranging in [0, 1] ⊂ R.
The main procedure of the proposed algorithm is pre-

sented in Algorithm 1. Such procedure tries to find a set of

nodes satisfying the workflow requirements, by performing a

search on the graph G describing the underlying network. It

also takes as input the vertex u describing the beginning host

of the search and the index i representing the service compo-

nent τi to be allocated, which is increased at each recursive

invocation. Basically, the performed search is based on the

well-know Depth-First Search (DFS) method, enhanced by

considering the arcs at each node in the order dictated by

a specific ordering criterion (see line 7 in Algorithm 1), by

which particular business policies can be enforced.

The core of the proposed algorithm can be considered the

SERVICE ALLOCATION procedure (see Algorithm 2), that al-

locates each service component τi on a vertex j. If τi can be

allocated on j, an assignment is performed for its parameters

di and bi and the graph is updated (line 6) for reflecting such

allocation, according to Eq. (2). In particular, the allocation

procedure performs an initial assignment (d0i , b
0
i ) of (di, bi),

taking into consideration the minimum requirements of the

whole workflow (see Algorithm 3), derived by inflating the

minimum allocation (dmin
i , bmin

i ) due to the arrival rate T
of the tokens, by a factor β expressing the ratio between

the delay obtained with the minimum allocation and the

maximum allowed latency R. At this time the network over

which each service will be allocated is unknown, thus the

corresponding delay Ls is upper-bounded by the maximum

delay among the available networks.

Algorithm 1 WORKFLOW ALLOC(G, u, i)

1: oc← get vertices ordering criterion()
2: if all services are allocated then
3: return true
4: end if
5: for all j ∈ Adjacent(u) do
6: if mark[j]=WHITE then
7: queue← push(j, oc)
8: end if
9: end for

10: while queue is not empty do
11: j ← pop()
12: if SERVICE ALLOCATION(i, j)=false and j satured then
13: mark[j]← BLACK
14: else if WORKFLOW ALLOC(G, j, i+1) = true then
15: return true
16: end if
17: end while
18: return false

Algorithm 2 SERVICE ALLOCATION(i, j)

1: (d0i , b
0
i )← INIT PARAMS(i)

2: tcij ← d0i −
ci
Uj

3: tsij ←
mi

b0
i

−
mi

rj

4: if VERIFY REQUIREMENTS(i) = true then
5: (di, bi)← ASSIGNMENTS(i, j)
6: update status()
7: return true
8: else
9: return false

10: end if

After the initial allocation, Algorithm 2 calculates the

residual times tcij and tsij , respectively referring to com-

puting and networking power, that are positive if host j has

enough resources to sustain the allocation of service i. As an

example, if tcij = 1 it means that the host, after allocating a

CPU share for sustaining a service response equal to d0i , can

allocate additional shares for sustaining at most a response

equal to 1 time unit. The same reasoning can be done for

tsij , except that in this case rj represents the remaining

outbound bandwidth of j.

The computation of tsij and tcij , along with the residual

∆t(i−1) coming from previous allocations (please note that

for service i = 1, ∆t(0) = 0), permits to decide if the

service i can be allocated on host j. In particular, the

VERIFY REQUIREMENTS subprocedure calculates such quan-

tity ∆t
(i)
tmp , tsij + tcij +∆t(i−1) and denies the allocation

(by returning FALSE) if ∆t
(i)
tmp < 0 ∧ |∆t

(i)
tmp| > ∆tn thr.

In case of i = n, it is sufficient that ∆t
(i)
tmp < 0 for denying

the allocation, because a deficit on the last service allocation

cannot be compensated further.

Once verified the timing requirement for allocating the

service τi on the host j, the ASSIGNMENTS procedure is

performed for assigning the pair (di, bi) that could poten-

tially differ from the initial assignment (d0i , b
0
i ). The ratio

behind this procedure, not detailed due to space constraints,

3



Algorithm 3 INIT PARAMS(i)

1: N ← 2n− 1
2: (dmin

i , bmin
i )← (T, mi/T )

3: β ← NT

R−(n−1)maxs∈S{Ls}

4: if β > 1 then
5: (d0i , b

0
i )← (dmin

i /β, β bmin
i )

6: else
7: (d0i , b

0
i )← (dmin

i , bmin
i )

8: end if
9: return (d0i , b

0
i )

Table I
ALLOCATION STATISTICS BY USING DRU CRITERION.

(αn thr , admitted used allocated util. on used avg exec
αthr) wf(%) hosts(%) util.(%) hosts(%) time(ms)

(0, 0) 0.610 0.816 0.452 0.555 0.962
(0.1, 0) 0.666 0.874 0.507 0.579 0.941
(0.2, 0) 0.703 0.910 0.551 0.605 0.922
(0.1, 0.1) 0.653 0.882 0.562 0.639 0.878
(0.2, 0.2) 0.500 0.726 0.512 0.599 0.732
(0.2, 0.1) 0.676 0.906 0.591 0.653 0.867

is keeping ∆t(i) constrained in the range [−∆tn thr,∆tthr].

Briefly, if the condition ∆t
(i)
tmp > ∆tthr is not verified, all

the remaining resources of j can be assigned to τi. Vice

versa, we only allocate resources needed for obtaining a

temporal surplus equal to ∆tmis , ∆tthr −∆t(i−1).

VI. EXPERIMENTS

This section describes a set of experiments performed for

evaluating the performance of the proposed algorithm. In

particular, three workflows have been subsequently submit-

ted to the algorithm for deciding about the admission on

a sample grid of 5 homogeneous hosts, each one with a

network capacity of 100Mb/s and a maximum utilization

Uj = 0.95. Each workflow is composed of three services,

whose requirements have been randomly generated. A total

of 100 repetitions have been performed for different values

of αn thr and αthr and by varying the criterion for ordering

hosts during the graph visit phase.

Initially, we have evaluated our algorithm by ordering

the hosts using the decreasing residual utilization (DRU)

criterion and the statistics are reported in Table I.

We repeated the experiment (results are not reported

due to space constraints) by ordering the hosts with the

increasing residual utilization (IRU) criterion and we noticed

that it leads to higher server consolidation levels, with the

use of generally a lower number of hosts that tend to be

more saturated. In both cases, it can be well appreciated the

impact of the αthr and αn thr parameters of the allocation

heuristic on the achieved results.

Regarding the average execution times of the algorithm,

they are in both cases in the order of ms. It could be

interesting to note that the former optimum problem [2]

applied on a comparable case study has been solved by a

commercial product requiring a time in the order of seconds.

Please note that this comparison is quite rough, as the model

used in this paper has been simplified with respect to the

former one. A more thorough comparison is deferred to

future work.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a heuristic based on graph-matching was

proposed to solve the problem of allocation of distributed

services over a heterogeneous network. From the presented

preliminary results, the heuristic promises to be very ef-

ficient so as to be usable for on-line allocation decisions

to be taken in dynamic SOA environments. In the future,

a more extensive evaluation needs to be performed on the

proposed technique, especially considering large networks of

resources with high numbers of workflows to be deployed.

REFERENCES

[1] T. Cucinotta, F. Checconi, G. Kousiouris, D. Kyriazis, T. Var-
varigou, A. Mazzetti, Z. Zlatev, J. Papay, M. Boniface,
S. Berger, D. Lamp, T. Voith, and M. Stein, “Virtualised e-
learning with real-time guarantees on the irmos platform,” in
Proceedings of the IEEE International Conference on Service-
Oriented Computing and Applications (SOCA 2010), Perth,
Australia, 12 2010, pp. 1–8.

[2] K. Konstanteli, T. Cucinotta, and T. Varvarigou, “Optimum
allocation of distributed service workflows with probabilistic
real-time guarantees,” Service Oriented Computing and Ap-
plications, vol. 4, pp. 229–243, 2010.

[3] M. Mika, G. Waligra, and J. Wglarz, “Modelling and solving
grid resource allocation problem withnetwork resources for
workflow applications,” Journal of Scheduling, vol. 14, pp.
291–306, 2011.

[4] K. Nahrstedt, H.-h. Chu, and S. Narayan, “Qos-aware re-
source management for distributed multimedia applications,”
J. High Speed Netw., vol. 7, pp. 229–257, December 1998.

[5] L. Wang, G. von Laszewski, M. Kunze, and J. Tao, “Schedule
distributed virtual machines in a service oriented environ-
ment,” in Proceedings of the 2010 24th IEEE International
Conference on Advanced Information Networking and Ap-
plications, ser. AINA ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 230–236.

[6] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari,
L. Mangeruca, R. Checcozzo, and F. Rusina’, “A real-time
service-oriented architecture for industrial automation,” IEEE
Trans. on Industrial Informatics, vol. 5, no. 3, Aug 2009.

[7] T. Cucinotta, G. F. Anastasi, and L. Abeni, “Respecting
temporal constraints in virtualised services,” in Computer
Software and Applications Conference, 2009. COMPSAC ’09.
33rd Annual IEEE International, vol. 2, July 2009, pp. 73–78.

[8] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity
reserves for multimedia operating systems,” Carnegie Mellon
University, Pittsburgh, Tech. Rep. CMU-CS-93-157, 1993.

[9] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQu-
oSA — adaptive quality of service architecture,” Software –
Practice and Experience, vol. 39, no. 1, pp. 1–31, 2009.

[10] J. C. R. Bennett and H. Zhang, “Hierarchical packet fair
queueing algorithms,” IEEE/ACM Transactions on Network-
ing, vol. 5(5), pp. 675–689, October 1997.

4


