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QoS Control for Pipelines of Tasks using Multiple
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Abstract—We consider soft real-time applications organised
as pipelines of tasks using resources of different type (commu-
nication, computation, storage). The applications are assumed to
be periodically triggered and the different tasks communicate
by unidirectional buffers. The problem we cope with is how to
effectively share the resources so that some specified Quality of
Service (QoS) requirements are met. The QoS considered here
is tightly related to the end-to-end temporal behaviour of the
application. To compensate for time-varying resource require-
ments, we advocate a distributed control approach whereby
the scheduling parameters of each task are tuned depending
on the temporal behaviour of the application measured by
appropriate sensors. The use of real-time scheduling strategies
enables a mathematically safe control design, in which the QoS
requirements are translated into formal control goals, and formal
proofs are provided on the ability of the controller to fulfil
these goals. We also offer extensive simulations that validate the
approach for multimedia applications.

I. INTRODUCTION

An increasing number of real-time applications are dis-
tributed. The data items are processed by a set of interact-
ing components (tasks) that use resources of different type
(computation, communication, storage). In order to reduce
the cost and the complexity of the system, designers are
pushed towards an aggressive sharing of these resources. The
price to pay is a reduced predictability for the execution
of applications whose Quality of Service (QoS) is strongly
related to the temporal behaviour. Indeed, the scheduling
delays that an application may suffer on the different resources
can significantly change based on the workload fluctuations.
In this context, the ability to execute the application respecting
its timing constraints heavily depends on the scheduling policy
and on the choice of the scheduling parameters. In a distributed
context, the problem is even harder since "local" scheduling
choices have to be coordinated to achieve a "global" goal.

Traditional approaches to the design of distributed real-
time applications use priority based schedulers. For a given
choice of scheduling priorities, appropriate analysis techniques
enable a designer to compute upper bounds on the end-to-end
delays incurred by the application and decide if a given real-
time system meets all of its deadlines. For many soft real-

time applications such strong guarantees are neither strictly
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needed nor useful. It is often the case that we can trade a
moderate occurrence of deadline violations for a more efficient
utilisation of resources.

In this context, classical approaches have been proven
ineffective. In particular, the use of fixed or even dynamic
priorities is simply too coarse a tool for controlling the work-
load fluctuations of very dynamic applications. This limitation
has stemmed a strong research activity in the past decade
producing scheduling mechanisms that permit a fine grained
control on the temporal allocation of resources (e.g., exporting
such parameters as the fraction of resource allocated to each
task). Solutions of this type are increasingly available even
on general-purpose Operating Systems (e.g., Linux). In order
to show their full potential, these mechanisms have to be
complemented with design procedures guiding the choice of
the local scheduling parameters. Very suitable to the soft
real-time domain are probabilistic approaches, which apply
performance analysis to decide “off-line” the allocation of
parameters that allow a system to meet its timing constraints
with a given probability.

In this paper, we consider very dynamic environments
(open systems), in which applications can be started and
terminated at any moment. Moreover resource requirements
are difficult to identify in detail and can be strongly time-
varying. Therefore, carrying out a complex stochastic design
of the system upon every reconfiguration is hardly a viable
solution. A better solution to the problem has to be sought
in the realm of adaptive algorithms, able to self-tune the
scheduling parameters to accommodate the QoS requirements
of the applications and this is the approach taken in the paper.

a) Problem presentation and solution strategy: We con-
sider applications composed of pipelines of tasks, operating on
data items (or tokens) that traverse sequentially the pipeline.
Each task processes tokens by using resources, which are
shared with other tasks and managed by the underlying run-
time platform through a reservation-based scheduling mech-
anism. The scheduler allocates a fraction of the resource
(bandwidth) to the competing tasks, and allows for dynamic
changes of the allocation at run-time. We will make two
important assumptions: each task uses a single resource, and
tokens entering the first stage are generated periodically with
a bounded jitter. Therefore, the pipeline is required to sustain
a periodic processing of data, producing the result of the chain
of computations with the required level of QoS.

We identify two classes of QoS requirements:
• strong: every token must be processed within a maxi-

mum end-to-end latency; also the output jitter must be
controlled;
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• weak: there is a nominal specification for the end-to-
end latency and for the jitter; however, when the system
is overloaded the application is allowed to produce the
result with an additional delay, which has to be bounded.

In both cases, we require that applications never discard
tokens. As an example, a professional interactive video-
conferencing system can be considered as an application
with strong QoS requirements, since the latency from the
acquisition device up to the rendering (remote) device has
to be very low and predictable. On the other hand, an IP-
TV player is a typical example of application with weak
QoS requirements, since moderately larger latencies may be
compensated for through an appropriate use of buffering.

The workload of a task can change considerably over its
sequence of activations in time. For instance, in a video-
monitoring application the encoding/decoding workload can
be very low when the scene is still and become much higher
when the scene is subject to sharp changes.

The problem addressed in this paper is how to decide the

fractions of resource allocated to an application tasks so that
it receives a specified QoS guarantee. To this end, we advocate
an adaptive scheme, whereby resource allocation is changed
in time to track the time varying resource requirements of the
tasks. The core contribution of this paper is the design of a
distributed QoS control strategy and resource supervisory pol-
icy that, operating locally on each task and on each resource,
attain a global goal: ensuring the specified QoS guarantees
to applications. Our strategy consists of two elements. First,
we provide a mathematical model that describes the temporal
evolution of an application. This is done defining a state vari-

able that measures the deviation, for each activation of each
task, from a reference point. Therefore, the QoS requirements
of an application can be formulated as a constraint on the
allowed evolution for the trajectories of the state variables.
Second, we design a non-linear feedback-based task controller

and a resource supervisor that restrains the evolution of the
state-space trajectories in the specified sets. Third, we show
theoretical conditions under which the coordinated action of
the task controllers and of the resource supervisors provides
the application with QoS guarantees. Such conditions allow for
the design of a simple admission control policy that admits
into the system only those applications for which the QoS
requirements can be satisfied.

Although the results and the techniques presented in the
paper have been developed for linear topologies (for the sake
of simplicity), we believe that extensions to more general
cases are possible, like for the DAG topologies discussed in
Section VI.

b) Paper outline: After an overview of alternative ap-
proaches to the problem in Section II, we offer a system
level view for our approach in Section III, and we show how
to model the QoS control problem in a control theoretical
framework in Section IV. The control design and the formal
properties it attains are described in detail in Section V. The
effectiveness of the techniques presented in this paper is exten-
sively shown on a set of realistic simulations in Section VII.
Finally, some conclusions are drawn in Section VIII, along
with possible directions for future work.

II. STATE OF THE ART

It is possible to identify different research trends related to
our work that we shortly summarise in this section.

a) Application model: An application model tightly re-
lated to the one presented in this paper is represented by
synchronous data-flow networks [26]. As shown in [7], syn-
chronous data flow networks lend themselves to an effective
code generation process, in which an off-line schedule is
synthesised that minimises the code length and the buffer size.
The model used in this paper is a very restricted case of syn-
chronous data-flow. Indeed, our tasks are organised in linear
topologies, the production and the consumption rate are forced
to be equal (one token) and we do not aim at an optimised off-
line scheduling since our application is inherently distributed
and dynamic. In this sense, our framework is closer to the
one presented in several papers in the real-time community
such as [19]. Interestingly, our scheduling technique allows us
to keep in check the length of the buffers by controlling the
delays of the different tasks in the pipeline.

b) Soft real-time scheduling: Different scheduling algo-
rithms have been proposed to support the specific needs of soft
real-time applications. A first important class approximates
the Generalised Processor Sharing concept of a fluid flow

allocation, in which each application using the resource marks
a progress proportional to its weight. Among the algorithms
of this class, we can cite Proportional Share [36] and Pfair [6].

Similar are the underlying principles of a family of al-
gorithms as Resource Reservation schedulers [30]. In this
case it is possible to associate to each task a pair (Q, P )
meaning that the task is reserved a budget equal of at least
Q time units every P . In essence, the task is reserved a
fraction of the CPU B = Q/P . This approach has been
successfully applied to the problem of scheduling several types
of resources in the resource Kernels project [30]. A very
effective implementation of the Resource Reservations is based
on the use of aperiodic servers [2]. By using a small enough
value for P we can approximate to a reasonable extent and
with a controlled overhead [13] the fluid flow allocation of the
scheduled resources assumed in our model (See Section III).
Similar approximations can also be done using a proportional
share scheduler by changing the weights and operating on the
scheduling parameters. Therefore, both a resource reservation
and a proportional share scheduler could be used as a basic
layer for our adaptive scheme.

c) Design of distributed real-time applications: The
problem of designing scheduling parameters for distributed
real-time applications has received a constant attention in the
past few years. Interesting methodologies can be found in
[5], [16] for hard real-time transactions and in [22] for soft
real-time applications. In all of these cases, the author come
up with a static assignment of the scheduling parameters. In
this paper, we make the point that a static design can be
inefficient (or even impossible) when applications are time-
varying. Therefore, we decompose end-to-end constraints into
local control goals rather than into static parameters. The local
controllers are then used to achieve the control goals operating
on the scheduling parameters.
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d) Adaptive QoS control: Many papers in the past few
years propose to operate resource allocation based on a con-
stant monitoring of the QoS experienced by the application.
The application, in principle, can run almost unaware of the
underlying ongoing adaptation. In [11], the authors propose to
adjust the scheduling priorities to maximise the performance
of a set of feedback controllers. Likewise, in the networking
community adaptivity is expected to play an increasingly
important role. An example is [15], where routing decisions
are optimised based on a monitoring of the experienced QoS.

More similar to the framework considered in this paper are
two recent papers [17], [21] based on the Q-RAM frame-
work [29]. The idea is to associate each task with a custom
utility function relating the resource consumption to the QoS.
An on-line optimisation problem is then solved to compute
the optimal assignment of resources. Our work differs in
two main points. First, we restrict to a class of applications
for which the QoS is solely related to the latency, whereas
in the cost function advocated by the authors of QRAM
several dimensions for the QoS can be considered in the cost
function. Therefore, we trade generality for accuracy taking
into account such aspects as the interaction of the different
tasks composing an application. Secondly, algorithms based on
Q-RAM typically entail heavy-weight computations whereas
our control scheme requires a few algebraic operations and is
then applicable on every task activation.

Focusing on soft real-time applications, in [24] the authors
use an EDF scheduling algorithm trying to dynamically adapt
the deadline miss ratio. In contrast, our QOS metric, the
scheduling error, is related to the maximum delay accumulated
with respect to the end-to-end deadline, rather than on the
probability of missing the deadlines. This allows us to perform
a very fine control on the finishing time of all activations of
each task, based on a well-founded dynamical system model.

Very much related to our approach is the notion of real-rate
scheduling, proposed in [34], [20], where a controller is used
to regulate the progress rate of each task. The progress rate is
defined as the difference between a time-stamp associated to a
computation and the actual time this computation is performed
at. An interesting generalisation of the real-rate approach
to pipelines of tasks is in [35], where the authors consider
a simplified model for the interactions of the tasks (which
does not describe the behaviour of the system in overload
conditions). In our case, we base our model on a QoS metric
(the virtual scheduling error), which is different from the real-
rate approach because it is referred to the execution of an
entire job (rather than to the progress of the task). Moreover,
the model is applicable in all workload conditions. Another
related paper is [25], where the author considers a feedback
control scheme to regulate the utilisation of distributed real-
time systems. Our work differs in two respects. First, our
purpose is to control the QoS rather than the utilisation
(although one effect of the presented controller is to track
the resource requirements of the task). Second, the control
approach presented in [25] is centralised whereas the one
presented in this paper is distributed.

The main ideas underlying our approach were first intro-
duced in [3] and developed in [4], [28]. In these papers, the

Table I
NOTATION SUMMARY

Symb./abbr. Meaning Symb./abbr. Meaning

A(i) A ith application n(i) n A(i) length
R Resources set Rr rth resource

τ (j, i) τ (j) jth task in A(i) Cr Rr capacity

J
(j, i)
k

J
(j)
k

kth job of τ (j, i) c
(j, i)
k

c
(j)
k

J
(j, i)
k

RUT

a
(j, i)
k

a
(j)
k

arrival-time of r
(r, i)
−1 r

(r)
−1 tasks in A(i)

kth token at τ (j, i) using R(r)

d
(j, i)
k

d
(j)
k

J
(j, i)
k

abs. deadl. b
(j, i)
k

b
(j)
k

J
(j, i)
k

bw

T (i) T A(i) activ. period s
(j, i)
k

s
(j)
k

start-time

f
(j, i)
k

f
(j)
k

J
(j, i)
k

finish time σ
(j, i)
k

σ
(j)
k

start error
D(i) D A(i) end-to-end r(j, i) r(j) Resource

deadline of τ (j, i)

B
(j)
N

B
(j)
N

Saturation bw P
(j, i)
k

P
(j)
k

Prediction

ξ
(i)
k

ξk activation [h
(j, i)
k

, [h
(j)
k

, range for

jitter of A(i) H
(j, i)
k

] H
(j)
k

] c
(j, i)
k

B
(j,i)
O

B
(j)
O

Minimum bandw. ǫ
(j, i)
k

ǫ
(j)
k

schedul. error

authors use a scheduling algorithm (the CBS [2]) based on
an aperiodic server, which implements a resource reservation
scheduling policy. The budget associated to each reservation
is used as an actuator in an adaptive scheme. In these papers,
the authors restrict to a single resource, whereas in this paper
we generalise to pipelines of tasks. Preliminary results on the
design of a task controller for strong QoS guarantees have
been presented in [27].

e) Architectures for QoS control: Many papers have
considered the problem of QoS adaptation from a software
architecture point of view. For instance, the use of adapta-
tion techniques inside general-purpose Operating Systems is
discussed in [31]. Some authors propose instead to perform
resource adaptation in a middle-ware layer [38], [14], [18],
[33]. The latter work evolves around the QuO [23] middle-
ware framework, which is particularly noteworthy for it utilises
the capabilities of CORBA to reduce the impact of QoS
management on the application code. In this paper, we do not
explicitly deal with software architectural issues, even though
the practical feasibility and effectiveness of our techniques
have been shown for the sole CPU resource in the context of
the AQuoSA project [1], [13].

III. SYSTEM-LEVEL DESCRIPTION

a) Application model: We consider a finite set of appli-
cations

{

A(i)
}

. Each application A(i) consists of a pipeline of

n(i) tasks A(i) =
(

τ (1, i), . . . , τ (n(i), i)
)

, which are pairwise
connected by uni-directional buffers (in Section VI we discuss
possible extensions). For the tasks, we adopt a data-flow model
of computation as described in [26]. The kth token arrives
at the input buffer of task τ (j, i) at time a

(j, i)
k , for being

processed by job J
(j, i)
k (kth instance of τ (j, i)) that starts at

time s
(j, i)
k and finish at time f

(j, i)
k , instant in which the token

is placed into the input buffer of the next task in the pipeline:
a
(j+1, i)
k = f

(j, i)
k . See Table I for a notation summary.

A task can be implemented by an infinite loop that cyclically
reads a token from the input buffer, processes the token and
outputs the result onto the output buffer. When the input buffer
is empty, the task is blocked waiting for a token to process.
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Figure 1. Example showing the activation pattern of the jobs and the notation.

This is simply implemented by a blocking read operation.
In our model, write operations are non-blocking, and tokens
cannot be lost. As shown next (1), the upper bounds on the
computation delays introduced by our framework allow us to
implement this loss-less and non-blocking semantics by using
a limited number of elements in a FIFO queue.

For notational convenience, we will henceforth omit the i
superscript when the discussion refers to a single application,
as shown in the second column of Table I.
Example Figure 1 shows an example of the activation pattern
of the jobs for a single application. The bottom line reports
the execution of the first task in the pipeline, whose jobs are
periodically activated. For the second task in the pipeline (top
line), job J

(2)
k cannot start until job J

(1)
k finishes and produces

the kth token. On the contrary, J
(2)
k+1 starts right after J

(2)
k

finishes because J
(1)
k+1 has already terminated by that time and

the (k + 1)th token is already available.
b) Real-time constraints and QoS guarantees: For the

purposes of this paper, we will restrict to periodic applications:
the source feeds the tokens into the input buffer of the first
task τ (1) with a regular period T , as shown in the example
in Figure 1. Actually, our framework tolerates a limited jitter
on the time instant at which the kth token enters the pipeline,
with respect to the ideal time (k − 1)T. It triggers a chain of
computations that eventually produces its result at time f

(n)
k ,

n being the length of the pipeline. We require that this chain
of computations be terminated within a maximum latency D:
f

(n)
k ≤ a

(1)
k + D.

For applications receiving strong QoS guarantees, this
bound is invariably respected. For applications receiving weak

QoS guarantees, having a latency lower than D is the nominal
work condition; in response to a system overload, the delay
can become larger, but it remains below an upper bound and
when the overload finishes the nominal condition is restored.

c) Resources and Scheduling: For their execution, ap-
plications share a pool of resources R = {R1, . . . ,RR} of
possibly different kind. Each task τ (j, i) is assumed to perform
its operations using a single resource1 r(j, i) (r(r, i)

−1 denotes
the set of tasks in A(i) that use resource Rr). Every job
J

(j, i)
k of τ (j, i) uses the resource for a Resource Usage Time

(RUT) denoted by c
(j, i)
k that generally changes for each job.

This is the time needed by the job when it is allocated the
entire resource capacity. For each resource, we assume the
availability of a scheduler allowing one to decide the fraction

1For resources different from the CPUs, we assume the overall computa-
tional overhead due to their management by the competing tasks is bounded
and may be accounted for by considering a reduced total CPU capacity.

Figure 2. An example scenario of the addressed problem. Several applications
are organised as pipelines of tasks sharing a pool of resources. Each resource
is managed by a scheduler and by a controller that decides the scheduling
parameters based on QoS measurements.

b
(j, i)
k devoted to job J

(j, i)
k .

We allow for changes in the bandwidth b
(j, i)
k on a job per

job basis and even during the job. To preserve the properties of
the scheduler, though, we require that the bandwidth assign-
ments respect the following schedulability condition: at any
point in time t, the total amount of resource allocated to jobs
active at time t and using the resource, has to be lower than
its capacity. Formally:

∀Rr ∈ R, ∀t
∑

i, j, k : r(j, i) = r

∧ s
(j, i)
k ≤ t < f

(j, i)
k

b
(j, i)
k ≤ Cr. (1)

The capacity Cr ≤ 1 is related to the efficiency of the schedul-
ing algorithm. For instance, scheduling solutions based on the
Constant Bandwidth Server (CBS) [2] or on the Proportionate
Fair (Pfair) [6] scheduling attain full resource utilisation (i.e.,
on a single processor, Cr = 1).

d) The control architecture: The control architecture pro-
posed in this paper is described in Figure 2. Each application is
horizontally represented as a chain of tasks, where each task is
drawn on top of the resource it uses. For each resource, besides
the scheduler, we can find an additional software component
called controller, whose purpose is threefold: admission
test, run-time task control, supervision.

When a new application requires admission into the system,
it has to specify: the period T , the maximum latency D, and
the minimum guaranteed bandwidth that each task composing
the application requires for the resource it uses. As shown
below, these levels can be chosen according to the required
level of QoS (weak or strong). An application is admitted into
the system if the guaranteed bandwidth its tasks require on
each resource does not invalidate Condition 1. This way, the
scheduler is able to operate properly and the negotiated QoS
levels can be dynamically guaranteed to the applications. The
latter claim results from the application of the control theory
we developed, as detailed in Section V.

If the application is admitted into the system, the control
algorithms hosted on the different controllers are configured
and the different tasks can be started. The run-time task
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controller interacts with the scheduler: using the data collected
by the operating system upon each start and termination of
a job, it formulates a bandwidth request for the next job.
Finally, based on the bandwidth requests of the different
task controllers, the resource supervisor decides the actual
bandwidth allocations that respect Equation (1).

There are several architectural solutions for designing a
middle-ware that implements this machinery. For instance,
the admission test can be carried out in a centralised or in
a distributed way. Moreover, the QoS specification of the
application can be exposed to the application or externally
attached to it by a wrapping middle-ware component (as shown
in [14]). A critical issue is how to notify the start and/or the
termination of a job to the framework. We simply propose that
the task explicitly performs some calls at the start and end of
each job, in the spirit of the architecture proposed in [13]. In
this paper, we do not make any specific commitment to any
architectural option. Rather, we focus on the description of the
QoS control strategy and its formal properties.

IV. FORMULATING THE CONTROL PROBLEM

In order to safely define a control strategy for this system
(as shown in Section V), we need a dynamic model. To this
end, we use a state-space approach, where each application is
associated with a difference equation:

ǫk+1 = f(ǫk, ck, bk) (2)

where ǫk = [ǫ
(1)
k , . . . , ǫ

(n)
k ]T is a vector of state variables,

ck = [c
(1)
k , . . . , c

(n)
k ]T is the vector of external (non control-

lable) inputs, bk = [b
(1)
k , . . . , b

(n)
k ]T is the vector of command

variables. The symbol k refers to the kth token entering the
pipeline. The non-controllable inputs are the RUTs required
when processing the token through the different stages of the
pipeline. The vector of the command variables consists of the
bandwidth values used on the different resources R(1), R(2),
. . ., R(n) for the jobs generated by the kth token.

In order to substantiate this model, we need to: 1) identify a
suitable vector of the state variables for the system, 2) formu-
late the control goals by translating the QoS specifications into
a desired equilibrium condition for the state-space trajectories,
3) identify the state transition function f , which analytically
describes how the command variables affect the evolution of
the system. Control design amounts to designing a control law
that operates on the input variables bk to keep the system in
the desired equilibrium and restore it in case of perturbations.

a) The state variables: In order to quantify the temporal
evolution of a task, we introduce for each job a temporal refer-

ence t
(j)
k . Because of the periodic activation of the pipeline, we

consider periodically spaced out temporal references: t
(j)
k =

(k + j − 1)T. Now, we define the scheduling error as a state
variable that quantifies the distance of the job termination from
the temporal reference:

ǫ
(j, i)
k , f

(j, i)
k − t

(j, i)
k . (3)

The arrival times of the tokens at the first stage of the
pipeline are assumed to be equal to an ideal time (k − 1)T,
plus a jitter ξk (which is 0 for perfectly periodic arrivals):

a
(1)
k , (k− 1)T + ξk. Contrary to ǫ

(j)
k , ξk is not actually part

of the system state. In fact, it is an exogenous term depending
on the evolution of the surrounding environment.

b) Dynamic model: The evolution of a single pipelined
application can be described by a discrete event model.
Consider the kth token produced by the data source, which
determines the subsequent activation of the kth job for all the
tasks in the pipeline J

(1)
k , . . . , J

(n)
k . The pipeline state can be

described by a vector of variables ǫk where each component is
the scheduling error ǫ

(j)
k that the jth element of the pipeline ex-

periences when it processes the token: ǫk ,

[

ǫ
(1)
k , . . . , ǫ

(n)
k

]T

.
Due to the “fluid flow” allocation model of the scheduler, and
assuming for simplicity a constant bandwidth b

(j)
k throughout

the execution of the job, the time instant f
(j)
k in which J

(j)
k

will write its output into the output buffer is simply given by

f
(j)
k = s

(j)
k +

c
(j)
k

b
(j)
k

. Since the kth job of τ (j) can start only

after both the (k − 1)th job of τ (j) and the kth job of τ (j−1)

have been completed (performing their write operations into
the buffers), we can write s

(j)
k = max{f

(j)
k−1, f

(j−1)
k } (for the

first stage s
(1)
k = max{f

(1)
k−1, a

(1)
k }).

The resulting evolution model for the state of each task τ (j)

is described by the following recursive equations:

ǫ
(j)
k = σ

(j)
k +

c
(j)
k

b
(j)
k

− T, with (4)

σ
(j)
k =



























max
{

ǫ
(j−1)
k , ǫ

(j)
k−1

}

j ≥ 2, k ≥ 2

ǫ
(j−1)
1 j ≥ 2, k = 1

max
{

ǫ
(1)
k−1, ξk

}

j = 1, k ≥ 2

ξ1 j = 1, k = 1

(5)

where, for notational convenience, we introduced the start

error σ
(j)
k , s

(j)
k − t

(j)
k−1 as the difference between the start

time of J
(j)
k and the temporal reference t

(j)
k−1. The function

above substantiates with a precise and well-founded expression
the general model described in Equation (2), which we will
use in the sequel whenever we need a compact expression for
the state evolution. As a consequence of this formulation, the
set in which each state variable ranges is ǫ

(j)
k ≥ infk ξk − jT.

The model is easily generalisable to the case in which
the bandwidth allocated to a task can be changed during a
job. For instance, if job J

(j)
k executes for c

(j)
k, 1 units of time

with bandwidth b
(j)
k, 1, for c

(j)
k, 2 units of time with bandwidth

b
(j)
k, 2, . . ., for c

(j)
k, s units of time with bandwidth b

(j)
k, s, with

∑s

f=1 c
(j)
k, f = c

(j)
k , then its scheduling error is computed as:

ǫ
(j)
k = σ

(j)
k +

s
∑

f=1

c
(j)
k, f

b
(j)
k, f

− T = σ
(j)
k +

c
(j)
k

b̃
(j)
k

− T

where we introduced the equivalent bandwidth b̃
(j)
k as the

weighted harmonic average of the used bandwidth values:
b̃
(j)
k ,

∑s

f=1 c
(j)
k, f/

∑s

f=1(c
(j)
k, f/b

(j)
k, f ).
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c) Control goals: In typical real-time distributed appli-
cations the end-to-end deadline D is decomposed into partial
deadlines for the different tasks of the pipeline. The choice of
these deadlines is orthogonal to the problem considered in this
paper. In our setting, the choice of the deadlines for each task
simply corresponds to a set point ǫ = [ǫ(1), ǫ(2), . . . , ǫ(n)],
for the state variables. If D ≥ nT , a convenient choice for the
deadlines are the temporal references d

(j)
k = t

(j)
k . In this case

the set point for the state variable is simply ǫ = 0. Maintaining
the state in a neighbourhood of the set point allows us to
combine the respect of the end to end latency constraint with
an efficient utilisation of resources (finishing the job too early
w.r.t. its deadline corresponds to a waste of resources).

For a given set point, an ideal feedback law is a relation
bk = u (ǫk) such that ǫ = f(ǫ, ck, u (ǫk)). However, this
goal cannot realistically be achieved for two reasons: 1) we
do not have an a priori knowledge of c

(j)
k , at the time each

bandwidth b
(j)
k is decided; 2) the limitation of the resources

restricts the possible choices of the scheduling parameters.
We cope with the first problem by introducing a variability

range P
(j)
k for each c

(j)
k variable, which is dynamically pro-

vided by an external component, the predictor. We will denote
by Pk a vector of intervals such that c

(j)
k ∈ P

(j)
k . Hence, the

control value is decided on the basis of the current state and

of the expected variability range for ck. In control theoretical
terms we have an “unknown-but-bounded” disturbance term.

Concerning the resource limitation, we assume that the
controller can rely on a minimum guaranteed bandwidth
B

(j)
O on each resource Rr(j) (that may at most equal the

resource capacity Cr(j)), for a given application. Also, BO =
[

B
(1)
O , . . . , B

(n)
O

]T

will denote the vector of these minimum
bandwidths. As detailed in Section V-E, these assumptions can
be enforced by an appropriate admission control policy.

Because of the uncertainty in the prediction and of the
resource limitation, our desired equilibrium is stretched from
the set point ǫ to a (small) set containing it, whose size is
related to the tightness of the prediction. This is illustrated
through the conceptual trajectories depicted in Figure 3: for
applications receiving strong QoS guarantees, we require that
the state trajectories (marked as (a)) be always contained in a
set I (the inner rectangle); for applications receiving weak QoS
guarantees, the state trajectories (marked as (b)) are allowed
to leave the equilibrium set, but they have to be bounded in
a larger enclosing set (the outer rectangle). Also, we allow an
application originally accepted with a weak QoS guarantee to
be switched to a strong guarantee if the workload of the system
decreases (e.g., due to the termination of an application). In
this case we need the ability to drive the system state from
the larger set into the inner one (trajectory marked as (c)).

We can express formally these concepts, adapting from [8];
Definition 1: L is robustly invariant from I for the closed

loop system if ∀k0, if ǫk0
∈ I then ǫk ∈ L ∀k ≥ k0. If L = I,

then we simply say that I is a robustly invariant set (RIS).
Definition 2: Given a natural number H the set I is robustly

H-steps attractive from L if ∀k0, if ǫk0
∈ L then ǫk ∈ L

∀k ∈ [k0 + 1, k0 + H − 1] and ǫk0+H ∈ I.
The definitions translate the different type of QoS guarantees

Figure 3. Example trajectories. (a) Application with strong QoS guarantee:
the state is constrained in a neighbourhood of the origin. (b) Application with
weak QoS guarantee. (c) Transition from weak to strong QoS guarantee.

introduced at the beginning of the section (see Figure 3)
in terms of closed loop stability properties. Namely, the
set invariance of I describes the desired behaviour of an
application with strong QoS guarantee, while the invariance
of L from I corresponds to the weak QoS guarantee. Finally,
the attractivity of I from L is needed to allow transition from
weak to strong guarantee. We qualify these properties by the
adjective “robust”, because they are must hold despite all
possible variations of ck inside Pk.

d) Design parameters: Given our notion of stability, the
specification of the control goals corresponds to the specifica-
tion of the sets I and L and of the number of steps H .

As far as the geometry of I and L is concerned, we
will restrict to hyper-rectangles so that the scheduling error
of each stage of the pipeline is constrained in an interval:
I ,

[

−e(i), E(i)
]

× . . . ×
[

−e(n), E(n)
]

, where ǫ(i) ∈
[

−e(1), E(1)
]

, and L ,
[

−l(1), L(1)
]

× . . . ×
[

−l(n), L(n)
]

,
with −l(i) ≤ −e(i) ≤ E(i) ≤ L(i).

To understand the convenience of this geometry, consider
an application with strong QoS guarantee and set point ǫ = 0,
and choose the set I so that, ∀j, e(j) = e > 0 and E(j) =
E > 0. By choosing the extremal point E, we can decide
the maximum delay that each stage of the pipeline can suffer,
which is obviously related to the acceptable QoS level.

The extremal point e is associated to resource consumption:
a large value for e means that the task has received too much
bandwidth leading to an early completion. Also the measure
of the segment [−e, E] has an important significance. Indeed,
by choosing a small segment we can reduce the output jitter of
the application. More importantly, the extremal points of the
interval can also be related to the amount of memory required
for the buffers, as shown in the following:

Theorem 1: Consider a pipeline consisting of n tasks
τ (1), . . . , τ (n), and assume that the jitter in the produc-
tion of the first token is always smaller than the period
|ξk| ≤ T/2, ∀k. The following statements hold true: I) If
∀j, ∀k, ǫ

(j)
k ≤ E > 0, then the number of tokens at the jth

buffer of the pipeline is upper bounded by
⌈

E
T

⌉

+ j + 1, and
the bound is tight (in the sense that there are cases in which
it is attained). II) If ∀j, ∀k, −e ≤ ǫ

(j)
k ≤ E, (with e > 0

and E > 0) then the number of tokens at the jth stage of the
pipeline is upper bounded by

⌊

e+E
T

⌋

+ 2.
Proof: See Appendix.

This result is interesting in many respects. The first informa-
tion it carries is that if we are able to contain the scheduling
error of the different stages below a bound E, then we are
able to use a finite number of buffers (for which the theorem
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Figure 4. The control scheme adopted in this paper. We zoom in one task
controller to show its internal structure.

provides a tight bound) preserving the properties of our model
of computation (which is based on non-blocking writes). The
second important fact is that, if we are also able to impose
a lower bound on the scheduling error then, even with a
moderate length of the pipeline, we can have substantial
memory savings as compared to the case in which only the
upper-bound E is imposed.

V. CONTROL DESIGN

A. Generalities

The system described in this paper is comprised of dif-
ferent software applications that evolve independently and
asynchronously from each other. Moreover, the different tasks
of a single application are loosely synchronised due to the use
of intermediate buffers. Therefore, the different components
of the state vector are measured at different times (in the state
vector ǫk, index k refers to a token and not to a time instant).
These considerations dictate a decentralised control scheme,
as shown in Figure 4: each resource controller consists of a
supervisor and of a collection of task controllers.

Control decisions are taken at the start time of a new

job J
(j)
k according to the following scheme: 1) the task

controller acquires the start time σ
(j)
k and the RUT c

(j)
k−1 of

the previous job, 2) the predictor uses c
(j)
k−1 to update its

state and produce the range P
(j)
k ,

[

h
(j)
k , H

(j)
k

]

in which

c
(j)
k is expected to fall, 3) the task controller applies the

control algorithm computing a range of acceptable band-
widths U

(j)
k ,

[

B
(j)
L (σ

(j)
k , P

(j)
k ), B

(j)
H (σ

(j)
k , P

(j)
k )
]

for J
(j)
k ;

this request remains active until the end of the job; 4) the
supervisor assigns a bandwidth b

(j)
k to J

(j)
k and possibly

changes the bandwidth allocated to the other tasks respecting
Condition (1) and ensuring that a minimum bandwidth B

(j)
O

is granted whenever requested. Our scheme is decentralised
since resource supervisors do not communicate with each
other, and so task controllers do (the only communication
is between the task controllers operating on a resource and
the supervisor that manages it). As shown later, despite this
loose interaction between the components, their actions fulfils
system-wide control goals.

In the sequel we will primarily focus on the design of the
task controllers, whilst we will only show a simple supervisor
design, reserving an evaluation of alternative possibilities for
future work. Likewise, the prediction techniques for the time

series of RUTs is mostly out of the scope of this work. For
the sake of completeness we will provide a short description
of the algorithms we used in Section VII-c.

B. The task controllers

The first point to address for the design of the task controller
is how to produce a range of bandwidth values U

(j)
k ,

[

B
(j)
L (σ

(j)
k , P

(j)
k ), B

(j)
H (σ

(j)
k , P

(j)
k )
]

, such that choosing the
bandwidth inside this range, robust invariance of I is achieved.
Since it does not make sense for a task controller to choose
a bandwidth greater than the capacity Cr(j) , we introduce a
saturation constraint B(j)

H ≤ B
(j)
N , with B

(j)
N ≤ Cr(j) .

To simplify the statement of the theorems and their proofs,
we make some assumptions. The first one is that the set
I is an hypercube, i.e., the target variability range for the
scheduling error of all tasks in the pipeline is a common
interval [−e, E] . The second assumption is that e + E ≤ T ,
which is perfectly reasonable as we want to constrain the
scheduling error into a small set. Finally, we assume that
the activation jitter is also constrained within the interval
[−e, E] . These assumptions simplify the statements of the
theorems below and their proofs. Under these assumptions, a
controller achieves robust invariance if and only if it chooses
the bandwidth in the range

[

B
(j)
L , B

(j)
H

]

:

B
(j)
L =











H
(j)
k

T+E−σ
(j)
k

if − e ≤ σ
(j)
k ≤ T + E −

H
(j)
k

B
(j)
N

B
(j)
N if σ

(j)
k > T + E −

H
(j)
k

B
(j)
N

B
(j)
H =











h
(j)
k

T−e−σ
(j)
k

if − e ≤ σ
(j)
k ≤ T − e −

h
(j)
k

B
(j)
N

B
(j)
N if σ

(j)
k > T − e −

h
(j)
k

B
(j)
N

(6)

This is shown in the following:
Lemma 1:

I) A control algorithm attaining robust invariance of I =
[−e, E]n with e + E ≤ T exists if and only if:

e + E ≥ T

(

1 − α

α

)

, (7)

with α , minj=1, ..., n

{

infk

{

α
(j)
k

}}

, α
(j)
k ,

h
(j)
k

H
(j)
k

.

II) Any such algorithm must assign bandwidth values in the
range defined by Equation (6) with

B
(j)
N ≥

supk H
(j)
k

T
≡

H̃(j)

T
, j = 1, . . . , n. (8)

This range is non-empty under conditions in Equation (7).
Proof: See appendix.

Lemma 1 provides conditions for the correctness of the
task controller behaviour when it operates in isolation and all
its bandwidth requests can be granted. When task controllers
are used in combination with resource supervisors, different
QoS guarantees are be provided depending on the guaranteed
bandwidths B

(i)
O = [B

(1, i)
O , . . . , B

(n(i), i)
O ]. In particular, in

Theorem 2 and in Theorem 3 we will provide a lower bound
for the components of vector B

(i)
O to provide respectively

strong and weak QoS guarantee, while in Theorem 4 we will
show how to switch among them.
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C. Global QoS guarantees

The following result clarifies how the task controller and
the supervisor, if configured with appropriate parameters, may
interact achieving the robust invariance of a set I = [−e, E]n.

Theorem 2: Consider an application controlled by the set
of task controllers defined by Equation (6), acting under the
action of resource supervisors granting a set of minimum
guaranteed bandwidths of {B

(j)
O }. Then, robust invariance of

I , [−e, E]n is attained iff, in addition to Conditions (7)
and (8), the following holds:

B
(j)
O ≥

H̃(j)

T
, j = 1, . . . , n. (9)

Proof: This result is a rather straightforward implication
of Lemma 1. Indeed, any bandwidth assignment in the range
identified by Equation (6) guarantees robust invariance of I.
In order to guarantee that the supervisor always allows for
such an assignment, the minimum bandwidth guaranteed B

(j)
O

needs to be greater than the saturation value B
(j)
N identified in

the Lemma, which leads straight to Condition (9).
Remark 1: Condition (6) identifies a family of stabilising

control laws. The supervisor can choose one element of this
family according to different trade-offs. For instance, the value
B

(j)
H is the most resource demanding choice but it also tolerates

small errors in the estimation of H
(j)
k preserving the upper

bound of E for ǫ
(j)
k . On the other hand, the value B

(j)
L is the

choice that most likely tolerates small errors in the estimation
of h

(j)
k preserving the lower bound of −e for ǫ

(j)
k , keeping

the allocation of bandwidth at the bare minimum required
to achieve the desired QoS goals. The middle point of the
range represents a good trade-off between robustness against
imprecise estimation of both c

(j)
k bounds and B

(j)
O .

Remark 2: It is easy to show that robust invariance of I

is preserved also if the supervisor changes the value of the
bandwidth during the job execution, as long as its value always
belongs to the

[

B
(j)
L , B

(j)
H

]

range identified by Condition (6).
This is a straightforward consequence of the notion of equiv-
alent bandwidth introduced in Section IV-b. The same remark
also applies to the results presented below.
If the minimum bandwidth guaranteed to a task by the super-
visor is lower than prescribed by Condition (9), then robust
invariance cannot be guaranteed any more, since the condition
of the theorem is necessary. However, robust invariance of L

from I may still be preserved, as shown in the following:
Theorem 3: Consider an application controlled by the set

of task controllers defined by Equation (6), acting under the
action of resource supervisors granting a set of minimum guar-
anteed bandwidths of {B(j)

O }. If, in addition to Conditions (7)
and (8), the following ones are met for an integer M :

B
(j)
O ≥

supk
1
M

∑M−1
h=0 c

(j)
k+h

T
≡

c̃
(j)
M

T
, j = 1, . . . , n, (10)

then Robust Invariance of L ,
[

−e, L(1)
]

× . . .×
[

−e, L(n)
]

from I , [−e, E]n is ensured, with L(j) , E + j(M − 1)T.
Proof: See Appendix.

Based on this result, a weak QoS guarantee can be provided if
the minimum guaranteed bandwidths exceed the upper bounds
of the average resource requirements over a moving time
horizon M . The maximum deviation from I is proportional
to M and to the pipeline length.

D. Transitions between guarantee types

The transition from strong to weak guarantees takes place as
a result of the supervisor decreasing the minimum guaranteed
bandwidth from the values required in Theorem 2 to the one
required in Theorem 3. In this case, the continuity between
the two levels of guarantees derives from the very definition
of L-invariance. The reverse transition, from weak to strong
guarantees, is far less obvious. The next states sufficient
conditions under which the set I is robustly attractive from an
outer set L, assuming that at some point in time the available
bandwidth switches from the value required in Theorem 3 to
the one required in Theorem 2.

Theorem 4: Let the assumptions of Theorem 2 hold true
for the vector of guaranteed values B

(j)
O , assume θ ,

M

(

T − maxj
c̃
(j)
M

B
(j)
O

)

> 0, and let c̃
(j)
M denote the supremal

of the moving averages of M consecutive c
(j)
k samples:

c̃
(j)
M , supk

1
M

∑M

h=1 c
(j)
k+h. Then, I = [−e, E]n is m-

steps attractive from L = [−e, L]n, with L ≥ E and

m ≥ M

⌈(

L − E − T + maxj
H̃(j)

B
(j)
O

)

/θ + n

⌉

.

Proof: See Appendix.
The key point of the theorem above is that, starting from
a scheduling error greater than E, if we only assume that
the guaranteed bandwidth B

(j)
O is set as required in The-

orem 2, then the scheduling error can not increase but it
is not guaranteed to decrease. This situation occurs in the
worst-case scenario in which the RUTs are all set equal to
c
(j)
k = H

(j)
k = H̃(j). In contrast, the condition identified in

the theorem above (θ > 0) ensures that over a time horizon
M the average availability of bandwidth strictly exceeds the
requirements, thus guaranteeing a reduction of the scheduling
error of an amount lower bounded by θ itself. Thanks to this
property, this last theorem is able to identify the number of
steps m required to move back into I, that clearly increases
with the gap L−E (i.e., the distance to cover), with the length
of the time horizon M and with the length of the pipeline. On
the contrary, increasing θ accelerates the convergence.

E. Resource supervisors

In order to provide QoS guarantees to an application, each
resource supervisor has to be able to guarantee a minimum
bandwidth whenever a task requires it. The strategy proposed
here is based on the combination of a negotiation phase and of
a run-time policy. In the negotiation phase, repeated every time
a new application enters or exits the system, the supervisor
decides whether an application can be admitted to the system
and with what guarantee type. The run-time policy decides
how to share the bandwidth among conflicting requests.

Negotiation phase Consider the set of applications
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G =
{

A(), A() . . .A(L)
}

already running into the system,
along with the vectors of bandwidths guaranteed to them:
{

B
(i)
O

}

i=1,...,L
=
{[

B
(1, i)
O , . . . , B

(n(i), i)
O

]}

i=1,...,L
. A new

application A(L+1) may be accepted into the system only
if the vector of B

(L+1)
O , chosen according to Theorem 2 if

strong guarantees are required, or to Theorem 3 if only weak
guarantees are required, satisfies the following admission test:

∀Rr ∈ R,
∑

i∈{1,2,...,L+1},j∈r
(r, i)
−1

B
(j, i)
O ≤ Cr.

We can also admit applications with no QoS guarantee at all
(setting B

(i)
O = 0), for which the performance depends on the

system workload and on the ability of the feedback to reclaim
the bandwidth unused by the guaranteed applications.

The information on the minimum guaranteed bandwidth
required by each application can derive from prior executions
or from trial benchmarking runs. The decision on the type
of guarantee that each application can receive can be static,
or dynamic. In the latter case, for applications accepted with
weak guarantees, it is possible to raise their guarantee as long
as the workload of the system permits it.

Run-time supervision policy

Assume, for the sake of simplicity, that at most one
task in each application can use a resource Rr and
let Gr be the set of indices associated to applications
that use it. With a slight abuse of notation, we can say
that the controller associated to each task r

(r, i)
−1 in A(i)

using Rr requires at time t a bandwidth in the range
[

B
(i)
L (t), B

(i)
H (t)

]

and is guaranteed a minimum bandwidth

B
(i)
O . The supervisor has to guarantee to A(i) at least

b
(i)
min(t) , min

{

B
(i)
O , B

(i)
L (t)

}

. Let the residual bandwidth

br(t) be defined as br(t) , Cr −
∑

i∈Gr
b
(i)
min(t). The

bandwidth assigned to each task is then b(i)(t) , b
(i)
min(t) +

min

{

B
(i)
H (t) − b

(i)
min(t),

B
(i)
H

(t)−b
(i)
min

(t)
P

j∈Gr
(B

(j)
H

(t)−b
(j)
min

(t))
br(t)

}

.

Therefore, each task receives a bandwidth of at least b
(i)
min(t).

In absence of overload (
∑

j∈Gr
(B

(j)
H (t) − b

(j)
min(t)) ≤ Cr),

each task is granted the entire extra request B(j)
H (t)− b

(i)
min(t),

while, in case of overload (
∑

j∈Gr
(B

(j)
H (t)− b

(j)
min(t)) > Cr),

the extra requests {B
(j)
H (t) − b

(i)
min(t)} of all tasks are simply

scaled down according to the available residual bandwidth on
the resource br(t). In any case, the bandwidth received by
the task is in the range

[

b
(i)
min(t), B

(i)
H (t)

]

.

F. Scalability

The approach that we propose is inherently scalable for
different reasons. First, in our decentralised approach, each
controller focuses on the evolution of a single task in isolation.
Therefore, its complexity is not affected by the number of
stages in the pipeline. The computational load of a task
controller is very low, most of its complexity actually residing
in the predictor. As discussed in the simulation section, it
is possible to obtain very good results even with predictors
requiring no more than a few algebraic operations. Second,

the resource supervisors are distributed and, in their run-
time evolutions, they only consider the requests of the tasks
running on a specific node. As discussed for a single resource
in [12], effective supervision algorithms can be implemented
with constant complexity with respect to the number of tasks.

VI. EXTENSIONS OF THE APPROACH

The assumptions made in Section V-B on the choice of the
intervals

[

−e(j), E(j)
]

do not invalidate the applicability of
the approach to more general cases, but make the statement
of the theorems and their proofs much easier to read.

As far as the model of the application is concerned, the
results that we found on the pipelines, can be generalised to
other types of topologies. First of all, consider a tree topology,
directed from the root to the leaves. The root receives the
input token with a periodicity T, and each father, upon the
termination of a job, forwards the token to all of its children.
Each path from the root to a leaf can be thought of as a pipeline
associated to a maximum latency constraint. The model in
Equation (4) is still applicable. In order for our control strategy
to be applicable as well, we have to be able to choose a partial
deadline, for each task, which is compatible with the end-to-
end latency of all the paths traversing the task. This way, we
can consistently choose a target set [−e, E] for the scheduling
error of each task and apply the control strategy presented
above (along with the analysis in Theorems 2, 3 and 4). In
the example in Figure 5.(a), if the latency from R to N2 is
greater than 2T , the latency from R to N4 is greater than 3T
and the one from R to N5 is greater than 4T , we can choose
a set point for the scheduling error equal to 0 for all tasks and
a common target set [−e, E] for all.

Similar generalisations can be done for some Direct Acyclic
Graph (DAG) topologies with split and join points (see Fig-
ure 5.(b), Figure 5.(c)). In this case the semantic of a split
point is the same as for the tree topology. The semantics of
a join point is that the task can be started if all incoming
jobs have produced their result. Therefore, our model may be
extended by adapting the definition of the start-time of a task
in Equation (5), to account for the fact that a task joining
multiple branches has to wait for the completion of the kth

activation of all of them.
Concerning the algorithms for QoS control, if the concurrent

branches generated from a split point have all equal length,
then our results are easily generalisable. For instance, in the
example in Figure 5.(b), we can choose the same partial
deadlines for tasks N1 and N2 and the same target set for the
scheduling errors of both. When the length of the concurrent
branches is not balanced, the generalisation is not immediate.
For instance, in Figure 5.(c), N2 and N3 need to execute
at the same timing as N1, thus their partial deadlines need
to be shorter. This case would need a generalisation of our
methodology for dealing with tasks with different deadlines
and target sets. This is outside of the scope of this paper.

VII. SIMULATION RESULTS

a) Simulation environment and model validation: We
simulated a mix of multimedia applications, consisting of
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Figure 5. Examples of tree topology (a), DAG topology with balanced (b)
and unbalanced (b) concurrent branches.

video decoders and MIDI sound synthesisers. The simulation
of the video decoder has been made by modelling the video-
path of an MPEG2 decoder as a two-stages pipeline: the first
one acquires frames from the disk or from the network and
consumes a negligible amount of CPU and the second one
decodes them through CPU-intensive computations, drawing
the decoded frames on the screen. This model is a simplifi-
cation of real applications such as the ffplay video player.
The MIDI sound synthesiser has been modelled as a two-
stages pipeline, where the first stage acquires MIDI events and
builds the corresponding sound frames, while the second stage
records them on the disk, or sends them through the network
to the playback device. This second stage was characterised
by a fixed frame size, so there was no need to actually attach
a controller to it, therefore its performance is not shown in the
experiments reported below.

A very interesting aspect of the simulated workloads is the
substantial fluctuation of the resource usage times, due to the
use of compression for the video decoder, and of a variable
number of active voices for the MIDI synthesiser.

In order to perform the simulation, we constructed a
discrete-event simulator that replicates the evolution of the
model described in Section IV, alongside of the control
architecture described in Section V.

The adherence of such model with the behaviour of a real
Reservation Based scheduler was validated, considering the
CPU reservations as implemented within the AQuoSA archi-
tecture for the Linux kernel. We considered a periodic task
with a period of 40ms and with a pseudo-random execution
time ranging between 12.5% and 25% of the period. First, we
executed 1000 jobs of the task at real-time priority, collecting
the sequence of execution times {ck}. Then, we executed the
same sequence of jobs using the Reservation Based scheduler,
with a CPU allocation randomly chosen between 12.5% and
25%, with a fixed time granularity (i.e., server period) of 2ms.
The average difference between the values of the scheduling
error as computed through the model in Equation (4) and the
ones measured in the experiment was the 3.78% of the average
computation time, with a standard deviation of 5.76%. This
difference can be reduced by reducing the granularity of the
reservation. However, this approach cannot be pushed too far
because the introduced overhead is inversely proportional to
this quantity (see [13] for more details).

Similar validations exist in literature for other resources. For
example, in [37] the authors present a disk scheduler, imple-

mented in the FreeBSD OS, approximating a fluid allocation
of the disk. Under appropriate assumptions on the size of the
read data chunks, the model of Equation (4) may be applied.

b) Experiments set-up: For the video decoder, we as-
sumed that the first stage reads the frames from a disk with
a guaranteed rate of 10Mb/s. This value is remarkably lower
than typical rates achieved in modern Operating Systems using
best effort schedulers, because the provision of individual
temporal guarantees to QoS sensitive applications affects ad-
versely the global throughput [37]. The RUTs of a job have
been computed by simply multiplying the frame size by the
transfer rate. The second stage is the MPEG decoder that
consumes CPU cycles. In this case, the RUTs used in the
simulator were chosen equal to the ones measured on a real
execution of the ffplay player2 for the video decoder and
the fluidsynth software3 for the MIDI synthesis.

For the MPEG player, the task period was dictated by the
periodicity of the selected videos: T = 40ms, corresponding
to 25 frames per second. For both tasks we specified a
desired RIS of [−e, E] =

[

−e(1), E(1)
]

=
[

−e(2), E(2)
]

=
[−9ms, 9ms] . Therefore, the RIS size is 45% of the task pe-
riod, which is perfectly acceptable for this kind of application.
For the different experiments, we considered four applications
A(1), . . . ,A(4), with the first three being video decoders
associated to different video streams, while A(4) being a sound
synthesiser playing a MIDI file. The relevant parameters of
the applications are summarised in Table III. In particular,
we report the average RUT E[ck], the maximum moving
average of 3 samples c̃3 and the maximum sample max ck,
all normalised w.r.t. the application periods, set to 40ms for
the video decoders and 10ms for the sound synthesiser.

c) The predictor: The selection of a predictor for the ap-
plication considered in this paper is conditioned by conflicting
requirements. On one hand, our theory is based on the assump-
tion of exact prediction (i.e., c

(j, i)
k ∈ P

(j, i)
k = [h

(j, i)
k , H

(j, i)
k ]

with probability one). This requirement would induce “large”
sizes of the interval P

(j, i)
k . On the other hand, the minimum

attainable size of the RIS is related to the infimum of the
ratio h

(j, i)
k /H

(j, i)
k (see Theorem 2). Therefore, to improve the

performance of our controller, we need aggressive predictions
with small sizes for P

(j,i)
k . Moreover, the computation over-

head due to the QoS control needs to be negligible with respect
to the computation requirements of the controlled application.

Under these premises, complex structures like the one
presented in [10], are hardly acceptable. In contrast, we used a
very simple predictor, composed of two blocks: the first block
produces the prediction of a sample (decorrelating the time
series), and the second block constructs a range around the
predicted point, whose size is related to the observed accuracy
of the point prediction over a moving time horizon.

The prediction of the next sample in time series based on
past samples is a very broad topic [9]. The simplest predictor
we can imagine is a moving average. However, the considered
MPEG data set was composed of a sequence of Group of
Pictures (GOPs) of fixed length. Therefore, samples in the

2More information at the URL: http://www.ffmpeg.org.
3More information at the URL: http://www.fluidsynth.org.
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same relative position within consecutive GOPs are highly
correlated to each other. To account for this effect, we used
a set of interleaved and independent moving averages. In the
experiments shown below, we will denote this predictor as
MMA−H−L, where H is the number of considered moving
averages and L is the length of each moving average. This can
be implemented by using H circular buffers of L elements.

The auto-correlation structure may be fully exploited by
using a FIR filter, whose coefficients (taps) are trained to
minimise the square error. In order to keep the prediction
overhead sufficiently low, we did not use on-line adaptation of
the FIR coefficients. Instead, we made an off-line optimisation
of the taps by using a training set composed of a few movies
with characteristics similar to the ones used for the final
experiment. We will denote this predictor as FIR−L, where
L is the number of taps. The on-line execution of the filter in
this case requires 2L− 1 algebraic operations (scalar product
between the coefficients vector and the sliding samples vector)
plus the insertion and extraction operations from the circular
buffer. Depending on the value of L, the complexity may
become considerably higher than in the case of MMA.

Clearly, the best performance can be obtained when using
predictors that exploit a deep knowledge of the application.
One of such examples was recently proposed in [32] for
MPEG decoding. The prediction is not based on the history,
but is produced through a quick parse of the frame. We
implemented this application-specific predictor (labelled as
AS), and used the produced prediction traces in some of
our simulations. We obtained precision and overhead figures
similar to the ones of [32]. In particular, we got an excellent
accuracy (we measured a maximum relative error below 15%),
paying the price of a non-negligible computation time for the
predictor (5% of the decoding time).

For the sound synthesis, a very effective predictor is the
one that exploits the advance knowledge on the number of
active voices that have to be synthesised at each sound frame,
so as to adapt accordingly the resource allocation right before
starting to synthesise each frame. In fact, in our experiments
we measured a cross-correlation between the number of active
voices and the frame synthesis times higher than 98%.

Concerning the resource usage times on the disk, in addi-
tion to the MMA and FIR predictors described above, we
assumed availability of an application-specific predictor that
has an exact knowledge of the frame size at the very start of
the frame load operation, e.g., reading it immediately from the
very first bytes of the frame header. However, also in this case
we assumed a relative variability of nearly 15% for the loading
time, because, even with algorithms providing guarantees, the
disk throughput may exhibit uncontrolled fluctuations due to
the pattern of requests coming from other applications.

The second predictor block considers a moving window of
N past errors done by the sample predictor. The range is
then obtained by computing the upper and lower x percentiles,
where N and x are configurable parameters. This technique,
which may be implemented very efficiently for fixed values of
the parameters, eliminates possible outliers. In the presented
experiments, we will append to the predictor name a “/N−x”
suffix to denote the parameters used for the range computation,

e.g., MMA − 12 − 3/24 − 87.5.
d) Single application with strong QoS guarantees: In this

paragraph we report the result of a batch of experiments for
a single application with strong QoS guarantees. Our purpose
is to expose the performance of the task controllers, ruling
out possible interferences from the supervisor. The average
RUTs for the considered application are reported in the second
column of Table III (application A(2)).

In order to have a baseline for assessing the performance of
our control schemes, we performed a first set of experiments
with fixed bandwidth, with values ranging from slightly above
(+30%) up to considerably above (+70%) the mean value of
the resource requirements. The results are shown in the top
rows of Table II, where the (A) side refers to the first stage and
the (B) side to the second one. The first data column (labelled
as p(j)) reports the experimental probability of the scheduling
error being within the target RIS, which can be used as
a performance metrics. The probability attained with fixed
allocation schemes were consistently below 27%, meaning
that for most of the times the application received too little
bandwidth. As we can see in the 2nd column of the table, with
a fixed allocation equal to 1.3 times the average requirement,
we got high values for the average scheduling error. Therefore,
the system had transient behaviours with significant deviations
from the target RIS. Indeed, the maximum error experienced
by the system was more than three times the period (3rd

column). To understand this point, we report an excerpt (600
frames) of the temporal evolution in which the resource usage
times are significantly above the average value (Figure 6.(a)).
In this case a fixed allocation of 1.3 the average requirements
was not sufficient to accommodate the temporary requirements
and the scheduling error reached very high values (as shown in
the first curve of Figures 6.(b) and 6.(c)). The large fluctuation
in the scheduling error corresponds to a highly varying latency,
which is certainly a very annoying effect for the user. On the
other hand, when we increased the allocated bandwidth, we
got large (in absolute value) and negative scheduling error.
This is shown in the 2nd and 3rd data row of Table II,
where e.g., a fixed over-allocation of the 50% achieves an
average scheduling error of -18.79% on the first stage and of
-12.6% on the second one. The effect is also illustrated by the
experimental PDF in Figure 7, which exhibits a compression
to the left when we increase the bandwidth reducing the
probability of staying in the target RIS. In practical terms,
this corresponds to a wasteful use of the resources and to a
reduced utilisation of the system.

The evaluation of the adaptive schemes was made consid-
ering different predictors. First, we used the AS predictor,
where the predicted range has been built around the predicted
sample by considering the maximum relative deviation of 15%
achieved by the value predictor over a set of sample traces.
This resulted in a predicted range that always contained the
resource usage time of the next job. In this way, the conditions
required by Theorem 2 were perfectly fulfilled. As far as
the width of the range is concerned, this predictor attained
a value for α(2) = infk α

(2)
k ≥ 0.7. The size of the RIS

was consistent with the values of α(1) and α(2), according
to the statements in Theorem 2. Therefore, the experimental
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Table II
COMPARISON OF THE PERFORMANCE OF DIFFERENT ALLOCATION SCHEMES ON THE FIRST (A) AND SECOND (B) PIPELINE STAGE.

Experiment p(1) E[ǫ
(1)
k ] max ǫ

(1)
k

E[b
(1)
k ]

Fix. µ+30% 21.66% 135.5% 301.2% 14.58%
Fix. µ+50% 24.02% -18.79% 58.6% 16.83%
Fix. µ+70% 20.20% -33.28% 26.9% 19.07%

PI-0.10-0.25 27.9% -5.75% 206.1% 11.17%

AS 100% -0.033% <1.50% 11.56%
FIR-12/24-87.5 94.93% -3.92% 30.4% 12.10%

MMA-12-3/24-87.5 90.67% -4.19% 17.1% 12.03%

Experiment p(2) E[ǫ
(2)
k ] max ǫ

(2)
k

E[b
(2)
k ]

Fix. µ+30% 26.52% 153.9% 320.3% 13.40%
Fix. µ+50% 21.62% -12.60% 47.5% 15.47%
Fix. µ+70% 11.56% -30.63% 3.10% 17.53%

PI-0.10-0.25 40.0% 9.29% 173.9% 5.28%

AS 100% -0.037% <1.50% 10.71%
FIR-12/24-87.5 95.68% -2.01% 26.6% 11.32%

MMA-12-3/24-87.5 99.51% -4.77% <1.8% 11.21%
(A) (B)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 102100  102200  102300  102400  102500  102600  102700

Resource Usage Times (relative to task period)

RUT on R1
RUT on R2

(a)

-50000

 0

 50000

 100000

 150000

 200000

 250000

 102100  102200  102300  102400  102500  102600  102700

S
c
h
e
d
u
lin

g
 e

rr
o
r 

(u
s
)

Frame

Fixed allocation +30%
MMA-12-3/24-87.5

(b)

-50000

 0

 50000

 100000

 150000

 200000

 102100  102200  102300  102400  102500  102600  102700

S
c
h
e
d
u
lin

g
 e

rr
o
r 

(u
s
)

Frame

Fixed allocation +30%
MMA-12-3/24-87.5

(c)

Figure 6. (a): segments of temporal traces for the RUTs. (b) and (c):
scheduling error obtained with a fixed bandwidth 30% greater than the
average RUT, and with an invariant-based controller with a MMA-12-3/24-
87.5 predictor, for the first (b) and second (c) stages.

probability of having the scheduling error inside the RIS was
exactly 1. Furthermore, the maximum and the average error
is suggestive of an evolution of the scheduling error tightly
constrained around the null value.

We evaluated the robustness of the scheme with respect
to occasional violations of the assumptions of the theorem.
To this end, we applied general purpose predictors: for the
video decoders, MMA − 12 − 3/24 − 87.5, consisting of 12
independent averages of 3 samples each (the stream has a fixed
GOP of 12 elements), and FIR − 12/24 − 87.5. Moreover,
the size of the RIS corresponds to a value of α = 69% that
does not account for some isolated spikes of the αk sequences
(less than 5% of the predicted ranges had an αk = hk/Hk ratio
below such value on the considered traces).

The performance of the control algorithm with the two
different predictors is shown in the last two rows of Table II.
The probability of staying in the RIS remains well above 90%
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Figure 7. Scheduling error experimental PDF on the second pipeline stage,
with different bandwidth allocation strategies.

notwithstanding the occasional failures in the prediction, and
the maximum error is always below 30%. It is interesting to
look at how the scheduling error is distributed inside the RIS
(see Figure 7). The PDF is mostly concentrated around the
null value and the tails are very short. It is remarkable that
this significant improvement with respect to static allocation
is obtained with an average bandwidth request very close to
the average requirements of the application.

The improvement achieved by the adaptive scheme on the
temporal evolution is shown, in the same segments of 600
samples considered above, in the second curve of Figures 6.(b)
and 6.(c), where it is possible to see how the adaptation
quickly reacts to the temporary increment of the resource
usage times. In a small number of steps the scheduling error
is reduced to a value close to 0, which is the RIS centre.

Finally, we compared the performance achieved by our tech-
nique with the one achieved through a switching proportional-
integral controller, where each control value is computed as a
linear combination of the value output at the previous step
and the scheduling error of the last two jobs (a detailed
discussion may be found in [4]). We tuned the poles of the
controller as z1 = 0.10 and z2 = 0.25 (thus we label it
as PI − 0.10 − 0.25). As highlighted in the corresponding
row of Table II, this controller keeps the average scheduling
error very close to 0 (below 10% in absolute value), with a
somewhat limited deviation, which would be impossible with
a static allocation. As shown in Figure 7, the performance of
this controller results quite poor when compared to the one
achieved by the control strategy proposed in this paper, which
has a similar computational complexity.

e) QoS Supervisor and multiple applications: We also
simulated the concurrent run of all the three applications A(1),
A(2) and A(3), in order to gauge the effects of the interaction
between task controllers and resource supervisors. In this
case, it was impossible to provide strong QoS guarantees to
all applications, since the sum of the worst-case bandwidth
requirements on the first resource was of 142.78%, exceeding
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Table III
PARAMETERS FOR THE MULTI-APPLICATION SCENARIO. FOR EACH TASK,
ALL PARAMETER VALUES ARE EXPRESSED RELATIVELY TO THE PERIOD.

A(1) A(2) A(3) A(4) Tot.

T 40ms 40ms 40ms 10ms -

E[c
(1)
k

] 8.18% 11.14% 4.46% - 23.78%

c̃
(1)
3 22.91% 26.55% 16.33% - 65.79%

max ck 44.30% 58.33% 40.15% - 142.78%

E[c
(2)
k

] 10.82% 10.30% 12.16% 3.70% 36.98%

c̃
(2)
3 17.20% 17.46% 8.49% 14.42% 57.57%

max ck 27.88% 30.74% 22.60% 25.04% 106.26%

Table IV
RESULTS OF THE SIMULATION FOR THE MULTI-APPLICATION SCENARIO,

IN THE CASES OF AS (TOP HALF) AND FIR (BOTTOM HALF) PREDICTORS.

A(1) A(2) A(3) A(4)

QoS guarantee strong weak weak strong

Prob{ǫ
(1)
k

∈ [−e, E]} 100% 99.92% 99.77% -

max ǫ
(1)
k

<1.50% <2.50% <1.50% -

Prob{ǫ
(2)
k

∈ [−e, E]} 100% 100% 100% 100%

max ǫ
(2)
k

<1.50% <1.50% <1.50% <1.50%

Prob{ǫ
(1)
k

∈ [−e, E]} 91.07% 89.61% 90.91% -

max ǫ
(1)
k

50.8% 303.1% 578.0% -

E[α
(1)
k

] 83.40% 83.60% 85.40% -

Prob{ǫ
(2)
k

∈ [−e, E]} 95.83% 98.20% 93.00% 98.03%

max ǫ
(2)
k

29.5% 213.8% 344.0% 31.19%

E[α
(2)
k

] 79.77% 80.56% 84.61% 83.36%

the maximum resource capacity (100%). Therefore, we chose
to provide strong QoS guarantees only to the first application,
and weak QoS guarantees to the second and third ones. As
a result, based on Theorem 3, the scheduling errors ǫ

(2,2)
k

and ǫ
(2,3)
k are allowed to roam within an interval set upper

bounded by L = E + 4T = 169ms. With this choice of QoS
guarantees, the sum of guaranteed bandwidths are 87.18% for
R1 and 78.87% for R2, both below the total capacities (see
Table III, in which the guaranteed bandwidths assigned to the
applications are shown in boldface).

In the simulation, we used our control scheme with both
the AS predictors and the FIR − 0.7/24 − 87.5 predictors
introduced in the previous subsection. The results of the
simulation are reported in Table IV. When controlling with
the AS predictors (top half of the table), the performance
of the applications with strong guarantees, A(1) and A(1),
is not affected by the presence of the other applications in
the system. Therefore, the experimental probability of keeping
the scheduling error within the RIS is 1, and the maximum
scheduling error is below 1.5% of the task period. On the
other hand, the two applications that were given only weak
guarantees exhibit a lower performance. With respect to the
results reported in the Table II of subsection VII-d, in which
the application was run in isolation, we have a slightly lower
probability of staying in the RIS and a degradation also in
the maximum error. Both effects are quite moderate (e.g., the
maximum scheduling error remains below 3% of the period),
because heavy overload conditions are not frequent.

Switching to a different scenario in which a FIR predictor
(bottom half of the table) is used, the average performance
measurements are not heavily degraded. Indeed the probability

of remaining inside the RIS is decreased by an amount close
to 10% (for the first stage) and to 5% for the second one.
More interesting are the effects on the maximum error. In
this case, we can see that the deviation on the applications
with strong QoS guarantees are below 51% for the first stage
and below 30% for the second stage. Such deviations are due
to the wrong predictions that invalidate the assumptions of
Theorem 2 but are sensibly smaller than the ones undergone by
applications with weak QoS guarantees. The maximum error
remained below the bound established in Theorem 3 even in
presence of wrong predictions.

As a concluding remark, not only do the experiments
presented in this section validate the theory of this paper,
but they also display a very good degree of robustness of
the proposed scheme with respect to unmodeled effects or of
partial knowledge of the parameters of the application.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown the application of a feedback
controller to the problem of dynamic allocation of resources
to time-sensitive applications consisting of pipelines of tasks.

The use of a scheduling mechanism that approximates a
fluid partitioning of the resources enables the definition of a
precise dynamic model for the system. This is used to design a
feedback controller that provides QoS guarantees on the closed
loop system performance.

There are many important open issues, which will moti-
vate future research efforts. A first obvious direction is the
implementation of the framework in a real architecture. In
the context of the AQuoSA project, we already implemented
adaptive resource management techniques for the CPU. The
extension to other types of resources is currently under way.
Another line of research regards the resource supervisors. In
this paper we have considered a very simple scheme, but the
task level adaptation techniques shown in the paper can very
well be adapted to different and more general techniques.
Another direction we plan to investigate is the possible in-
tegration between a resource level and an application level
feedback. Finally, the extension to more general topologies
than pipelines, briefly introduced in Section VI, is also to be
seen as a natural extension of the framework. We believe that
the modelling effort and the results provided in this paper can
offer a sound underpinning for these future developments.
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APPENDIX

SUPPLEMENTAL MATERIAL

A. Proof of Theorem 1

Proof [Theorem 1]:

[CLAIM 1] Consider a pipeline composed of j tasks. The
tokens that entered the pipeline in a generic time interval [0, t]

are those ones associated to jobs J
(j)
k with arrival time less

than or equal to t : a
(1)
k ≤ t, i.e., (k − 1)T + ξk ≤ t ⇐⇒

k ≤
⌊

t
T

⌋

+ 2. In the same interval, the tokens that already
exited the pipeline are at least those ones associated to jobs
k of the last task j for which the temporal reference t

(j)
k ,

plus the maximum delay E, is less than or equal to t (assume
t ≥ jT + E for the sake of simplicity): t

(j)
k + E ≤ t, i.e.,

(j + k − 1)T + E ≤ t ⇐⇒ k ≤
⌊

t−E
T

⌋

− j + 1. Introducing
the symbols x , t−E

T
−
⌊

t−E
T

⌋

∈ [0, 1[, and y , t
T
−
⌊

t
T

⌋

∈
[0, 1[, for the maximum number N (j)(t) of tokens still in the
pipeline, comprising the one possibly being computed at the
jth stage, we have: N (j)(t) ≤

⌊

t
T

⌋

+ 2 −
⌊

t−E
T

⌋

+ j − 1 =
E
T

+ j + y − x < E
T

+ j + 1. The claim follows considering
that N (j)(t) ∈ N.

In order to show that the bound is tight consider a possible
execution where the first incoming j tokens are executed very
quickly (in a time lower than an arbitrarily small real number
δ) by all the tasks in the pipeline, except the jth one, in which
they finish with the maximum allowed delay: f

(j)
k = t

(j)
k +E =

(j + k − 1)T + E. In this situation, at time f
(j)
1 = jT + E,

the number of tokens in the pipeline from the first to the jth

buffer is given exactly by j +
⌈

E
T

⌉

.

[CLAIM 2] Consider a generic task τ (j) in the pipeline with
j ≥ 2. At a generic time instant t under the hypotheses of the
theorem, the tokens that have been inserted into the jth input
buffer are the ones processed by one of the completed jobs of
task τ (j−1). These jobs are contained in the set of the jobs k

such that t
(j−1)
k −e ≤ t. Recalling that t

(j−1)
k = (j +k−2)T,

this set is given by {k ∈ N s.t. k ≤ t
T

+ e
T

+ 2 − j}, i.e.
{k ∈ N s.t. k ≤

⌊

t+e
T

⌋

+2−j}. Similarly, the set of tokens that,
at time t, have not yet been output, are at most those for which
t
(j)
k +E > t. This set is given by {k ∈ N s.t. k > t−E

T
+1−j},

which is equal to the set {k ∈ N s.t. k >
⌊

t−E
T

⌋

+ 2 − j}.
Overall, the set of tokens that can be in the jth buffer task at
time t (including the one which is possibly being processed),
is given by {k ∈ N s.t.

⌊

t−E
T

⌋

+2− j < k ≤
⌊

t+e
T

⌋

+2− j}.
Focusing for the sake of simplicity to the case t > E + jT ,
the cardinality of the set is upper bounded by

⌊

t+e
T

⌋

−
⌊

t−E
T

⌋

.
If we introduce the quantities w , t+e

T
−
⌊

t+e
T

⌋

∈ [0, 1[ and
z , t−E

T
−
⌊

t−E
T

⌋

∈ [0, 1[, the cardinality is upper-bounded
by t+e

T
− w − t−E

T
+ z ≤ e+E

T
+ 1. Considering that it is

restricted to be a natural number, we come up with the upper-
bound

⌊

e+E
T

⌋

+ 1.
Focusing on the first stage j = 1, the tokens already arrived

at time t are, as said above, those ones k for which k ≤
⌊

t
T

⌋

+
1, which are included in the set {k s.t. k ≤

⌊

t+e
T

⌋

+ 2 − j}.
Hence, we can apply the same reasoning shown above and
obtain a conservative estimation of the number of tokens in
the buffer.

The case t < E + jT may be handled in a similar way.

B. Proof of Lemma 1

To prove the Lemma, we need some preliminary results.

As a first step, we offer necessary and sufficient conditions
for robust invariance over a single step and for a single stage.

Lemma 2: Let I denote the interval [−e, E] (with e+E ≤

T ) and consider the job J
(j)
k of task τ (j).

1) There exists a bandwidth assignment guaranteeing that
ǫ
(j)
k ∈ I ∀σ

(j)
k ∈ I, ∀c

(j)
k ∈ P

(j)
k =

[

h
(j)
k , H

(j)
k

]

, if

and only if e + E ≥ T

(

1−α
(j)
k

α
(j)
k

)

.

2) The bandwidth assignments guaranteeing these prop-
erties are uniquely identified by the range defined in

Equation (6) if B
(j)
N ≥

H
(j)
k

T
.

Proof: Consider job J
(j)
k of task τ (j). In view of Equa-

tion (4), we can have ǫ
(j)
k ∈ [−e, E] iff T − e−σ

(j)
k ≤

c
(j)
k

b
(j)
k

≤

T + E − σ
(j)
k . Since e + E < T and we are interested in

values of σ
(j)
k ≤ E, it is possible to re-write this condition

as: c
(j)
k

T+E−σ
(j)
k

≤ b
(j)
k ≤

c
(j)
k

T−e−σ
(j)
k

. As c
(j)
k is not known,

and it may take any value in the range [h
(j)
k , H

(j)
k ], the only

possibility for the controller not to violate last equation is the
choice of a bandwidth value belonging to the intersection of
all the ranges corresponding to any possible value of c

(j)
k ,

i.e. H
(j)
k

T+E−σ
(j)
k

≤ b
(j)
k ≤

h
(j)
k

T−e−σ
(j)
k

. Such a choice exists

iff e + α
(j)
k E ≥ (1 − α

(j)
k )(T − σ

(j)
k ). The latter condition

must hold for any possible value of the start time σ
(j)
k we

are interested in. So, the first claim is proved by observing
that σ

(j)
k is allowed to take values in the range [−e, E] . The

proof of the second claim is obtained for all j by observing
that, in the interval σ

(j)
k ∈ [−e, E] , the variability range for

b
(j)
k identified above is identical to the one in Equation (6)

iff B
(j)
N does not saturate the lower bound of the range, i.e.

if B
(j)
N ≥

H
(j)
k

T+E−σ
(j)
k

, where the most restrictive condition

happens when σ
(j)
k = E.

As a second step, the following provides sufficient conditions
for ensuring robust invariance over a single-step for the entire

pipeline.

Lemma 3: Suppose the system state for the (k−1)th token
is in the invariant set ǫk−1 ∈ I. Then, any bandwidth assign-
ment in the control range defined in Equation (6) guarantees
ǫk ∈ I ∀ck ∈ Pk if the following conditions hold:















e + E ≥
T

“

1−α
(n)
k

”

α
(n)
k

maxj∈{1..n}

{

H
(j)
k

B
(j)
N

}

≤ T

where α
(j)
k , minl∈{1, ..., j}

{

α
(l)
k

}

.

Proof: Proof is obtained by proving the following state-
ment S

(j)
k by induction on the stages j of the pipeline (spatial
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induction):

S
(j)
k :



































ǫ
(l)
k−1 ∈ I ∀l ∈ {1, . . . , j}

e + E ≥ T

(

1−α
(j)
k

α
(j)
k

)

for j = 1, 2, n

maxl∈{1..j}

{

H
(l)
k

B
(l)
N

}

≤ T

b
(l)
k ∈ U

(l)
k ∀l ∈ {1, . . . , j}

⇒

∀l ∈ {1, . . . , j}, ∀c
(l)
k ∈ P

(l)
k , ǫ

(l)
k ∈ I.

For the base inductive case j = 1, note that hypothesis in the
left-hand side of S

(1)
k and the system model in Equation (4)

imply that σ
(1)
k ∈ I = [−e, E], hence the statement for j = 1

of Lemma 2 may be applied, proving the truth of statement
S

(1)
k .

For a generic j ≥ 2, suppose S
(l)
k holds for any l ∈ {1..j−

1}, and suppose the assumptions of S
(j)
k hold. The inductive

hypothesis ensures that, applying the proposed control law to
stages {1, . . . , j−1}, ensures ǫ

(j−1)
k ∈ I. This fact, along with

the system model in Equation (4), guarantees that σ
(j)
k ∈ I.

Therefore, the statement for j ≥ 2 of Lemma 2 proves the
truth of S

(j)
k .

Finally, the Lemma proof follows by observing that its
statement corresponds to S

(n)
k , with n equal to the number

of stages of the pipeline.
We are now in condition to offer the proof of Lemma 1.

Proof [Lemma 1]:

[CLAIM 1] First, we focus on sufficiency, which may be
proved by choosing an arbitrary value for k0 and proving the
following statement S(k) inductively for any k > k0 (temporal

induction):

S(k) :























maxj

{

maxh∈]k0,k]
H

(j)
h

B
(j)
N

}

≤ T

e + E ≥ T

(

1−α
(j)
k0,k

α
(j)
k0,k

)

j ≥ 2

∀h ∈]k0, k]bh ∈ Uh

⇒

,
∀h ∈]k0, k] ∀ch ∈ Ph, ǫh ∈ I

where α
(j)
k0,k , minh∈]k0,k] α

(j)
h , and Uk is the vector of

control ranges defined in Equation (6).
Consider the base inductive case k = k0 + 1. The left

hand side of statement S(k) corresponds to the hypotheses
of Lemma 3. Therefore, we can conclude that ǫk ∈ I.

For a generic k, assume S(k − 1) holds. Then, under the
conditions of the left-hand side of S(k − 1), the proposed
control law leads to ǫk−1 ∈ I. This condition, along with the
left-hand side of statement S(k), allows us to apply Lemma 3,
proving the truth of S(k).

For the induction principle, S(k) is true for any k > k0,
hence the sufficiency claim is proved.

Concerning necessity, in Definition 1 robust invariance is
required to hold for each k0. Therefore, if we consider only
a single evolution step of the state vector from k0 to k0 + 1,

Lemma 2 requires
H

(1)
k0

T
≤ B

(1)
N ,

H
(j)
k0

T
≤ B

(j)
N and e + E ≥

T

(

1−α
(j)
k0

α
(j)
k0

)

as necessary conditions to guarantee that ǫk0+1 ∈

I. Therefore, by considering any possible value for k0, we
obtain that all of these conditions (at varying k0) must hold
true, leading to the claim proof.

[CLAIM 2] The claim proof may be obtained by observing
that the proposed control law produces a non-empty bandwidth
value for a given j and k pair iff conditions of Lemma 2
hold for that particular pair of values. Now, the claim requires
that the proposed control law produce a non-empty value for
each possible j and k values, which happens iff conditions
of Lemma 2 for each possible j and k values hold true. The
intersection of these conditions may be written as:











e + E ≥ T supk

(

1−α
(j)
k

α
(j)
k

)

j ≥ 2

supk H
(j)
k

T
≤ B

(j)
N j ≥ 1

Now, the theorem claim is obtained by observing that the
function 1−α

α
is strictly decreasing in the range α ∈]0, 1[, thus

supk

1−α
(j)
k

α
(j)
k

=
1−infk α

(j)
k

infk α
(j)
k

.

C. Proof of Theorem 3

First, we need the following preliminary result:

Lemma 4: Consider a generic stage j of an application
pipeline controlled by the set of task controllers defined by
Equation (6), acting under the action of resource supervisors
granting a set of minimum guaranteed bandwidths of {B(j)

O }.
Let E(n) ≥ E(n−1) ≥ . . . ≥ E(1) ≥ 0 be a set of reals such
that ǫ

(j)
k0

≤ E(j). Assume that ǫ
(j−1)
k ≤ L(j−1)∀k ≥ k0 (if

j > 1) with L(j−1) ≤ E(j) and that, for some integer M,

B
(j)
O ≥ c̃

(j)
M = supk

1
M

∑k+M

k=k+1

c
(j)
k

T
, then ǫ

(j)
k ≤ L(j)∀k >

k0, with L(j) , E(j) + (M − 1)T .

Proof: The first step is to show that if at a given step
k0 the scheduling error starts from a value below the E(j)

bound (ǫ
(j)
k0

≤ E(j)), then 1) it will return below the same
bound within a time horizon of M steps (i.e. there exists a
number h ∈ [1, M ] such that ǫ

(j)
k0+h ≤ E(j)) 2) during the

time horizon of M steps, the scheduling error cannot grow
beyond L(j).

To prove the first fact, consider that, if for any h ∈ [1, M ]

B
(j)
O ≥ B

(j)
L , then, by construction, the controller will choose a

bandwidth s.t. ǫ
(j)
k0+h ≤ E(j) and the fact is verified. Therefore

we can focus on the case in which 1) the controller receives
a bandwidth greater than or equal to B

(j)
O but strictly lower

than B
(j)
L , 2) ǫ

(j)
k0+h > E(j) for all h ∈ [1, M − 1].

The latter condition also implies, for j = 1, that ǫ
(j)
k0+h−1 ≥

0, while for j > 1, that ǫ
(j)
k0+h−1 > L(j−1) ≥ ǫ

(j−1)
k0+h by

hypothesis. Therefore, from the evolution model, we have that
the jth stage evolves without “interferences” from the stage
j−1 due to the max in Equation (4). Hence, its state after M
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steps is upper-bounded by:

ǫ
(j)
k0+M = ǫ

(j)
k0

+
M
∑

h=1

c
(j)
k0+h

b
(j)
h

− MT

≤ E(j) +
M
∑

h=1

c
(j)
k0+h

B
(j)
O

− MT

≤ E(j)

(where the last passage is due to the lemma premises on B
(j)
O ,

that may be written as
∑M

h=1

c
(j)
k0+h

B
(j)
O

≤ MT ).

To prove the second fact, consider that the maximum
possible scheduling error is upper-bounded by:

ǫk0
+ max

h∈1,...M
{

k0+h
∑

k=k0+1

c
(j)
k

B
(j)
O

− hT},

whose maximum value, under the lemma premises, is attained
in the worst-case scenario in which c

(j)
k0+1 = B

(j)
O MT and

c
(j)
k = 0 for k = k0+2, . . . , k0+M. Therefore, this maximum

value is upper-bounded by E(j)+MT −T. The proof is ended
considering all possible initial steps k0.
Now, we are in condition to offer a sketch of the proof of
Theorem 3.

Proof Sketch[Theorem 3]: As long as we choose b
(j)
k ≤

BH , we have ǫ
(j)
k−1 ≥ −e =⇒ ǫ

(j)
k ≥ −e. Under the premises

of the theorem this is always a feasible choice, therefore we
can focus on the upper bound of ǫ

(j)
k only.

The theorem proof is obtained by (spatial) induction on the
following statement:

S(j): if ∀l ≤ j B
(l)
O ≥ c̃

(l)
k then ǫ

(j)
k ≤ E+j(M−1)T∀k >

k0.
Concerning the base induction case j = 1, Lemma 4 applies

directly with E(1) = E ≥ 0, leading to S(1).
For j > 1, the inductive assumption S(j − 1) provides an

upper-bound for ǫ
(j−1)
k : ǫ

(j−1)
k ≤ E +(j − 1)(M − 1)T. Such

value may be used as E(j) = L(j−1) in the application of
Lemma 4, leading to the truth of S(j).

By induction, we may conclude that S(n) is true, what is
equivalent to the theorem claim.

D. Proof of Theorem 4.

To show the Theorem, we will use two preliminary Lemmas
regarding the properties of the control range in Equation (6)
when it is used with the minimum bandwidth guaranteed
in Theorem 2. The first Lemma describes some elementary
properties of the controller when the scheduling error is
outside of the robust invariant set I.

Lemma 5: Let conditions of Theorem 2 hold, and let F
(j)
k

be the value of σ
(i)
k where B

(j)
L (σ

(j)
k , P

(j)
k ) intersects B

(j)
O :

F
(j)
k , T + E −

H
(j)
k

B
(j)
O

. The family of bandwidth assignments

identified in Equation (6) ensures that

1) if σ
(j)
k > F

(j)
k then −e ≤ ǫ

(j)
k ≤ σ

(j)
k ;

2) if −e ≤ σ
(j)
k ≤ F

(j)
k , then ǫ

(j)
k ∈ [−e, E].

Proof: Descends from the assumptions of Theorem 2 and
from the construction of the control range in Equation (6).

The second Lemma shows how the control law reduces the
bounds in which the scheduling error lies at each step.

Lemma 6: Consider a generic k0 and assume ∀j ǫ
(j)
k0

∈
[−e, L] with L ≥ E, and that the assumptions of Theorem 4
hold. Then:

1) the scheduling error is contained in the following set:

∀j, ∀N ∈ [(j − 1)M, m]

ǫ
(j)
k0+N ∈

[

−e, max
{

E, L − (
⌊

N
M

⌋

− j + 1)θ
}]

.
(11)

2) ∀j, ∀N ∈ [1, (j − 1)M − 1] ǫ
(j)
k0+N ∈ [−e, L].

Proof: Let F
(j)
k be defined as in Lemma 5. We prove

the claim by induction on the stages of the pipeline. In the
first stage, σ

(1)
k0+N = max{0, ǫ

(1)
k0+N−1}. In view of the first

property in Lemma 5 and of the evolution of the system in
Equation (4), ǫ

(1)
k0+N ≥ −e is easily verified by induction on

N. As far as the upper bound is concerned, we observe that, if
for any k ∈ [k0, k0+N ] ǫ

(1)
k ≤ F

(1)
k , then the claim is obtained

as an immediate result of the second claim in Lemma 5. On the
contrary, assuming that for all k ∈ [k0, k0 + N ] ǫ

(1)
k > F

(1)
k ,

then we can use the minimum guaranteed value B
(1)
O as a lower

bound of the bandwidth assigned by the supervisor. Therefore:

ǫ
(1)
k0+N ≤ǫ

(1)
k0

+

∑N

h=1 c
(1)
k0+h

B
(1)
O

− NT

=ǫ
(1)
k0

+

∑⌊ N
M ⌋M

h=1 c
(1)
k0+h

B
(1)
O

−

⌊

N

M

⌋

MT+

+

∑N

h=⌊ N
M ⌋M+1 c

(1)
k0+h

B
(1)
O

− (N −

⌊

N

M

⌋

M)T

≤ǫ
(1)
k0

+

∑⌊ N
M ⌋M

h=1 c
(1)
k0+h

B
(1)
O

−

⌊

N

M

⌋

MT

≤L −

⌊

N

M

⌋

θ,

where the step before the last one is obtained observing that,

due to the assumption on B
(j)
O , any term c

(j)
k

B
(j)
O

is negative. This

ends the proof of the property for the first stage.
For j ≥ 2, let us assume the lemma holds true for

stage j − 1. As σ
(j)
k = max{ǫ

(j−1)
k , ǫ

(j)
k−1} and by inductive

hypothesis ǫ
(j−1)
k ≥ −e, we have σ

(j)
k ≥ −e. Hence, in

view of Lemma 5, we have ǫ
(j)
k ≥ −e. As far as the

upper bound is concerned, for N < (j − 2)M, as well
as for N ≤ (j − 1)M, the inductive hypothesis ensures
ǫ
(j−1)
k0+N ≤ L. This leads to the second lemma claim through an

easy proof by induction applying the first claim of Lemma 5.
Also, for N ≥ (j − 1)M, the inductive hypothesis ensures
ǫ
(j−1)
k0+N ≤ max

{

E, L − (
⌊

N
M

⌋

− j + 2)θ
}

. Now, if for any

k ∈ [k0, k0 +N ] ǫ
(j)
k becomes lower than such value, then the

property would be easily verified for j. So we focus on the case
in which this does not happen, thus the previous stage does
not “interfere” with the evolution of the stage j, because the
upper bound for ǫ

(j−1)
k is always lower than ǫ

(j)
k−1. Therefore,

for N ≥ (j − 1)M, an upper bound for ǫ
(j)
k0+N is built as

follows:
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ǫ
(j)
k0+N ≤ ǫ

(j)
k0+(j−1)M +

N
∑

h=(j−1)M+1

c
(j)
k0+h

B
(j)
O

− NT

≤ ǫ
(j)
k0+(j−1)M +

⌊ N
M ⌋M
∑

h=(j−1)M+1

c
(j)
k0+h

B
(j)
O

+

−

(⌊

N

M

⌋

− j + 1

)

MT

≤ ǫ
(j)
k0+(j−1)M −

(⌊

N

M

⌋

− j + 1

)

M

(

T −
c̃
(j)
M

B
(j)
O

)

≤ L −

(⌊

N

M

⌋

− j + 1

)

θ.

where the upper bound for ǫ
(j)
k0+(j−1)M is a direct consequence

of the second lemma claim we already proved.
Now we can give the proof of the Theorem.

Proof [Theorem 4]: As an immediate consequence of
Lemma 6, we have that for any stage j if ǫ

(j)
k0

∈ [−e, L]

then ǫ
(j)
k ∈ [−e, L] ∀k ∈ [k0 + 1, k0 + m − 1] . Therefore,

we have to prove that: ǫ
(j)
k0+m ∈ [−e, E], which in view of

Lemma 5, is true if σ
(j)
k0+m = max

{

ǫ
(j−1)
k0+m, ǫ

(j)
k0+m−1

}

≤

F
(j)
k0+m = T + E −

H
(j)
k0+m

B
(j)
O

. This condition is verified if: L −
(⌊

m
M

⌋

− j + 1
)

θ ≤ T + E − H̃(j)

B
(j)
O

which is verified for all

j ∈ [1, n] if m ≥ M

(

L−E−T+ H̃

B
(j)
O

θ
+ n

)

.


