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Abstract— Daily activity recognition can help people to 

maintain a healthy lifestyle and robot to better interact with 

users. Robots could therefore use the information coming from 

the activities performed by the users to give them some custom 

hints to improve lifestyle and daily routine. The pervasiveness 

of smart things together with the advances in cloud robotics 

can help the robot to perceive and collect more information 

about the users and the environment. In particular thanks to 

the miniaturization and low cost of Inertial Measurement 

Units, in the last years, body-worn activity recognition has 

gained popularity. In this work, we investigated the 

performances of an unsupervised machine learning algorithm 

to recognize eight different gestures performed in daily living 

wearing a system composed by two inertial sensors placed on 

the hand and on the wrist. In this context our aim is to evaluate 

whether the system is able to recognize the gestures in more 

realistic applications, where is not possible to have a training 

set. The classification problem was analyzed using an 

unsupervised approach (k-mean), with an intra-subject and an 

inter-subject analysis, and two supervised approaches (Support 

Vector Machine and Random Forest) with a 10-fold cross 

validation analysis and with a Leave-One-Subject-Out to 

compare the results. The outcomes show that even in an 

unsupervised context the system is able to recognize the 

gestures with an averaged accuracy of 0.86 in the inter-subject 

approach. 

I. INTRODUCTION 

Maintaining a healthy lifestyle is becoming more 
important, due to the increase in the number of persons with 
chronic diseases [1]. In this context, technological solutions, 
and robot among others, can help to follow this objective by 
suggesting a healthy way of living and controlling the daily 
behavior [2]. Particularly, robots could interact properly with 
the user, personalizing the interaction, becoming thus more 
like a companion [3]. Particularly, by using this information, 
domestic robot could suggest some tailored hints to improve 
the human-beings lifestyle and to identify any behavioral 
changes. In effect, recent study demonstrate correlation 
between the alteration in daily lifestyle of elderly people and 
their cognitive status [4]. 

Nowadays, the advances in Internet of Things [5] and 
cloud robotics [6] extend companion robot abilities in terms 
of perception of surrounding environments and computing 
abilities respectively. Additionally, compared to last years, 
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the technological progress has made these service robots 
more common in our daily life [7]. Thanks to these advances, 
the robot has the possibility to collect more information from 
the user and, at the same time, to be aware of the context, 
increasing therefore the knowledge of the robot about what is 
around it [8]. In effect, one of the main advantages of cloud 
robotics approach rely on the exploitation of remote machine 
learning abilities to analyze data [9]. In this context, the robot 
could be aware of what the user is doing without the need to 
be in the same environment and interact with him/her only in 
case of need. 

Roboticist and research team are in front of new scientific 
challenges [10] “How could we aggregate all this 
information? How can we use it to interpret the human 
behavior?”. Therefore, in this context, research on activity 
recognition plays an important role in monitoring people and 
in understanding their daily routine. Among the others, the 
activities of daily living are important to be recognized, 
especially speaking about old persons, whose number is 
increasing with respect to the population worldwide [11]. For 
instance, people with cognitive disorders have problems in 
drinking and eating activities or in reminding tasks [12].  

As stated from the literature evidences, these activities 
can be recognized using external or wearable sensors [13]. In 
the first case, sensors are included in the environment [14] or 
vision systems are used to infer the activity that is performed 
[15]. However this system could present some limitations due 
to privacy, in case of video analysis [16] and to the need to 
interact with specific landmarks in case of environmental 
sensors. In the second case, activities are inferred by the 
movement made by the users. Thanks to the miniaturization 
of Inertial Measurement Units (IMUs), wearable sensors have 
been used for activity recognition tasks, allowing to identify 
different daily activities. During the past, several studies had 
been conducted with wearable sensors placed in different part 
of the body [13]. However, to make this possible, it is 
necessary not only to have unobtrusive wearable sensors that 
do not interfere with the activities to be performed, but to 
identify a minimal set of wearable sensors which optimize 
the recognition performance [17]. Additionally, to make the 
system closer to a real case, pattern learning algorithms 
should be able to operate without labelled data, as it is too 
resource intensive for someone to verify the large quantities 
of data that is generated in a real living environment [18]. 

This work is therefore focused on the application of 
unsupervised machine learning algorithms to recognize 
gestures that can be used to infer activities of daily living. 
Starting from our previous work presented in [19], we 
proposed the analysis of the performances of a unsupervised 
technique applied to the recognition of different daily 
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gestures, including eating and drinking ones, with a minimal 
combination of wearable sensors. 

II. RELATED WORKS 

Over the last years, wearable sensors and in particular 
IMUs have been used in several activity recognition works, 
thanks to the miniaturization and affordability of these 
sensors [17]. Several works have been presented where IMUs 
were used for activity recognition problems, analyzing also 
the best placement on human body [20]. Among the different 
placement, due to the presence of these sensors in 
commercial devices such as smartphones and wrist-worn 
devices, the ability of IMUs placed on the wrist and in the 
pocket to discriminate among different activities has been 
investigated. In particular, Guiry et al [21] analyzed the use 
of a smartwatch and a smartphone using both IMUs and other 
sensors on the devices, like pressure and light sensors and 
GPS. They adopted five different supervised machine 
learning approaches (decision tree, both C4.5 and CART, 
Naïve Bayes, Multi-Layer Perceptrons and Support Vector 
Machine) to train and test the dataset, combining data coming 
from the sensors. In particular in case of the smartwatch only 
the recognition rate reached 89% to recognize activities such 
as walking, sitting, lying, standing.  Nevertheless, even if the 
recognition rate reached high value, the considered activities 
did not involve the use of the hand and the authors performed 
only supervised learning analyses. 

Mortazavi et al. [22] compared the recognition ability of 
smartphones and smartwatches considering the IMU on 
them- Using a Support Vector Machine approach to 
recognize activities like sitting, standing, lying, walking and 
transitions, the F-measure reached 0.930 considering the 
smartwatch only. However, even in this work, only 
supervised machine learning algorithm was considered to 
recognize activities where the hand was not included. 

Weiss et al. [23] analyzed how a smartwatch could 
recognize different kind of activities that go from walking to 
eating using five different machine learning algorithms 
(Random Forest, J48 decision tree, Naïve Bayes, Multi-layer 
perceptron and IB3 instance-based learning). In this work, 
they showed that the eating activities did not have good 
recognition rate compared to activities like walking, sitting 
and standing, reaching an overall accuracy of 0.703.  

As stated from the state of the art, the wrist is a good 
location for wearable sensors, due to the low obtrusiveness, 
but it does not give information about the fingers movements. 
Consequently, we decided to place some sensing units on the 
fingers in order to collect data useful to discriminate among 
gestures that involve also the use of the hand. In our previous 
work [19], we investigated how the recognition rate of 
different activities vary combining different sensors on the 
hand and on the wrist. In particular, the results of this 
previous study demonstrated that the combination of inertial 
sensors placed on the index finger and on the wrist can be 
used to recognize different daily gestures, such as eating and 
drinking with different tools and performing acts of some 
personal hygiene. With this configuration, in fact, we reached 
good value of F-measure (0.884) and accuracy (0.890) 
compared with the wrist sensor only (0.622 and 0.650 
respectively). Best results were obtained with the use of a 

sensor even on the thumb (F-measure equal to 0.908 and 
accuracy equal to 0.913), but the index-wrist combination 
was the one that showed the best trade-off between 
recognition rate and obtrusiveness. 

In our previous work, we used supervised machine 
learning algorithms that, also according to the state of the art, 
show in general promising results, but they need to have 
training dataset made of labelled data, which can be difficult 
to be generated. Moreover in case of added activities it is 
necessary to build the dataset again and the model needs to 
be retrained [18].  

Aim of this work is therefore to investigate the use of an 
unsupervised machine learning algorithm to recognize eight 
daily gestures. In particular, starting from the results 
presented in our  previous work, where it was shown that the 
use of a sensor on the finger improves the recognition of 
gesture involving the hand, in the presented paper, we 
analyze the performances of an unsupervised machine 
learning algorithm comparing them with the ones of two 
supervised ones. The aim of this work is therefore to 
investigate the use in more realistic application of this sensor 
configuration, considering  that unsupervised machine 
learning algorithms do not require labelled data, thus 
avoiding the need of a training dataset, and can therefore be 
more adaptable to real application of human activity 
recognition [24]. 

The rest of this paper is structured as follows. In Sect. III, 
we detail the applied methodology used in this research. 
Particularly we present the system architecture and data 
analysis performed. Section IV summarizes and discusses the 
results and Sect. V concludes the paper. 

III. METHODS 

According to the results described in our previous work 
[19], we decided to start the analysis presented in this paper 
considering only the index and the wrist sensors 
configuration. 

In this paragraph, we described the sensors used, the 
acquisition of the data and the analysis carried out.  

 

Figure 1 – Inertial Sensor Units and placement on the user 
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A. System Descriptions  

The system used for the data acquisition consisted of two 
sensor units, each integrating a INEMO-M1 board with 
dedicated microcontroller (ARM 32-bit Cortex™-M3 CPU, 
STMicroelectronics). Each board consists of a 
LSM303DLHC (6-axis geomagnetic module, 
STMicroelectronics) and L3G4200D (3-axis digital 
gyroscope, STMicroelectronics) and I2C digital output. A 
quaternion-based Kalman filter, adapted from [25], is 
implemented on each unit and the Euler Angles are evaluated 
so to collect the orientation of the modules, beyond the 
acceleration and the angular velocity. Data are collected at 
50Hz. More detailed information about the sensor units can 
be found in [19]. 

Accelerometer and gyroscope data were filtered on board 
with a fourth order low pass filter with a cutoff frequency of 
5Hz, to remove high frequency rumor and tremor [26]. 
Sensors were calibrated both in static and in dynamic 
condition in order to calculate the offset and the sensitivity 
that affect the system. 

As shown in Fig. 1, sensors were placed on the 
intermediate phalange of the index and on the wrist of the 
user (like a Smartwatch). Both the devices were placed on the 
dominant arm of the user. 

B. Experimental Setting  

Users were asked to perform eight different gestures, 
chosen to identify different activities of daily living, such as 
feed and personal hygiene. The chosen gestures are described 
in Table I. Ten young participants (6 females and 4 males, 
whose ages ranged from 21 to 34 (29.1 ± 3.9)) were asked to 
perform the chosen gestures in the DomoCasa Lab, which is 
a 200m2 fully furnished apartment located in Peccioli, Pisa 
(Echord ++ RIF). Using this location permitted to limit as 
much as possible unnatural movements linked to a laboratory 
setting, thanks to the realistic environment. 

Participants were asked to perform each gesture 40 times 
continuously, without any constriction in the way the 
movements have to be performed. At the beginning of each 
sequence users were asked to keep the hand and the forearm 
still for few seconds on a flat surface in order to calibrate 
each session and calibrate the sensors position with respect to 
the first gesture made (HA). During the sequence, users were 
observed and at the beginning and at the end of each of the 

40 gestures a label was put in order to identify the gestures in 
the acquisition. In Fig. 2 a focus on the grasping of different 
objects is shown. 

C. Data Analysis 

In order to achieve the proposed goals, two different data 
analysis procedures were performed. The first analysis aimed 
to cluster the gestures with an unsupervised approach. 
Whereas, the second one aimed to compare these outcomes 
with two traditional inter-subject supervised approaches.  

Firstly, the signals were segmented according to the 
labels and processed to extract the significant features [17], 
shown in Table II. The final dataset included 3200 gestures 
with a total of 44 features ((12 accelerometers + 10 angles) x 
2) labelled with the corresponding gesture. The matrix of the 
features was normalized using a Z-norm in order to avoid 
distortion. 

Unsupervised machine learning clustering technique is 
used to grouped the performed gestures into cluster. 
Particularly, in this work, K-Means (KM) algorithm was 
applied considering the Euclidian distance, additionally, in 
order to avoid local minima we considered the replicate 
strategy (in this study we considered 5 replicates). We had 
chosen this algorithm because it is the most widely used 
unsupervised machine learning techniques [27] Silhouette 
index [28] was computed to assess the cluster validity and to 
quantitatively analyze the clustering process. A higher value 
of this index indicates that the clusters are compact and well 
separated.  

In order to evaluate the robustness of the system and how 
concretely it could recognize gestures performed by 

TABLE II 

SIGNIFICANT FEATURES 

Data Extracted Features 

Accelerometer (x,y,z) 

Mean 

Standard Deviation 

Root Mean Square 

Mean Absolute Deviation 

Roll and Pitch angles 

Mean 

Standard Deviation 

Mean Absolute Deviation  

Minimum and Maximum 

 

TABLE I 

GESTURE DESCRIPTION  

Gesture Description 

HA: Eating with the hand Users took the food with the hand, moved it to the mouth and back to the table 

GL: Drinking with a glass Persons were asked to grasp the glass, move it to the mouth and then leave it on the table 

FK: Eating with a fork 
Participants had to take a piece of already cut fruit with the fork, eat it and then move the hand back to 

the table without leaving the fork 

SP: Eating with a spoon 
Persons had to use the spoon, load it with some yogurt, move it to the mouth and then back to the table 
without leaving it 

CP: Drinking with a cup Users were asked to grasp the mug, move it to the mouth and then back on the table, leaving it 

PH: Answering the telephone Participants had to take the phone, move it to the head and back on the table after a few seconds 

TB: Brushing the teeth with a toothbrush 
Persons were asked to take the toothbrush from the sink, move it to the mouth to brush the teeth and 

back on the sink 

HB: Brushing the hair with a hairbrush 
The gesture consisted in taking the hairbrush from the sink, moved it to the head, used it two/three 
times and back to the sink 
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same/different users, intra- and inter-subject analysis was 
then performed. In the first analysis we considered the 
gestures performed by a single subject, in the second one we 
considered the totality of the dataset. The performances were 
evaluated with an external criteria [29] by comparing the 
output with our “a-priori” knowledge.  

As concern the supervised analysis, two different 
machine learning algorithms were considered among the ones 
that are usually used in activity recognition problems. In 
particular, we applied the Support Vector Machine (SVM) 
algorithm, as described in [19] and the Random Forest 
algorithm. The second one is an ensemble learning algorithm 
that builds a  number of decision trees in the training phase 
and in classification gives as an output the mode of the 
classes of each trees. Each tree is built on a random selection 
of features and in the classification phase each tree receives 
the input vector and the output of the whole classifier is the 
maximum voting among the trees [30, 31]. To analyze the 
data, we used the package for Matlab® developed by 
Abhishek Jaiantilal, which is based on the Breiman et al. 
algorithm [32]. All the options were set to default. 

To evaluate the recognition accuracy of the system with 
the supervised machine learning algorithms, two kind of 
analysis were carried, that are k-fold cross validation and 
Leave-One-Subject-Out cross validation (LOSO). In the 
former we tested a 10-fold cross validation (10-fCV)  on the 
complete dataset, while in the latter nine users were used as a 
training set and one as a test set, using all the users as test set 

in rotation. 

The results obtained with the unsupervised and 
supervised machine learning algorithms were presented as a 
confusion matrix. Then, overall accuracy, F-measure, 
precision, recall and specificity were computed as described 
in [17] in order to compare and discuss the performance of 
this two approaches. 

IV. EXPERIMENTAL RESULTS 

The main goal of this study was to evaluate whether an 
unsupervised machine learning approach was suitable for the 
recognition of the selected activities. Data coming from the 
proposed system configuration (inertial sensors placed on the 
wrist and the index finger) were analyzed and used as 
database for an unsupervised algorithm. Precision, Accuracy, 
Specificity, Recall and F-Measure were computed for both 
approaches in order to compare the results. 

As regard the unsupervised analysis, the results of the 
intra-subject analysis, obtained as the mean value of the 10 
subject-dataset, are comparable with the results of the 
supervised analysis conducted with the 10-fold cross 
validation approaches. Particularly, Precision, Accuracy, 
Specificity, Recall and F-Measure are >0.99 for both 
approaches (see Tab.III). The unsupervised analysis showed 
that the eight gestures are performed in a different way by the 
user and the system is therefore very good in discriminating 
among the gestures made by the same user.  

Considering the 10-fold cross validation approach, the 

  

(a) (b) (c) (d) 

Figure 2 – Example of grasping of different objects: (a) taking a glass, (b) grasping a fork, (c) grasping a spoon and (d) taking the toothbrush. 

TABLE III 
RESULTS OF THE UNSUPERVISED AND SUPERVISED ANALYSIS 

Algorithm Precision Recall Specificity Accuracy F-Measure 

Unsupervised      

Inter-Subject 0.880 0.860 0.978 0.860 0.870 

Intra-Subject 0.991 0.989 0.998 0.989 0.990 

Supervised      

SVM – 10-fCV 0.994 0.994 0.999 0.994 0.980 

SVM - LOSO 0.970 0.963 0.994 0.963 0.966 

RF-10-fCV 0.995 0.995 0.999 0.995 0.995 

RF-LOSO 0.987 0.985 0.998 0.985 0.985 
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system is really good in recognizing the gestures, while in the 
LOSO approach, results are slightly lower, but still 
comparable for both algorithms. The F-measure is equal to 
0.966 for the SVM and 0.985 for the RF, the accuracy in 
equal to 0.963 for the SVM and 0.985 for the RF (see Tab. 
III). This analysis investigate how the system is able to 
manage the unknown subjects and to quantify how the 
system is able to reject any disturbances due to differences in 
performing gestures of a specific subject in real cases. As 
confirmed by the high values, this system is robust in 
recognizing unseen subject’ activities, demonstrating that the 
system is able to manage the differences among the users in 
performing the gestures. Similar results can be seen in the 
unsupervised inter-subject analysis that considers the 
variability of the subjects in performing the different 
activities and investigates the robustness of the system. The 
obtained results for this analysis are promising. Particularly, 
the F-measure is equal to 0.870 and the accuracy is equal to 
0.860. As we can expect, these results are lower than the 
results of the intra-subject analysis because of the high 
variability between the subjects. The data were acquired with 
no restriction on the pose, the subjects were set free to 
perform the gesture as they want. Therefore, this results 
suggest that this system configuration is suitable for a future 
exploitation in real settings because the unsupervised 
approach is able to cluster the variable data with an high level 
of accuracy. 

Additionally, Fig. 3.a reports the F-measure over the eight 
gestures. Particularly, in the inter-subject analysis the worst 
recognized gestures are FK, SP and CP (F-measure equal to 
0.828, 0.795 and 0.775 respectively). FK presents a precision 
of 0.723 and a high recall (0.970), while SP and CP show 
high precision (0.978 and 0.940 respectively) and lower 
recall (0.670 and 0.660 respectively). In fact, as depicted in 
Fig. 3.b SP gesture is mainly confused with FK, and CP is 
confused with GL. SP/FK and CP/GL are very similar in 
terms of hand pose and are is therefore probable that the 
system confuses them. On the contrary, TB is the best 
recognized activity, 396 out of 400 gestures have been 
correctly classified, reaching a precision value of 0.893 and a 
recall of 0.977.  

As stated in the previous work, the addition of the index 
finger improved the recognition rate with respect to a single 
sensor on the wrist, considering that all the selected gestures 
involve the movement of the hand to the mouth/head. With 
respect to the state of the art the system is able to 
discriminate different gesture with improved results. The 
addition of the index sensor improve the recognition rate, 
which with a wrist sensor was very low in recognizing eating 
activities (accuracy equal to 0.527 and 0.627 for eating soup 
and drinking activities in case of an impersonal analysis 
[23]). In this work, we further investigate this configuration 
of sensors to evaluate the ability of the system to recognize 
the different gestures in case no training set is given 
obtaining good results in terms of accuracy and F-measure. 
The use of this configuration could be further investigate to 
evaluate the recognition rate in case of sitting, standing and 
lying activities that are often recognized with wrist sensors. 
In this way it could be possible to increase the number of 
recognized activities getting closer to real applications, 
thanks to the use of unsupervised machine learning 
algorithms. 

V. CONCLUSION 

The aim of this work was to investigate whether the 

system composed of a IMU placed on the index finger and 

on the wrist gave good results with unsupervised machine 

learning algorithms. The same dataset was used with 

unsupervised techniques and the results were compared with 

the supervised ones.  In particular, the supervised algorithms 

gave good results, both in term of F-measure and accuracy 

(>0.96) also in the LOSO analysis, showing a good ability in 

managing unknown users. The unsupervised algorithm gave 

also good results both in the intra-subject(F-measure>0.99) 

and inter-subject (F-measure = 0.87) analysis. These results 

are therefore promising for further investigation in real 

applications. 
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