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Biomechanical parameter assessment
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Abstract
The primary goal of this study was to investigate computerized assessment methods to classify motor dysfunctioning of
patients with Parkinson’s disease on the clinical scale. In this proposed system, machine learning–based computerized
assessment methods were introduced to assess the motor performance of patients with Parkinson’s disease.
Biomechanical parameters were acquired from six exercises through wearable inertial sensors: SensFoot V2 and
SensHand V1. All patients were evaluated via neurologist by means of the clinical scale. The average rating was calculated
from all exercise ratings given by clinicians to estimate overall rating for each patient. Patients were divided in two
groups: slight–mild patients with Parkinson’s disease and moderate–severe patients with Parkinson’s disease according to
average rating (‘‘0: slight and mild’’ and ‘‘1: moderate and severe’’). Feature selection methods were used for the selection
of significant features. Selected features were trained in support vector machine, logistic regression, and neural network
to classify the two groups of patients. The highest classification accuracy obtained by support vector machine classifier
was 79.66%, with 0.8790 area under the curve. A 76.2% classification accuracy was obtained with 0.7832 area under the
curve through logistic regression. A 83.10% classification accuracy was obtained by neural network classifier, with 0.889
area under the curve. Strong distinguishability of the models between the two groups directs the high possibility of
motor impairment classification through biomechanical parameters in patients with Parkinson’s disease based on the clin-
ical scale.
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Introduction

The information and communication technology (ICT)
system essential for the operation of a complete and
suitable care service for patients with Parkinson’s dis-
ease (PwPD), in terms of early diagnosis and monitor-
ing, is based on the development of modular and
wearable technologies and a cloud infrastructure for
data management. In this study, the introduced
wearable devices, which can measure the PwPD
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biomechanical performance finely and objectively, con-
sist of smart inertial units primarily composed of a
microcontroller and an inertial measurement unit
(IMU). The devices can be used individually or in
properly coordinated synchronous networks. In partic-
ular, the combination of these units gives origin to
modular and wearable sensorized devices adaptable to
different parts of the body.

The ICT system shown in Figure 1 would be a future
enhancement of this system. The complete system con-
sists of smart devices (e.g. smartphones and smart-TV)
which would allow immediate and direct data access at
home or on the move, the timely diffusion of useful
information (i.e. pharmacological prescriptions and
changes in therapy) and healthy guidelines, the counsel
of a personal psychological and cognitive diary, and the
enjoyment of personalized video-assisted rehabilitative
training in a customized care service.1 The main objec-
tive of this healthcare system is to improve the patient’s
quality of life. At the same time, the system would allow
the support of clinical staff for objective assessment and
monitoring of a large number of patients. This system
would also be helpful to reduce the effect of national
healthcare systems. The feasibility of this system has
been reported in a previous investigation.2

Current investigation in this article is focused on the
machine-learning techniques to classify the PwPD on
the clinical scale. Parkinson’s disease (PD) is a degen-
erative disorder of the central nervous system. It is the
second most common neurodegenerative disorder after
Alzheimer’s disease. Most common and early symp-
toms of PD can include tremors, muscular rigidity, pos-
tural instability, bradykinesia, and hypokinesia, caused
by a loss of brain dopaminergic neurons. PD affects
1%–2% of people above 50 years of age. According to
the PD foundation, 1 million Americans are living with
PD, and approximately 60,000 Americans are diag-
nosed with PD each year. Similarly, 1.2 million
Europeans suffer from it, and this number is forecasted
to double by 2030.3

Early and accurate diagnosis of PD on the clinical
scale is still a challenging task for many reasons. These
include the fact that subjects avoid unnecessary exami-
nations; the time, effort, and associated financial costs
of therapies; and the possible side effects of treatments.
Up-to-date clinical diagnosis is possible when the symp-
toms are full blown.4 Existing methods of PD assess-
ment remain unreliable, which consequently leads to
misdiagnosis.5 The progressive nature of PD with
motor and non-motor problems throughout the disease
process complicates the clinical assessment and affects
the patient’s quality of life and independence. To assess
the movement disorder, the neurologist uses visual
examination of motor tasks and semi-quantitative rat-
ing scales, such as the Hoehn–Yahr Scale and the
MDS-UPDRS (Movement Disorder Society–sponsored
revision of the Unified Parkinson’s Disease Rating
Scale).3 These measurements are based on historical
progression of the disease and are typically helpful to
detect the severity of the disease. These measurements
involve repeated clinical visits by the patient. An effec-
tive clinical screening process that does not require clin-
ical visits would be beneficial. At the same time,
developing a system that could help in diagnosing PD
would be useful for clinical professionals.

With PD, the four fundamental motor symptoms
consist of tremor, rigidity, bradykinesia, and postural
instability. For automatic detection of PwPD symp-
toms, the common sensors and devices for evaluation
are accelerometer, electromyography (EMG), magnetic
tracker system, gyroscope, digitizing tablet, video
recording, motion detector, and depth sensor.6 An
accelerometer device is used to measure acceleration
forces and capture the movements by converting them
into electrical signals that are proportional to the mus-
cular force producing motion. A gyroscope is a sensor
device used to measure angular velocity (angular rate);
the device senses rotational motion and changes in
orientation.6 An accelerometer and gyroscope are com-
bined in many motion-sensing instruments. EMG is a
technique for evaluating and recording the electrical
activity produced by neurologically activated muscles.
It records the speed at which nerves can send electrical
signals. The accelerometer is the most common sensor
used in different studies to assess various symptoms
such as tremor, postural instability, bradykinesia, and
dyskinesia.6 In some studies, motor symptoms of PD
are assessed as a single symptom, while in other studies,
they are combined with other symptoms. In real time,
patients are likely to experience multiple motor symp-
toms together. It is essential to make a gold standard
for clinical ratings to assess the multiple motor symp-
toms together.

Smart phone,7 Microsoft Kinect,8 and Leap motion
controller9 are the latest technologies on the market to
assess the PD motor symptoms. These sensors are used

Figure 1. The ICT system.
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to detect the rigidity and postural instability as a single
symptom and also used to detect the bradykinesia and
dyskinesia together with the tremor. In addition, wear-
able sensors such as IMU-based sensors are more feasi-
ble for the target population of those suffering from
neurological disorders such as PD. Wearable IMU-
based sensors can offer low-cost and ubiquitous moni-
toring solutions for physical activities.10 Because PD is
a progressive disease, it needs continuous monitoring
of the symptoms. These IMU-based sensors are avail-
able as long as the user is wearing them. These sensors
are used to detect the tremor, bradykinesia, and dyski-
nesia9 as single symptoms and used to detect bradyki-
nesia with tremor,11 tremor and postural instability,12

and tremor with dyskinesia.13

Artificial intelligence (AI) techniques such as deci-
sion-making, image processing, and classification
enable the development of computer systems to per-
form tasks that typically require human intelligence.6

Using meaningful information from the sensor signals,
machine learning–based AI techniques show potential
for the automatic measurement of Parkinson’s symp-
toms on the clinical scale. The most common tech-
niques such as bagging, boosting, random forest,
rotation forest, random subspace, support vector
machine (SVM), multilayer perceptron, and decision
tree (DT)-based methods are used with minimum-
redundancy, maximum-relevance feature-selection
algorithms.14 The wide availability of information on
wearable inertial sensors (accelerometers and gyro-
scopes) in published literature has led to active interest
in developing tools for PD assessment on the clinical
scale accurately and with less burden on clinicians and
patients. All approaches to date have involved classifi-
cation algorithms that are trained using data from a
group of well-characterized patients, and then general-
ized to individual patients for testing.12

In the last decade, machine-learning techniques have
been used widely in PD assessment, with the purpose of
enhancing the accuracy and effectiveness of PD assess-
ment and minimizing diagnosis error. Many medical
decision-making questions can be reduced to binary
classification problems, making medical data an ideal
domain for several machine-learning techniques.5

Machine-learning techniques such as SVM, neural net-
work (NN), and logistic regression (LR) are important
to diagnose PD in the early stages. All techniques have
the ability not only to diagnose PD in the early stage
but also to perform continuous monitoring of PD.15

SVM is unique among the other machine-learning tech-
niques because of its ability to distribute population in
high-dimensional feature space and then categorize the
data based on the trained model. Alternatively, LR esti-
mates the probability of PD for a subject based on
explanatory variables and is useful to classify the sub-
jects on the clinical scale. SVM and LR show high

performance to classify the PD and normal subjects in
the study of subthalamic stimulation in PD on ground
reaction force during gait.5 In another study by
Cancela,16 which quantifies bradykinesia severity with-
out requiring a standard motor test, five classifiers,
SVM, k-nearest neighbors (KNN), NN, and DT, were
evaluated. The highest accuracy of 85% was achieved
by SVM. In terms of diagnosis, Kupryjanow et al.17

introduced a new technique to determine the UPDRS
sub-score related to motor test (finger tapping and
rapid alternating movement of hands). Instead of rely-
ing on the subjective assessment from neurologists, four
SVM classifiers were trained separately for every hand
gesture in another study.17 Every classifier returns the
decision (gesture belongs to the given class or not) and
the probability of this decision with high accuracy.
Both SVM and LR are increasingly used in neuroima-
ging studies15 and also for the classification of PD
because they allow characterization at an individual
level rather than at the group level, therefore yielding
results with a potentially high level of clinical
translation.

Classification problems typically involve using high-
dimensional features that make the classifier complex
and difficult to train. With no feature reduction, both
training accuracy and generalization capability will suf-
fer.18 A straightforward methodology to reduce the
complexity of classifiers is to reduce the number of fea-
tures. Dimensionality reduction is one of the most pop-
ular techniques to remove noisy (i.e. irrelevant) and
redundant features. Feature selection approaches aim
to select a small subset of features that minimizes
redundancy and maximizes relevance to the target such
as the class labels in classification. Least Absolute
Shrinkage and Selection Operator (LASSO) is a power-
ful feature-selection method proposed by Tibshirani.19

LASSO penalizes the absolute value of the features’
coefficients in a linear regression setting; this leads to
some coefficients which are shrunk to zero, which
means that features associated with those coefficients
are not correlated and are eliminated. Another feature-
selection method, Kruskal–Wallis (KW), is a non-
parametric one-way analysis of variance (ANOVA) test
that has minimal computation, is simple to implement,
and is used widely used in clinical datasets.20

To access the feature discriminative ability when dif-
ferentiating patients on the clinical scale, the linear
mixed-effects model (LMM) is a powerful and flexible
tool to understand the world. The LMM models are
based on a restricted maximum likelihood estimation
method and have been used widely in medical diagnos-
tics studies.21 To minimize the subjective effect on fea-
tures, leave-one-subject-out (LOSO) cross-validation is
a suitable method for training classifier.22

In the previous studies, a large number of techniques
for automatic detection of PD motor symptoms are
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revealed. But most machine-learning algorithms are
used to detect single-motor symptoms. PwPD have
diverse symptoms. In real time, patients are likely to
experience multiple symptoms, thus increasing the
chance of false positive and false negative.22 One possi-
ble solution to minimize the false-positive and false-
negative rate is to detect multiple motor symptoms
based on machine-learning algorithms. This study is
focused on multiple-motor symptoms to improve accu-
racy of the machine-learning algorithms.

Materials and methods

In this section, the first part is a description of the
instrumentation and protocols. The second part
describes the methodology carried out for the classifica-
tion of PD.

Instrumentation

The system used in this article is composed of two wear-
able devices that provide an objective and quantitative
analysis of the movements of the upper and lower limbs
through IMUs which are low cost, low power, non-
invasive, small in size, lightweight, wireless, and easy to
use.

An IMU integrated in the iNEMO-M1 board based
on micro-electro-mechanical systems (MEMS) sensors
(three-axis gyroscope L3G4200D and six-axis geomag-
netic module LSM303DLHC) and ARM-based 32-bit
microcontroller STM32F103RE (STMicroelectronics,
Italy) were used to develop the SensFoot V2 device
(Figure 2) for lower limb analysis. The system is sup-
plied by a rechargeable LiPo battery and integrated
with Bluetooth module (SPBT2632C2A, v3.0,
STMicroelectronics) which wirelessly transmits data
acquired to a remote PC for offline analysis.23 The
device is placed on the dorsum of the subject’s foot
with an elastic band to ensure integrity between the
foot and sensor.

The SensHand V1 (Figure 2) wearable device for
upper limb analysis was developed using the same

inertial sensors integrated into four iNEMO-M1
boards and equipped with dedicated STM32F103RE
microcontrollers (ARM 32-bit Cortex�-M3 CPU,
STMicroelectronics, Italy). The module placed on the
forearm is the coordinator of the system and transmits
acquired data toward a generic control station through
a wireless communication system based on the ESD
210 (Parani) Bluetooth serial device. The other modules
are positioned on the distal phalanges of the thumb,
index, and middle fingers. Module coordination and
data synchronization are implemented through the
CAN-bus standard. A small, rechargeable, and light
LiPo battery, integrated into the coordinator module,
supplies the system. Both the devices collect data with
a sampling frequency of 100 Hz.

Experimental protocol

According to the neurologist and to the tasks required
in the motor section of the MDS-UPDRS (MDS-
UPDRS III), an experimental protocol composed of six
exercises (performed twice, both limbs), such as thumb–
forefinger tapping (THFF), hand opening/closing
(OPCL), forearm pronation/supination (PSUP), resting
tremor (REST), toe tapping with heel pin (TTHP), and
heel tapping (HEHE), has been proposed to analyze the
motor skills of the upper and lower limbs of the subjects
in this study. In addition, every subject attended a short
preliminary training to try all the required movements.
A neurologist assessed the subjects during the execution
of the exercises, assigning them a score according to the
tasks in MDS-UPDRS III. MDS-UPDRS III (motor
section) tasks are traditionally used for PD assessment
and diagnosis (Table 1).

Description of exercises

During the trial session, subjects assumed a comforta-
ble and standardized sitting posture, holding right
angles between trunk and thigh (at the hip) and between
thigh and shin (at the knee). For each exercise, an initial
specific fixed position was established to permit a static
acquisition of 3 s to acquire the initial position as refer-
ence for each trial. The exercises had to be performed
for 10 s, as quickly and widely as possible. The descrip-
tions of the exercises are as follows:

THFF. The subject was directed to keep the hand
fixed on the desk, so that the plane between the
thumb and the forefinger joined together was paral-
lel to the table. In the starting position, the thumb
and the forefinger were in contact, and the subject
tapped the forefinger against the thumb (MDS-
UPDRS 3.4).
OPCL. The subject was directed to flex the arm that
was fixed on the table at the elbow, keeping theFigure 2. SensHand V1 and SensFoot V2.
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palm of the hand in front of himself or herself. The
subject had to alternatively open and close his or
her sensorized hand, holding the forearm and the
wrist fixed (MDS-UPDRS 3.5).
PSUP. The subject was asked to put the sensorized
arm outstretched in front of himself or herself, with
the wrist stable and the hand in prone position. The
pronation supinations had to be performed in paral-
lel to the floor (MDS-UPDRS 3.6).
REST. The subject was directed to place the sensor-
ized hand on the table in prone position. He remained
in rest position for the whole duration of the exercise,
keeping the hand fully relaxed (he must not contrast
the eventual tremor; MDS-UPDRS 3.17).
TTHP. The subject had to tap his toe on the floor,
always keeping the heel in contact with the ground
(MDS-UPDRS 3.7).
HEHE. The subject had to tap his heel on the floor,
keeping the forefoot always raised from the ground
(MDS-UPDRS 3.8).

Participants

A total of 59 PwPD (43 men, 16 women; mean 6 stan-
dard deviation: 67.3 6 8.8 years old) were involved in
this study. All patients were in the on-medication state
before and during the experiments. Exclusion criteria
were impairments or diseases other than PD (e.g.
orthopedic or neurologic) that could affect the perfor-
mance of daily activities. The exclusion criteria were
defined by the neurologist who supported the experi-
mentation. The patients were subjected to neurological
examination before involvement in the study to evalu-
ate whether other neurological disorders affected them
in addition to PD. The neurologist also asked patients
whether they experienced any type of orthopedic
impairments (e.g. prosthesis or arthrosis). If such
impairments/disorders were revealed, the patients were
excluded from the study. All subjects lived indepen-
dently in the community and gave written informed
consent prior to the study. Procedures of the study
were approved by the Medical Ethical Committee of

Table 1. Biomechanical parameters extracted from SensHand V1 and SensFoot V2.

Exercises Biomechanical features Acronym

THFF Number of taps
Opening velocity (deg/s) of the forefinger
Closing velocity (deg/s) of the forefinger
Energy expenditure

H_tapTF
H_wotf
H_wctf
H_TF_IAV

OPCl Number of movements
Opening hand velocity (deg/s)
Closing hand velocity (deg/s)
Energy expenditure

H_numoc
H_wop
H_wcl
H_OC_IAV

PSUP Number of rotation
Amplitude (deg) of the movement
Velocity (deg/s) in supination movements
Velocity (deg/s) in pronation movements
Energy expenditure

H_numps
H_excps
H_wps
H_wsp
H_PS-IAV

REST Power in tremor frequency band 3.5–7.5 from accelerometer signal
Power in tremor frequency band 3.5–7.5 from gyroscope signal
Energy expenditure

H_a-pwrpR2
H_g-pwrpR2
H_IAV-R

Number of taps
Toe angle

F_TTHP_taps
F_TTHP_T-angle

TTHP Energy expenditure F_TTHP_IAVxyz
HEHE Average power of power spectral density

Fundamental frequency
Maximum peak in signal power
Energy expenditure

F_HEHE_AVGPWR
F_HEHE_FREQ
F_HEHE_PEAK
F_HEHE_IAVxyz

The taps represent the number of movements that are performed during an exercise. The velocities are angular velocities (deg/s) measured by the

gyroscopes. The amplitude of movement (deg) is calculated by the integration of the angular velocity. The IAV features represent an estimation of

the energy expenditure during the execution of the exercises. These features are calculated on the basis of the acceleration values in x, y, and z

directions. IAV is the integral of magnitude of the total acceleration vector and is calculated as follows

IAV =
Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
x + a2

y + a2
z

q
dt

The toe angle in TTHP represents the mean, over the entire exercise, of the maximum amplitude of raising of the toe from the ground at each tap.

For REST and HEHE, a frequency analysis was performed. H_a-pwrpR2 and H_g-pwrpR2 represent the ratio between the power of the signal

calculated in the frequency band (3.5–7.5 Hz) and the total power of the signal from accelerometer and gyroscope, respectively.

Butt et al. 5



ASL1 (Azienda Sanitaria Locale, Massa and Carrara,
Italy; approval no. 1148/12.10.10).

Classification methodology

A flowchart of the methodology carried out in this
study is shown in Figure 3. This methodology was
established after conducting the literature review, which
was discussed in the first section. After data acquisition
was accomplished, pre-processing was performed to
normalize the values and to remove the high-frequency
noise from the dataset. Feature-selection methods were
used to obtain the most significant features. At the
same time, an LMM was used to determine the random
effect on the features. For classification, three different
state-of-the-art machine-learning classifiers, that is,
SVM, binary LR, and NN, were used. The classifica-
tion task was composed of three different experiments.
In the first experiment, fused significant features were
used to train classifiers. In the second composed experi-
ment, SVM was used to measure the contribution of
each feature to classify the PwPD. In the third experi-
ment, features were selected based on the measured
performance to classify the PwPD (SM and MS).

Data pre-processing. Dedicated algorithms were devel-
oped in MATLAB� for signal segmentation and event
detection to allow the extraction of the features
described in the previous paragraph from the motor
exercises.

Digital filters, threshold algorithms, and signal inte-
gration were applied to conduct the analysis in the spa-
tiotemporal and the frequency domains to obtain the
parameters of interest. Specifically, a low-pass fourth-
order Butterworth filter with a cut-off frequency of
ft = 5 Hz was applied to all the signals (except for
REST exercise) to remove the tremor noise. A high-
pass fourth-order Butterworth filter (ft = 0.5 Hz) was

implemented for frequency analysis to eliminate high-
frequency noise. To classify Parkinsonian patients on
the clinical scale, PwPD subjects were divided into two
classes. Class 0 belongs to slight and mild (SM) subjects
(28 subjects) and Class 1 belongs to moderate and
severe (MS) subjects (28 subjects).

Linear scaling was used to scale the features to dis-
crete values between 0 and 1. Linear scaling can be
defined as

x0=
x�min xð Þ

max xð Þ �min xð Þ ð1Þ

where x is the original value of features and x0 is the
normalized value of features.

Feature selection. LASSO and KW were used to assess
the significance of biomechanical features. LASSO is
one of the most popular sparse feature-selection meth-
ods. It shrinks the regression variables toward zero,
keeping all variables in the model to achieve a smooth
procedure with less variability. Let us suppose
X = [X1, ., XN], with N representing the number of
predictors, and Y = (y1, ., yn) is the response label.

The LASSO is a penalized least-squares method,
imposing a constraint on the L1 norm of the regression
coefficients.18 Thus, the LASSO can be defined as

bLasso = argminbjjY �
XN

i= 1

Xibjjj2 + l
XN

j= 1

bj

�� �� ð2Þ

where l is a non-negative tuning parameter controlling
the level of sparsity in b. Generically, the usual con-
struct, such as p-values and confidence intervals, does
not exist for LASSO estimate. LASSO picks out the
top performing features and sparse the other features
close to 0.19 The process of feature selection in LASSO
is to select the top performing features; features were
ranked using the LASSO fit method (B). A feature’s
value of 0 or close to 0, according to B, shows high
redundancy in the feature subsets. The B-value was
used to select the most significant features and to dis-
card the least significant features. Another feature-
selection method, KW, was used. This test is based on
using the non-parametric ANOVA test to determine
the significant features between two or more classes.20

KW can be defined with the given formula

H =
12

N N + 1ð Þ
Xc

i= 1

Ri2

ni

� 3 N + 1ð Þ ð3Þ

where c is the number of samples, ni is the number of
observations in the ith sample, N is the sum of all the
samples, and Ri is the sum of ranks in the ith sample.
For feature selection in KW, the H-value for each
feature was compared with the p-value (0.05). If the

Figure 3. Flowchart purpose classification methodology.
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H-value was less than the threshold value, then the
null-hypothesis could be rejected. KW was also applied
on the dataset to obtain significant biomechanical
parameters.

LMM. The LMM was performed using SPSS 23 soft-
ware. This analysis is mostly used to deal with compli-
cated models in which both random and fixed factors
are involved. In general, we can define the mixed-effect
model as11

Y =X b+ Zg + e ð4Þ

where Y is n 3 1 number of responses, X is an n 3 p
covariate matrix for fixed-effect b, and Z is an n 3 q
design matrix of random-effect g. The n 3 1 vector of
errors e is assumed to be multivariate normal with mean
0 and variance matrix random-effect model. To deter-
mine the random effect on fixed effect, we add one or
more random effects in the mixed model, which gives us
the structure of the error term e.21

Classification. The classification task consisted of three
separate classification experiments. To train the classi-
fier, LOSO cross-validation was used in SVM and LR.
To train the NN classifier, 70% was used for training
the model and 15% was used to validate that the net-
work is generalizing and to stop training before overfit-
ting. The last 15% was used as a completely
independent test of network generalization. The stan-
dard network that is used for function fitting is a two-
layer feed-forward network, with a sigmoid transfer
function in the hidden layer and a linear transfer func-
tion in the output layer. The default number of hidden
neurons of 10 was used, which gave the minimum train-
ing model error with Neural Network Toolbox in
MATLAB 2015b.

To include every feature available might result in
overfitting and poor classification performance due to
the curse of dimensionality. To overcome this issue,
feature-selection methods (KW, Lasso, LMM, and
receiver operating characteristic (ROC) curve) were
used to select the most significant features. The feature-
selection method allows for the selection of the best
subset which contains the least number of dimensions
that contribute most to accuracy. This is an important
stage of pre-processing in machine learning to avoid
the curse of dimensionality.

Additionally, ROC provides essential information to
measure the individual importance of every input and
to discover the variables that produce a statistically sig-
nificant improvement in the discrimination power of
the classification model.24 Another advantage is that it
also allows features to be ranked based on area under
the curve (AUC).

Classification between SM and MS involved three
separate experiments. In the first composed experiment
of classification, all the significant features selected
from feature-selection methods (KW, Lasso, and
LMM) were placed in the classifiers. To measure the
classification accuracy of every significant feature, a
second experiment was composed in which each signifi-
cant feature was placed in the SVM classifier with
LOSO cross-validation to classify both groups of
patients (SM and MS). The area under the ROC curve
was used to measure the accuracy of the classification.
In the third experiment, features which showed an
AUC above the threshold value of 0.5 were fused for
classification to improve overall classification accuracy.
ROC curve (see Figure 5) is a graphical representation
of the fraction of true positives versus the fraction of
false positives for a binary classification system. The
area under an ROC curve (AUC) is a global measure-
ment of the discrimination performance in a model,
and can be used to measure the global accuracy of clas-
sification.24 Maximum accuracy corresponds to an
AUC value of 1, and minimum discrimination power
of 0.5 means a random guess of separation. A mini-
mum discrimination power less than 0.5 is worse than
random guessing.

The SVM classifier was implemented using
LIBSVM (a Library for Support Vector Machines).
The basic idea of SVM in the binary classification task
is to separate non-separable input features using high-
dimensional separable space based on the selected ker-
nel. A linear kernel function was used for the SM and
MS classification. Linear kernel function can be
defined as cited by C Hsu et al.25

Linear kernel,K xi, xj

� �
= xT

i xj ð5Þ

SVMs separate input data into classes using decision
boundaries. In the linear kernel function, the mapping
rule is linear. For a two-class classification problem,
classification decision boundary splits a high-
dimensional input space with a hyperplane: all points
on one side of the hyperplane are classified as ‘‘SM’’ in
our case, while the others are classified as ‘‘MS.’’ It is
often used in binary classification problems since it
provides representation of the examples as points in
space that are mapped, so that the examples of the sep-
arate categories are divided by a clear gap that is as
wide as possible as shown in Figure 4(a).

LOSO cross-validation strategy was adopted to
obtain the unbiased generalization estimates. To avoid
biased classification results, samples of one subject were
left out at a time, in turn, and a classifier was trained to
test the left-out samples. This procedure was repeated
for each subject. Average accuracy obtained from
paired features is reported in the ‘‘Results’’ section.
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Another classifier, the binary LR model, was devel-
oped with the Generalized Linear Regression library in
MATLAB 2015b. The primary concept of binary LR is
to estimate the probability of success in the values
given by the explanatory features. The LR classifier is
basically used to measure the relationship between
dependent variables (target labels) and one or more
independent variables (predictors or features) by esti-
mating probabilities using the logistic function or sig-
moidal function. It can be defined as26

pi =
1

1+ e�bx
ð6Þ

In classical statistical techniques, such as linear
regression and linear discriminant analysis, this map-
ping rule is linear, that is, the classification decision
boundary or regression curve is a hyperplane (e.g. line
or a plane and equivalent geometric object in higher
dimensions) shown in Figure 4(c). In contrast, many
supervised machine-learning algorithms are in principle
capable of discovering any nonlinear relationship, when
dealing with biomedical data, so one is often forced to
use machine-learning algorithms.22 The classification
error was defined as the percentage of patients that
were incorrectly classified using leave-one-out cross-
validation (LOOCV) in SVM and LR and tenfold
cross-validation in NN. The performances of significant
features were measured to train the samples of those
features across the target value separately in classifiers
and confusion matrix, and ROC curves were used to
measure the performance of each feature to classify the
patients (SM and MS). This method is less computa-
tionally expensive and is easy to interpret.22 An NN is a
simple artificial neuron with two or more input feature
values. Each feature value is multiplied by a weight (w1,
w2, ., wn), and the result is summed and forms the
input to a mathematical function, such as sigmoidal
function, which is used to determine the predicted class
output of the neuron (0 or 1). A training algorithm

applied to the training data determines the parameters
of the algorithm, which are the weight values. Simple
artificial neurons such as these are connected, input to
output, into networks to make powerful classification
algorithms. An example is the ‘‘two-layer feed-forward
network,’’ taking four inputs and producing two out-
puts, which is shown in Figure 4(b).22

Results

Feature selection

LASSO fit algorithm was used to obtain the significant
features. A value of b (mean odd ratio) greater than 1
shows the statistical significance of these features. All
other features with b values close to 0 were discarded.
This means that LASSO penalized the absolute value
of the features and shrunk to 0 because of the huge
redundancy in the feature subset values. Another
feature-selection method, KW, was used to estimate
the significant features. Features with p-values of
\0.05 were considered significant. All other features
with p-value .0.05 were discarded and were not con-
sidered to be significant features. The estimated mean
odd ratio and p-value from LASSO and KW for all fea-
tures are shown in Table 2. Significant features selected
from both feature-selection methods are shown in Table
3. It can be observed that five features out of seven are
the same features selected from both feature-selection
methods. This result endorses the statistical significance
of these features for discrimination of PwPD.

LMM

The LMM models were used to assess the discrimina-
tive ability of the biomechanical parameters when dif-
ferentiating between patients on the clinical scale. The
LMM models were based on a restricted maximum
likelihood estimation method with condition as a fixed
effect and subject id as random effect on condition

Figure 4. Supervised learning algorithms: (a) support vector machine, (b) neural network, and (c) logistic regression.

8 International Journal of Distributed Sensor Networks



(target label). Feature is the output. Mixed effect will
give p-value for the intercepts b0 and b1, which is for
the subjective effect on condition. In this case, our null-
hypothesis feature is not affected by the subjective
effect, so true groups produce the same feature value.
We are looking for p-value .0.05 to reject the null-
hypothesis. This means there is insufficient evidence
that the feature is affected by random effect. Table 4
shows features that correlated with our hypothesis.
The following features were not affected by subjectiv-
ity: H_wop (p = 0.797), H_wcl (p = 0.551), H_excps
(p = 0.067), H_IAVr (p = 0.344), H_gpwrpR2
(p = 0.133), F_TTHP-taps (p = 0.626), and
F_HEHE-fre (p = 0.946).

Classification

Classification with significant features. All classification
approaches employed the classification error as evalua-
tion criterion. The classification error was defined as
the percentage of patients (SM and MS) that were
incorrectly classified using LOOCV for SVM and LR.
Similarly, in NN classification, error was estimated
based on the iterations. To measure the classification
performance, the expert diagnosis against the predicted
diagnosis from the classifier, all the aware metrics of
the diagnostic performance such as sensitivity, specifi-
city, positive and negative predicted values, ROC, and
AUC were measured.

LOSO cross-validation was used in SVM and LR.
The NN 70% dataset was considered as a training set.
A level of 15% was used to validate that the network
was generalizing and to stop training before overfitting.
The last 15% was used as a completely independent test
of network generalization with 10 hidden neurons.

In the first classification test, all the significant
features were selected based on the feature-selection
methods (Lasso, KW, LMM) and entered into the clas-
sifiers (SVM, NN, and LR). Table 5 shows a maximum
classification accuracy of 76.27% obtained from the
SVM classifier with a sensitivity of 92.10% and a speci-
ficity of 47.61%. Average AUC from the SVM was
0.9248. The obtained classification accuracy from LR
was 66.6%, with a sensitivity of 76.31% and specificity
52.30%. The average AUC from the LR was 0.6078%.
NN classifier showed the overall highest classification
accuracy of 78.00%, as compared to other classifiers.

Table 2. Biomechanical parameter ranking from KW and
LASSO.

Features LASSO
(B-value)

Kruskal–Wallis
(p-value)

H_tapTF 0.0201 1.45
H_wotf 9.568 0.005213
H_wctf 2.7931 0.002765
H_TF_IAV 0.0054 5.704
H_numoc 0.0206 0.00011
H_wop 5.7019 0.00015
H_wcl 6.6769 2.3019
H_oc_IAV 0.0031 4.03
H_numps 0.0177 0.8119
H_excps 0.0064 6.003
H_wps 0.0015 1.4315
H_wsp 0.0013 1.4568
H_PS-IAV 0.0065 5.532
H_a-pwrpR2 8.2728 0.003814
H_g-pwrpR2 1.662 0.003814
H_IAV-R 0.0024 0.98854
F_HEHE_AVGPWR 0.0074 3.23
F_HEHE_FREQ 0.1296 0.30
F_HEHE_PEAK 0.0033 1.92
F_HEHE_IAVxyz 0.0101 2.33
F_TTHP_taps 0.0188 0.51
F_TTHP_T-angle 0.0043 0.51
F_TTHP_IAVxyz 0.0253 0.38

Table 3. Selected significant features from KW and LASSO.

Exercise Features LASSO (B) Kruskal–Wallis (p)

THFF H_wotf 9.568 0.005213
H_wctf 2.7931 0.002765

OPCL H_numoc 0.0206 0.00011
H_wop 5.7019 0.00015
H_wcl 6.6769 2.3019

REST H_apwrp-R2 8.2728 0.003814
H_gpwrp-R2 1.662 0.003814

Table 4. Linear mixed-model estimated p-values for
biomechanical parameters.

Exercise Features Mixed-effects model (p-value)

THFF H_tapTF 0.026
H_woTF 0.000
H_wcTF 0.000
H_TF-IAV 0.000

OPCL H_numOC 0.03
H_wop 0.797
H_wcl 0.551
H_OC-IAV 0.000

PSUP H_numPS 0.153
H_excPS 0.067
H_wps 0.000
H_wsp 0.000
H_PS-IAV 0.000

REST H_a_pwrpR2 0.03
H_g_pwrpR2 0.133
H_IAV-R 0.344

HEHE F_HEHE_AVGPWR 0.000
F_HEHE_FREQ 0.946
F_HEHE_PEAK 0.000
F_HEHE_IAVxyz 0.000

TTHP F_TTHP_taps 0.626
F_TTHP_T-angle 0.044
F_TTHP_IAVxyz 0.000
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Sensitivity was 89.5% and specificity was 57.1% with
average AUC 87.90%. ROC curves of all the classifiers
are shown in Figure 5.

Features’ classification accuracy measures. In the second
composed experiment, classification accuracy of each
of the significant features was measured. For this pur-
pose, each of the feature samples was placed in the
SVM classifier with linear kernel function in turn. The
reason to select the SVM linear kernel is that it allows
visualization of the dimensional input space with a
hyperplane. In this section, our discussion is focused on
the obtained confusion matrix of the significant fea-
tures. Confusion matrix and ROC curves of the fea-
tures are shown in Table 6 and Figure 5, respectively.

numoc. The confusion matrix of the hand opening
and closing movements showed a classification accu-
racy of 77.97%, with a sensitivity of 94.73 and speci-
ficity of 47.6%. The average AUC was 0.774%, and
overall, the feature showed strong potential to clas-
sify the PwPD.

Wotf. The confusion matrix for thumb–forefinger
tapping opening velocity showed a classification
accuracy of 57.63% with a sensitivity of 89.47%
and specificity of 0%. The average AUC was
0.7243, and the results revealed that the feature
showed limited potential to classify the PwPD.
Wctf. The confusion matrix for thumb–forefinger
tapping closing velocity showed a classification
accuracy of 57.63% with a sensitivity of 89.47%
and specificity of 0%. The average AUC was
0.7243, and overall, the feature showed limited
potential to classify the PwPD.
gPwrpR2. The confusion matrix of power in tremor
frequency band (3.5–7.5) from accelerometer
showed a classification accuracy of 67.80% with a
sensitivity of 94.73% and a specificity of 19.07%.
The average AUC was 0.7055, and overall, the fea-
ture showed limited potential to classify the MS
PwPD.
aPwrpR2. The confusion matrix of power in tremor
frequency band (3.5–7.5) showed a classification
accuracy of 67.80% with a sensitivity of 94.73%
and specificity of 19.07%. The average AUC was

Table 5. Classification between MS and SM PwPD with, NN, SVM, and LR with paired significant features.

NN classification SVM classification LR classification

Total instances = 59
Correctly classified = 51
Incorrectly classified = 8
AUC = 0.879

Total instances = 59
Correctly classified = 45
Incorrectly classified = 14
AUC = 0.9248

Total instances = 59
Correctly classified = 40
Incorrectly classified = 19
AUC = 0.6078

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

Class 0 39 4 Class 0 35 3 Class 0 29 9
Class 1 4 12 Class 1 11 10 Class 1 10 11
TPR 89.5% 57.1% TPR 92.10% 47.61% TPR 76.31% 52.3%
Accuracy 78.0% Accuracy 76.27% Accuracy 66.6%

MS: moderate and severe; SM: slight and mild; PwPD: patients with Parkinson’s disease; NN: neural network; SVM: support vector machine; LR:

logistic regression; AUC: area under the curve; TPR: true positive rate.

Figure 5. (a) ROC curves of classification test 1, (b) ROC curves of classification test 2, and (c) ROC curves of classification test 3.
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0.7055, and overall, the feature showed limited
potential to classify the MS PwPD.
wcl. The confusion matrix of hand closing velocity
showed a classification accuracy of 64.41% with
sensitivity of 100% and specificity of 0%. The aver-
age AUC was 0.4085, and overall, the feature failed
to classify the MS PwPD.
wop. The confusion matrix of thumb–forefinger tap-
ping closing velocity showed a classification accu-
racy of 66.10% with sensitivity of 97.36% and
specificity of 9.52%. The average AUC was 0.37,
and overall, the feature showed limited potential to
classify the PwPD.
excPS. The confusion matrix for the amplitude of
the movement of pronation and supination showed a
classification accuracy of 62.71% with sensitivity of
97.36% and specificity of 0%. The average AUC was
0.3609, and the feature fail to classify the MS PwPD.
iavr. The confusion matrix for rest tremor energy
expenditure showed the classification accuracy was
64.14% with sensitivity of 100.0% and specificity of
0%. The average AUC was 0.5539, and the feature
fail to classify the MS PwPD.
tthp_taps. The confusion matrix for toe tapping with
heel showed the classification accuracy of 59.32%

with sensitivity of 92.10% and specificity of 0%.
The average AUC was 0.5044, and the feature fail
to classify the MS PwPD.
tata_freq. The confusion matrix of heel tapping fre-
quency showed the classification accuracy of
66.10% with sensitivity of 97.36% and specificity of
9.52%. The average AUC was 0.4580, and very low
specificity indicates the limited potential of feature
to classify the PwPD in advance stage like MS.

Generally, in all the features, specificity was low as
compared to sensitivity. This indicates that the features
showed limited potential to classify an advanced stage
of PwPD such as MS. Figure 5(b) shows that the AUC
in many of the features was significantly lower than 0.5
for the classifier, again suggesting that the classifier as
a whole needs to take another fuse of features in to
account to classify the PwPD (SM and MS). Only five
features showed an AUC above the 0.5.

Classification with selected significant features through
AUC. In the third composed experiment, significant fea-
tures were selected based on the AUC and were paired
for the classification. The features which showed an
AUC significantly above the threshold value

Table 6. Classification between MS and MS PwPD for features’ classification accuracy measure.

Classification: SVM
Feature: numoc
AUC = 0.7744

Classification: SVM
Feature: wotf
AUC = 0.7243

Classification: SVM
Feature: wctf
AUC = 0.7243

Classification: SVM
Feature: gpwrpR2
AUC = 0.7055

0 1 0 1 0 1 0 1

Class 0 36 2 Class 0 34 4 Class 0 34 4 Class 0 36 2
Class 1 11 10 Class 1 21 0 Class 1 21 0 Class 1 17 4
TPR 94.73% 47.6% TPR 89.47% 0% TPR 89.47% 0% TPR 94.73% 19.07%
Accuracy 77.97% Accuracy 57.63% Accuracy 57.63% Accuracy 67.80%

Classification: SVM
Feature: apwrpR2
AUC = 0.7055

Classification: SVM
Feature: wcl
AUC = 0.4085

Classification: SVM
Feature: wop
AUC = 0.3784

Classification: SVM
Feature: excps
AUC = 0.3609

0 1 0 1 0 1 0 1

Class 0 36 2 Class 0 38 0 Class 0 37 1 Class 0 37 1
Class 1 17 4 Class 1 21 0 Class 1 19 2 Class 1 21 0
TPR 94.73% 19.0% TPR 100.0% 0% TPR 97.36% 9.52% TPR 97.36% 0%
Accuracy 67.80% Accuracy 64.41% Accuracy 66.10% Accuracy 62.71%

Classification: SVM
Feature: IAVR
AUC = 0.5539

Classification: SVM
Feature: TPTP_Taps
AUC = 0.5044

Classification: SVM
Feature: TATA_FREQ
AUC = 0.4580

0 1 0 1 0 1

Class 0 38 0 Class 0 35 3 Class 0 37 1
Class 1 21 0 Class 1 21 0 Class 1 19 2
TPR 100% 0% TPR 92.10% 0.0% TPR 97.36% 9.52%
Accuracy 64.41% Accuracy 59.32% Accuracy 66.10%

MS: moderate and severe; PwPD: patients with Parkinson’s disease; SVM: support vector machine; AUC: area under the curve.
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(AUC . 0.5) were fused and entered into the classifiers
(NN, SVM, LR). The following features were fused:
numoc (number of opening closing hand), wotf (open-
ing velocity of THFF), wctf (closing velocity),
gpwrpR2 (power in band (3.5–7.5) from gyroscope),
and apwrpR2 (power in band (3.5–7.5) from acceler-
ometer). These fused features were placed in the SVM,
LR, and NN classifiers. The classification results are
shown in Table 7; the results show an improvement in
the classification and endorse the significance of these
features to classify the PwPD.

The highest obtained classification accuracy with
SVM classifier was 79.66%, with a sensitivity of 92.10%
and specificity of 57.14%. The average AUC was 0.8709
as shown in Table 7. Similarly, the highest classification
accuracy obtained from LR classifier was 76.7%, with a
sensitivity of 84.21% and specificity of 61.90%. The
average AUC was 0.7832 as shown in Table 7. NN clas-
sifier showed the highest classification accuracy of 83.1%
as compared to SVM, and LR with sensitivity of 94.7%
and specificity of 61.9%. Average AUC was 0.889 as
shown in Table 7. The ROC of each of the classifiers is
shown in Figure 5(c). The results endorsed selecting fea-
tures to train the classifier based on the features’ ROC
performance to improve the classification accuracy. The
maximum classification accuracy is obtained from state-
of-the-art classifiers with the following significant fea-
tures: numoc (number of opening closing hand), wotf
(opening velocity of THFF), wctf (closing velocity of
THFF), gpwrpR2 (power in band (3.5–7.5) from gyro-
scope), and apwrpR2(power in band [3.5-7.5] from accel-
erometer). Overall, these features showed high potential
to classify the advance stage of PwPD.

Discussion

PD assessment on the clinical scale remains a challen-
ging task for clinicians, with visual analysis of motor
tasks. In this article, we propose a method for

quantifying PD motor symptoms in both initial and
advanced patients experiencing motor fluctuations. The
symptoms are quantified by calculating several biome-
chanical parameters from motor exercises from upper
and lower limbs gathered by the sens-Handv1 and sens-
Footv2 devices. Based on the biomechanical para-
meters, three state-of-the-art classifiers, SVM, LR, and
NN, were employed to characterize the severity of the
motor symptoms and classify them in PD-specific
groups. In the first classification experiment, fused sig-
nificant features selected from feature-selection meth-
ods (KW, Lasso, and LMM) were entered in the
classification algorithms to obtain the best classifica-
tion results. However, it is a matter of fact that some
features may not monotonically increase or decrease
with the UPDRS scale estimated by the clinician.
Therefore, they may not represent the actual classifica-
tion results of medical judgment. However, using all
the features may create an overfitting problem due to
the curse of dimensionality. In addition to contributing
to better diagnosis and monitoring, better characteriza-
tion might also lead to a better understanding of the
disease processes underlying neurodegenerative condi-
tions, which are often poorly understood.27 To obtain
the better characteristics for diagnosing the PwPD, fur-
ther features were selected based on their individual
classification performance. The results showed that
strategy improved the overall sensitivity and specificity
of the classification in all state-of-the-art classifiers’
results. The best performing method was NN classifier,
which classified SM and MS groups with an accuracy
of 83.1%, sensitivity of 94.7%, and specificity of
61.9%, respectively. Overall, the method had good test
reliability and provided high discriminating power
between both groups. To determine the actual potential
of a significant feature to classify the SM and MS
patients, SVM was trained from every significant char-
acteristic (feature) of UPDRs separately. LOOCV were
used for testing samples (patients) to construct a

Table 7. Classification between MS and SM PwPD with NN, SVM, and LR with selected significant features through AUC.

NN classification SVM classification LR classification

Total instances = 59
Correctly classified = 49
Incorrectly classified = 10
AUC = 0.8890

Total instances = 59
Correctly classified = 47
Incorrectly classified = 12
AUC = 0.8709

Total instances = 59
Correctly classified = 45
Incorrectly classified = 14
AUC = 0.7832

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

Class 0 36 8 Class 0 35 3 Class 0 32 6
Class 1 2 13 Class 1 9 12 Class 1 8 13
TPR 94.73% 61.90% TPR 92.10% 57.14% TPR 84.21% 61.90%
Accuracy 83.10% Accuracy 79.66% Accuracy 76.27%

MS: moderate and severe; SM: slight and mild; PwPD: patients with Parkinson’s disease; NN: neural network; SVM: support vector machine;

LR: logistic regression; AUC: area under the curve.
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hyperplane. The results showed high AUC curve mea-
sured from SVM for the following features: number of
opening closing hand (numoc), THFF opening velocity
(wotf), THFF closing velocity (wctf), and power in the
band (3.5–7.5) from gyroscope and accelerometer. In
general, the results revealed that all the features have
limited potential to classify the PwPD with advanced
stage such as MS.

Selected features

The maximum classification accuracy was obtained
using five features. Our discussion is focused on these
features.

Number of OPCL. The feature showed the highest classi-
fication results. Simple, repeated movements such as
OPCL make bradykinesia more prominent in PwPD. It
is fact that fatigue, hesitation, and freezing in repetitive
movements which can be clinically assessed when test-
ing repetitive OPCL. Reduction in the number of the
OPCL movements provides essential information to
discriminate the PwPD such as SM and MS. Due to
the fatigue and hesitation in PwPD with advance stage
of the disease, less number of movements should be
observed as compared to those PwPD who are in the
initial stage of the disease.

THFF opening velocity. The opening velocity of THFF
showed a sensitivity, but to classify the advanced stage
of PwPD such as MS, it showed limited potential. MS
PwPD belongs to a different MDS-UPDRS scale,
which complicates to the classification of the PwPD
due to high variability in the feature subsets. In general,
this feature also showed good a potential to classify the
PwPD such as SM. Bradykinesia refers to slowness of
movement that is ongoing, akinesia indicates failure of
associated movements to occur, and hypokinesia refers
to movements that are smaller than desired. These
symptoms can be assessed with repetitive movements.28

Repetitive movements in finger tapping result in a pro-
gressive reduction in tapping speed and motion ampli-
tude, and increase the use of visual feedback as a
compensatory mechanism for a motor system with
inherently high variability of motor output.

THFF closing velocity. The closing velocity of THFF also
showed a high sensitivity but failed to classify the
advanced-stage patients such as MS due to high varia-
bility in the feature values. In general, the feature
showed a strong contribution in the classification of
the PwPD such as SM. Amplitude and speed are the
two characteristics mentioned in the MDS-UPDRS
that can be more directly related with specific features

from a recorded signal. Bradykinesia is defined as the
progressive reduction in speed, amplitude, or both of
repetitive actions and is an important diagnostic fea-
ture of PD.29

Power in the band (3.5–7.5) from gyroscope and
accelerometer. The power from both the gyroscope and
accelerometer showed a high sensitivity but low specifi-
city. Overall, the feature had a good potential to clas-
sify both groups of PwPD such as SM and MS. One of
the most common symptoms of PwPD is REST.
Usually, the pathophysiology of rest tremor is largely
unknown. It involves unintentional and rhythmic mus-
cle oscillations of an afflicted extremity while the mus-
cles of said extremity are relaxed.27 Rest tremors occur
when the body part is in rest position, and it is the most
common recognizable symptom of PwPD. Tremor fre-
quency can vary from low (4–5 Hz) to high (8–10 Hz).
REST in PwPD is difficult to clinically differentiate
from essential tremor. We can differentiate REST
objectively because essential tremor has no delay,
whereas PD REST re-emerges after a few seconds.

Conclusion

In this article, the objective assessment based on the
biomechanical parameters was able to classify the
movement disorder in PwPD. The classification results
endorse the potential of biomechanical parameters to
classify the PwPD on the clinical scale. The mentioned
significant features are only valid for this dataset to
classify the two groups of patients with the proposed
methodology. This is a first step toward the investiga-
tion of the gold standard matrix to classify the PwPD
on a clinical scale, such as MDS-UPDRS III. To clas-
sify the PwPD on a clinical scale, future investigation
would be focused on the collection of a big dataset with
an equal number of samples from the same MDS-
UPDRS III scale. Direct combining of results of suit-
able biomechanical features based on their performance
can improve the accuracy of the machine-learning algo-
rithm. Future investigation also would be focused on
the other biomechanical features from SensHand V1
and SensFoot V2, as well as other feature-selection
methods to compare the results from different learning
algorithms. One limitation of this study was the una-
vailability of enough samples from each UPDRS scale,
which was one reason to distribute samples in the two
groups, SM and MS, to maintain the generalization
ability of the model. The advanced patients in the MS
group affected the TPR due to having the highest varia-
tion in the biomechanical parameter-estimated values.
Since the number of subjects in the two groups was not
equal, this also affected the generalized ability of the
model. One possible extension would be to discriminate
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the PD subjects on UPDRS with the same proposed
methodology. At the same time, the other feature-
selection and data-driven machine-learning methods
would be investigated to discriminate the PD more effi-
ciently on a clinical scale, especially in the early stages.
Due to methodological challenges of assessing the PD
in the early stages, the next step is to investigate state-
of-the-art data-driven machine-learning methods and
new feature extraction from the SensHand V1 and
SensFoot V2. Another possible extension would be to
accommodate the proposed methodology with other
introduced technologies such as leap motion and
Kinect sensors to assess the ability of the SensHand V1
device. Leap motion has many limitations. One of them
is that leap is very sensitive to motion, which may lead
to a great amount of noise. Another one is that there
are no guidelines for the users when the hand or finger
has crossed the plane. Future leap updates could
be helpful in estimating the hand tremor for assessment
of PD.30
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