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Abstract— Activity Recognition is important in assisted living 

applications to monitor people at home. Over the past, inertial 

sensors have been used to recognize different activities, spanning 

from physical activities to eating ones. Over the last years, 

supervised methods have been widely used, but they require an 

extensive labeled dataset to train the algorithms and this may 

represent a limitation of concrete approaches. This paper 

presents a comparison of unsupervised and supervised methods 

in recognizing nine gestures by means of two inertial sensors 

placed on the index finger and on the wrist. Three supervised 

classification techniques, namely Random Forest, Support Vector 

Machine, and Multilayer Perceptron, as well as three 

unsupervised classification techniques, namely k-Means, 

Hierarchical Clustering, and Self-Organized Maps, were 

compared in the recognition of gestures made by 20 subjects. The 

obtained results show that the Support Vector Machine classifier 

provided the best performances (0.94 accuracy) compared to the 

other supervised algorithms. However, the outcomes show that 

even in an unsupervised context, the system is able to recognize 

the gestures with an average accuracy of ~0.81. The proposed 

system may be therefore involved in future telecare services that 

could monitor the activities of daily living, allowing an 

unsupervised approach that does not require labelled data. 

 
Index Terms—Gesture Recognition, Unsupervised Analysis, 

Wearable Sensors, Accelerometers. 

I. INTRODUCTION 

HANKS to recent advances in medicine, life expectancy 
has grown in the last years and by 2075 people aged 65 

and over are expected to account for 34% of the European 
population [1]. Aging can cause decreases in people’s physical 
and cognitive abilities thus increasing the need for care from 
nurse practitioners (+94% in 2025) [2] and physician’s 
assistants (+72% in 2025) [3]. Since the majority of elderly 
people would prefer to stay in their homes as long as possible, 
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and considering the costs of the nursing home care, it is 
important to prevent the deterioration of health conditions, to 
support old persons in daily activities, and to delay entry into 
institutional care facilities [4]. ICT and Robotics technologies, 
among other vantages, can help to prevent, support, and 
maintain the independent living of the elderly population [5], 
by monitoring elderly people at their own place and 
supporting families and care staff in the delivery of assistance 
[6]. Particularly, the ability to recognize gestures and daily 
activities is useful to facilitate caregivers to better provide help 
in personal hygiene, hydration, etc. Additionally, recent 
studies correlate changes in the daily behaviors of older people 
to cognitive problems [7]. Recognizing eating and drinking 
activities, for example, would also help to check food habits, 
determine whether the person is still able to maintain his or 
her daily routine, and detect changes in it [8], so to facilitate 
prompt intervention by caregivers. 

When dealing with elderly users, it is important to consider 
three important characteristics, i.e. ease-of-use (easy 
configuration and maintenance), coverage (no limited working 
area) and privacy [9]. As stated from literature evidence, three 
main approaches have been used in activity recognition based 
on different sensing technologies: vision, environmental and 
wearable sensors. Vision-based technologies raise issues 
linked to privacy, illumination variations, occlusion and 
background change [10]. The second approach relies on the 
interaction of the user with specific objects or appliances, 
assuming that the use of a certain object is strictly linked to a 
precise activity, but requires a large amount of sensors that 
need to be installed at the user’s place [10]. On the other hand, 
thanks to the miniaturization and affordability of micro-
electromechanical systems (MEMs) and in particular of 
Inertial Measurement Units (IMUs), the approach based on 
wearable sensors is gaining popularity. The use of wearable 
sensors makes it possible to collect data about users’ 
movements without forcing them to stay in front of a camera 
or interacting with specific objects [11]. 

Several works have focused on the recognition of human 
activities using wearable sensors [12]. As detailed in the next 
paragraph, many of them adopted supervised machine 
learning, showing promising results, but conversely requiring 
labeled dataset, which can sometimes be difficult to generate 
and need to be updated each time a new activity is added [13]. 
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Therefore, this paper proposed a step toward an 
unsupervised pattern-learning algorithm that can recognize 
gestures without labeled data, favoring the use of data 
generated in real cases. In order to improve the gesture 
recognition capability, a ring placed on the index finger and a 
bracelet placed on the wrist are used. 

II. RELATED WORKS  

As can be seen from literature evidence (see Table I), many 
studies have focused on the recognition of human activity 

using wearable sensors. Much attention has been paid to the 
recognition of physical activities, which are very important to 
maintain a healthy lifestyle. Some works reached good results 
in terms of accuracy using only inertial sensors [11, 15, 13] or 
coupling these sensors with other ones [14]. 

Some works increased the number of activities to be 
recognized, involving also the use of the hand (Hand-
Oriented-Activities). In particular, using inertial sensors [17, 
18] and location [16] they were able to recognize hand- 
oriented activities mixed with not hand-oriented ones.  

TABLE I 
REVIEW OF STUDIES ON ACTIVITY RECOGNITION (DT= DECISION TREE, MLP= MULTI-LAYER PERCEPTRON, RANDOM FOREST= RF, SVM= SUPPORT VECTOR 

MACHINE) 

Ref. Used Sensors 
Sensor 

Position 
Activities Machine Learning Results 

[11] Accelerometer 

Chest, 
right thigh 

and left 
ankle 

Standing, stair descent, sitting, sitting down, 
sitting on the ground, from sitting to sitting 
on the ground, from lying to sitting on the 
ground, lying down, lying, walking, stair 

ascent and standing up. 

Supervised: k-Nearest Neighbor, 
SVM, Supervised Learning Gaussian 

Mixture Models and RF 
Unsupervised: k-Means, Gaussian 

Mixture Models and Hidden Markov 
Model  

Accuracy: 
S: > 0.850 

U: >0.756 
(min values in a 10fold 

Cross Validation) 

[14] 

IMU, 
magnetometer, 

GPS, light, 
pressure 

Pocket 
position 
and wrist 

Walking, running, cycling, standing, sitting, 
elevator ascents, elevator descents, stair 

ascents and stair descents 

Supervised: C4.5, and CART based 
DT, Naïve Bayes, MLP and SVM 

Accuracy: 
Up to 0.95 with 

Smartphone and 0.89 with 
Smartwatch 

[15] 
Accelerometer 
and gyroscope  

Wrist  

Sit-Stand, Stand-Sit, Sit-Lie, Lie-Sit, Stand-
Lie, Lie-Stand, 

Standing, Sitting, Lying, Step Forward, 
Step Backward 

Supervised: SVM 
F-measure: 

0.93 (leave-one-subject-out 
cross-validation) 

[13] 
Accelerometer 
and gyroscope 

Pocket 
position  

Walking, running, sitting, standing, and 
lying down 

Unsupervised: k-means clustering, 
mixture of Gaussian (GMM), 

hierarchical agglomerative clustering 
(HIER), and DBSCAN 

Accuracy: 
> 0.720 (min value) 

[16] 
Accelerometer 
and Location 

Right 
thigh, on 
the waist 

and on the 
right hand 

Sitting, standing, lying, walking, sit-to-
stand, stand-to-sit, lie-to sit, and sit-to-lie 
categorized into stationary and motional 

activities.  
Five specific types of hand gestures: using 

mouse, typing on a keyboard, flipping a 
page while reading a book, stir-fry cooking, 

and dining using a spoon 

Supervised: Three-level dynamic 
Bayesian Network 

Accuracy: 
> 0.850 

[17] 
Accelerometer 
and gyroscope 

Pocket 
position 
and wrist 

Smoking, eating, typing, writing, drinking 
coffee, giving a talk, walking, jogging, 

biking, walking upstairs, walking 
downstairs, sitting, and standing. 

Supervised: SVM, k-Nearest 
Neighbor and DT 

Average accuracy >0.970 
for simple activities and 
>0.89 for complex ones 
using wrist position and 
10-fold stratified cross 

validation 

[18] Accelerometer  

Front-
right 

pocket 
and wrist   

Walking, Jogging, Climbing Stairs, Sitting, 
Standing, Kicking Soccer Ball. Dribbling 

Basketball, Playing Catch with Tennis Ball 
(two people), Typing, Handwriting, 

Clapping, Brushing Teeth, Folding Clothes. 
Eating Pasta, Eating Soup, Eating 

Sandwich, Eating Chips, Drinking from a 
Cup 

Supervised: RF, DT, Instance 
Based, Naïve Bayes and MLP 

Accuracy = 0.703 with RF 
and impersonal model 

[19] Accelerometer  Wrist 
Eating with chopstick, eating with the 

spoon and eating with the hand 

Supervised: Naïve Bayes, 
BayesNet, Boosting, Bagging and 

DT 
Accuracy = 0.680 

[20] 
Accelerometer 
and gyroscope  

Wrist  

Eating with the hand, with chopsticks or 
with spoon and other activities like 

smoking, drinking tea, washing one’s face, 
shaving, applying makeup etc.. 

Supervised: DT 

Accuracy = 0.920 in 
distinguishing between 
eating and non-eating 

gestures and = 0.86 for 
eating modes (min values) 

Our 
work 

Accelerometer 
Index 
Finger 

and Wrist 

Eat with the hand, eat with the fork, eat 
with the spoon, drink with the glass, drink 

with the cup, answer the phone, brush teeth, 
brush hair and use the hairdryer 

Supervised: RF, MLP, and SVM 
Unsupervised: k-Means, Self-

Organizing Map, and Hierarchical 
Clustering 

Accuracy: 
S: > 0.908 

U: >0.803 
(min values in a leave-one-

subject-out cross-
validation) 
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Finally, some studies focused on the recognition of eating 
activities and especially eating modes. In these cases, the 
authors focused their attention on the identification of specific 
eating gesture in order to monitor also the food intake. In 
particular, using inertial sensors, different eating modes were 
distinguished among other activities [19, 20]. 

A summary of the related works in term of used sensors, 
recognized activities machine learning approach, and results 
can be found in Table I.  

To promptly intervene in case of changes in daily 
behaviors, it is important to be able to discriminate among 
complex activities such as eating and drinking and performing 
acts of personal hygiene [7, 21]. As can be seen in the 
aforementioned works, when dealing with more complex 
actions, often the experimental data set includes very different 
activities, thus making easier to distinguish between eating, 
drinking and other activities. On the other hands, works that 
are interested in recognizing Hand-Oriented-Activities are not 
able to distinguish between different eating modes (Table I).  

Assuming that people make specific gestures when they 
perform eating, drinking and other activities, it is possible to 
infer the activity from the performed gesture [22]. In our 
previous work, we focused on the recognition of daily gestures 
using wearable sensors placed on the wrist and on the fingers 
using two supervised machine learning algorithms, namely 
Decision Tree (DT) and a polynomial kernel Support Vector 
Machine (SVM) [23]. The selection of gestures to be 
recognized made it possible to discriminate among more 
complex activities that are very similar to each other, all 
including a movement of the hand to the head. While the best 
results were obtained by using three sensors, placed on the 
wrist, on the distal phalange of the thumb, and on the 
intermediate phalange of the index (F-measure equal to 0.91), 
we decided to focus our attention on the use of two sensors, 
wrist and index, that show good results while decreasing the 
invasiveness (F-measure equal to 0.88).  

Considering the machine learning approach, for the best of 
our knowledge, few recent works use unsupervised 
approaches for activity recognition problems [11, 13]. For 
instance, Kwon et al. [13] proposed an unsupervised activity 
recognition approach and, using the accuracy and Normalized 
Mutual Information (NMI) as measures of the goodness of the 

algorithms, achieved high accuracy even when the number of 
activities, k, is unknown.  

Therefore, the aim of this paper is twofold: firstly it 
investigates the use of unsupervised machine learning 
approaches, providing the basis to implement algorithms for 
daily gesture recognition in real conditions; secondly it 
demonstrates the advantages of extracting kinematics features 
of movement not only at the level of wrist, but also of finger 
by using a novel instrument based on a bracelet and ring. 
Indeed, the characterization of fingers' movement permits to 
identify aspects related to fine manipulation, digital grasping, 
etc. that in the end allow a deeper and effective recognition of 
gestures above all very similar gestures.  

In particular, we compare the results obtained by three 
supervised learning algorithms with the ones obtained by three 
unsupervised ones, considering that unsupervised machine 
learning algorithms do not require labeled data, thus avoiding 
the need for a training dataset, and can therefore be more 
adaptable to real applications of human activity recognition.  

III. METHODOLOGY 

The main goal of this analysis is to demonstrate that our 
system is able to distinguish among nine daily gestures with 
an unsupervised approach. In fact, in order to realize the 
potential of this system in the real world, pattern learning 
algorithms should be able to operate without labeled data, as it 
is too resource intensive for a person to verify the large 
quantities of data that are generated by a gesture. An overview 
of the steps made to pursue the objectives is presented in Fig. 
2. 

 
Fig. 1 – Example of eating with the hand with the full configuration of sensors 
(a) and the considered configuration of sensors with the orientation of the axes 
(b). The z-axes are pointing toward the finger and the wrist. 

 
Fig. 2 – Schematic representation of the methodological approach.   
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In this section, we introduce the system architecture, the 
experimental settings and protocol and the feature extraction 
and selection. 

A. Instrumentation 

Data were acquired using five sensor units placed on the 
wrist and on the hand as described in our previous work [23]. 
In this work, we decided to consider in the analysis only the 
sensors placed on the index finger and on the wrist, which 
showed a good trade-off between recognition accuracy and 
obtrusiveness. In Fig.1 the two configurations are shown. 

The sensor units consist of an INEMO-M1 board with a 
LSM303DLHC (six-axis geomagnetic module, 
STMicroelectronics), an L3G4200D (three-axis digital 
gyroscope, STMicroelectronics), an I2C digital output, and a 
dedicated microcontroller. From each unit, the acceleration 
and angular velocity are collected at 50 Hz.  

A low-pass filter with a cut-off frequency of 5 Hz was 
implemented on board to filter data of the accelerometer and 
gyroscope in order to remove high-frequency noise and 
tremors.  

B. Experimental Settings and Participants  

Twenty young participants (11 females and 9 males, whose 
ages ranged from 21 to 34 (29.3 ± 3.4)) performed nine 
different gestures in the DomoCasa Laboratory, a 200 m2 fully 
furnished apartment located in Peccioli, Pisa (Italy). This 
location was chosen to allow users to perform gestures in a 
natural way, reducing as far as possible the unnatural 
movement arising from the laboratory setting. The gestures 
were chosen in order to detect complex activities that consist 
of a similar movement, i.e. hand to head movement, and 
therefore can be easily confused. Moreover, these activities 
would make it possible to identify eating and drinking 
movements, which are important for the monitoring of elderly 
persons. In particular, the gestures performed are described in 
Table II.  

Users were asked to perform a sequence of 40 gestures for 
each kind of gesture without any constrictions in the way in 
which objects were picked up and the gestures were made. At 
the beginning of each session, users had to keep the hand and 
the forearm still on a plane surface in order to calibrate each 
session and compare the position of the sensors among the 

different sequences, referring to the first acquired gesture 
(HA). Users were observed during the acquisition and gestures 
were manually labeled in order to track the beginning and end 
of each gesture. 

C. Feature Extraction and Selection 

After the segmentation of the signal in single gestures 
according to the label, features were extracted. According to 
the state of the art [12], four features from the acceleration 
were evaluated along each direction. In particular, the mean 
(M), standard deviation (SD), mean absolute deviation (MAD) 
and the root mean square (RMS) were calculated. Our dataset 
thus included 7200 gestures with 24 features (3 axes x 4 
features x 2 sensors) labeled with the corresponding gesture.  
The linear correlation coefficient (Pearson) between each 
feature was computed to keep in the analysis only the features 
with a coefficient below 0.85 (absolute values) in order to 
reduce the noise due to the redundancy of data [11]. 

The final dataset was then composed of 15 uncorrelated 
features. An ANOVA test confirmed that the nine gestures 
were statistically different for all of these selected features (p 
< 0.05). In particular, as regards the index sensor unit, we 
selected the M and SD values along the three axes and the 
RMS values along the x- and y-axes. As regards the wrist 
sensor, we selected the M and SD values along the three axes 
and the RMS value along the x-axis. Once the dataset had 
been reduced, a Z-norm was computed to avoid distortion and 
have a zero mean and a unit standard deviation.  

The obtained dataset was then used with supervised and 
unsupervised machine learning algorithms to compare the 
results.  

D. Evaluation Measures  

The results obtained with the unsupervised and supervised 
machine learning algorithms were presented as a confusion 
matrix.  

Thus, the overall accuracy, F-measure, precision, and 
recall were computed as described in Eqs. from 1 to 4 [12] 
(where TP stands for True Positive, TN stands for True 
Negative, FP stands for False Positive and FN for False 
Negative). 

�������� =  	
�	�
	
�	��

�
�                       (1) 

��������� =  	

	
�

                                 (2) 

TABLE II 
GESTURE DESCRIPTION  

Gesture Description 

HA: Eating with the hand Participants took the food with the hand and moved it to the mouth and back to the table. 
GL: Drinking with a glass Participants were asked to grasp the glass, move it to the mouth, and then leave it on the table. 

FK: Eating with a fork 
Participants had to take a piece of already cut fruit with the fork, eat it, and then move the hand back to 
the table without leaving the fork. 

SP: Eating with a spoon 
Participants had to use the spoon, load it with some yoghurt, and move it to the mouth and then back to 
the table without leaving the spoon. 

CP: Drinking with a cup Participants were asked to grasp the mug, move it to the mouth and then back on the table, leaving it 
PH: Answering the telephone Participants had to take the phone, move it to the head and back on the table after a few seconds 

TB: Brushing the teeth with a toothbrush 
Participants were asked to take the toothbrush from the sink, move it to the mouth to brush the teeth, 
and put it back on the sink 

HB: Brushing the hair with a hairbrush 
The gesture consisted in taking the hairbrush from the sink, moving it to the head, using it two or three 
times, and putting it back on the sink 

HD: Drying the hair with a hair dryer  Participants were asked to take the hair dryer from the sink, move it to the head, and dry the hair 
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These evaluation metrics were used to compare and 

discuss the performances of these two approaches. With 
regard to the unsupervised analysis, the performances were 
evaluated with an external criterion [24] by comparing the 
output with our a priori knowledge. 

IV. EXPERIMENTS 

In this section, we describe the analysis of the reduced 
dataset with three supervised machine-learning techniques and 
with three unsupervised ones, both with k known and 
unknown. Finally, the visualization of the feature space to 
identify similarity and diversity between gestures is 
introduced.  

A. Supervised Approach 

The main goal of this work is to evaluate whether the 
proposed sensor configuration is able to distinguish among 
gestures even with the unsupervised approach. In this context, 
the supervised analysis is used as the “gold standard” for the 
comparison between the two approaches. 

Particularly, in this work Multi-Layer Perceptron (MLP), 
Random Forest (RF), and SVM were applied as supervised 
algorithms. The performance of these algorithms was tested by 
a Leave-One-Subject-Out cross-validation (LOSO) technique, 
where 19 participants were used as training set, while the 
remaining one was used as a test set for the algorithms. All the 
participants were used as test set. In this phase, the analysis 

was performed by using the Weka Data Mining Suite [25]. In 
particular, MLP and RF were used in the default conditions, 
while for the SVM a radial basis function kernel was used. 

The three techniques showed high results in terms of 
accuracy and the F-measure. In particular, as reported in Table 
III (supervised), the best results were obtained with the SVM 
with an accuracy of 0.938 and a F-measure of 0.942. The RF 
algorithm showed a lower accuracy and F-measure (0.932 and 
0.936 respectively) with respect to SVM, but they were still 
higher than those obtained by MLP, which achieved an 
accuracy value of 0.909 and an F-measure of 0.914. RF, MLP, 
and SVM also showed good precision: 0.940, 0.919, and 0.947 
respectively (Tab. III). These results confirm that the system is 
able to distinguish among the selected gestures when the 
system is trained, even with unknown subjects.  

Considering the F-measure of the single gestures (Fig. 3a), 
the FK was one of the worst recognized (0.855 with MLP, 
0.862 with RF, and 0.876 with SVM), often being confused 
with the SP. In addition, the HB reached a low value of F-
measure, especially with the MLP approach (0.826 with MLP, 
0.893 with RF, and 0.892 with SVM). This gesture was often 
confused with HD, which is justifiable considering the 
similarity of the gestures. In the supervised analysis, the 
highest values of F-measure were reached for PH and HA, 
which are higher than 0.97 and 0.95 respectively for all the 
algorithms. 

B. Unsupervised Approach – k-known 

Three unsupervised machine learning clustering techniques 
were used to group the performed gestures into clusters. 

 
Fig. 3 – Comparison of Supervised and Unsupervised Analysis (k=9): F-Measure (a) Precision (b) Recall (c). 

TABLE III 
COMPARISON OF SUPERVISED AND UNSUPERVISED ANALYSIS (K = 9) IN TERMS OF ACCURACY, F-MEASURE, PRECISION AND RECALL, COMPUTED AS THE MEAN 

VALUE 

 Accuracy F-Measure Precision Recall 

Supervised     

RF 0.932 0.936 0.941 0.932 

MLP 0.909 0.914 0.919 0.909 

SVM 0.938 0.942 0.947 0.938 

Unsupervised     

KM 0.818 0.818 0.818 0.818 

SOM 0.817 0.816 0.816 0.817 

HC 0.803 0.810 0.817 0.803 
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Particularly, in this work, the K-Mean (KM) algorithm, Self-
Organizing Maps (SOMs), and Hierarchical Clustering (HC) 
were applied and compared. In particular, KM was applied 
considering the Euclidian distance with five replicates in order 
to avoid local minima. We chose these algorithms because 
they are widely used in similar applications [26], [13]. The 
Machine Learning and Pattern Recognition Matlab Toolboxes 
[27] were used for the unsupervised analysis. 

In a first step, it was assumed that the number of performed 
activities is known. In this case, the three unsupervised 
algorithms show high and comparable results to the supervised 
ones concerning accuracy and the F-measure (~0.81 both). As 
regards precision and recall, the results are comparable for all 
the measures (~0.81) (Tab. III). Particularly, the worst 
recognized gestures are HB and HD, which are often mutually 
confused (see Fig. 4). Other gestures with a low F-measure are 
FK, TB, and CP (Fig. 3a). As depicted in Fig. 4, SP and FK 
are mutually confused due to the similarity of the two 
gestures. On the contrary, PH and HA are the most recognized 
gestures, as confirmed by the high values of the F-measure 
(>0.95 and >0.96, respectively, for the three algorithms). 

C. Unsupervised Approach – k-unknown 

In order to evaluate the performance of these unsupervised 
methods for activity recognition, the same algorithms were 
applied also considering the lack of knowledge of the number 
of activities performed (k) as proposed in [13]. In particular, 
this method emphasizes whether the unsupervised method 
could be useful even when there is an arbitrary number of 
activities. In this case, to evaluate the performance of the 
clustering algorithms we used NMI and accuracy as external 

criteria to compare the performances [13], [28]. In particular, 
the NMI index was evaluate as: 

%&' =   ∑ ∑ !)*+*,- $ ./0∙0)*0)∙0*23),-
4∑ !) $ .0)0 ∑ !* $ .0*0+*,-3),-

        (5) 

where r is the number of clusters, s is the number of classes, nij 
is the number of instances in cluster i and j, ni is the number of 
instances in cluster i, nj is the number of instances in cluster j 
and n is number of instances. It is important to notice that, this 
index does not require the condition that the number of 
activities is the same as the cluster.  

As regard the accuracy measure, since the number of 
activity is different from the number of cluster we adapt the 
definition of accuracy as presented in [13]. For each trial, we 
consider, as correct-correspondence between cluster and 
activity (true positive), the cluster that has the largest portion 
of the true cluster. Fig. 5 shows the experiment results for the 
three approaches.  

The analysis reveals that KM and SOM have the maximum 
NMI values for k=9, whereas HC has the maximum value for 
k=10 (Fig.5). Accuracy results underline that the high values 
of this index is for k=9 for all the approaches. Particularly, for 
k=9 we obtained high and comparable accuracy performance 
for KM, HC and SOM (Tab. III), whereas, as regards the NMI 
index, KM and HC shows higher performance (0.760 and 
0.765 respectively) rather than the SOM (0.759).  

For k<9, the indexes decrease significantly because 
different clusters merge into one. Some gestures are very 
similar (for instance HB and HD) and noisy, due to the inter- 
and intra- subject variability. A possible explanation is the fact 
that the gestures are “near” in the considered feature space 

Fig. 5 – Comparison of NMI index and accuracy when the number of clusters (k) is not known a-priori.  

 

 
Fig. 4 – Confusion matrix for k = 9 (a) K-means (b) self-organizing map (c) hierarchical clustering. 
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(see Sect. IV.D), consequently they can be consider as one. 
Similarly for k>9, the algorithms divide a normal cluster into 
several clusters, and thus the indexes value are lower.  

The higher value of the NMI and accuracy indexes 
obtained with k=9 suggests that the unsupervised approach 
could distinguish among the different gestures even when k is 
unknown. 

D. Feature Space Visualization  

Unsupervised learning has been used to reveal the implicit 
relationships in the dataset [29]. Firstly, we computed the 
“Mean Gesture” dataset, where all the features (F) were 
obtained as the mean value over the totality of a specific 
gesture. Thus, each gesture was described by a 1 × F row of 
the final G × F dataset (where F is the total number of features 
and G is the total number of gestures). Additionally, the 
standard deviation of the “Mean Gesture” had been computed 
to include the variability of a single gesture in the analysis. 
Similarly, also the “centroids” dataset has been built 
considering the centroid of the cluster obtained with the KM 
algorithm to corroborate the comparison between the two 
methods. Then, the two datasets were merged in one and 
analyzed to investigate similarity and differences among 
gestures. 

Firstly, Principal Components Analysis (PCA) was applied 
in order to reduce the number of features thus to improve the 
visualization of the feature space. According to the Kaiser 
Rule [30], we consider only components with eigenvalues 
greater than 1. Hence, three components were selected to 
describe our feature space. 

Then the Similarity Matrix (SM) was computed to explore 
the relationships between points and to quantify the “similar 
gestures” in the dataset. The equation of the i-th element of the 
SM is based on the normalized Euclidian distance (‖67‖) 
computed as: ∀ 9, ; ∈ � 

 
 67=,> =  ?∑ @9� � ;�ABC�DEF                        (6) 

 
where p and q are two generic points of our space (P) and m in 
the dimension of our space. 

Thus the normalized Euclidian distance can be calculated 
as: 

 

‖67‖� =  G HI)JKLM @HIA
KLM@HIAJKNO@HIAG                       (7) 

 
Finally, the ‖67‖  (Eqs. 6 and 7) has been computed 

between each “Mean Gestures” and between two 
corresponding points (i.e. HA in the “mean gesture” dataset 
and “centroids” dataset) in the PCA space in order to 
investigate whether the cluster algorithms are able to correctly 
describe the gestures. 

Fig. 6 reports the “Mean Gestures” (circle) and the 
“Centroids” (diamonds) in the feature space whereas the gray 
grid represents the inter-subject variation of each gestures. It is 
important to notice that some gestures are very similar and 
their variability around the mean gesture is partially 
overlapped. These results confirm the performance of 
unsupervised algorithms for k ≠ 9. 

The visualization of the feature space confirms that the 
most similar gestures are HB and HD, which are the closest 
“mean gestures” in the space. Other close points are CP and 
HA (‖67‖ = 0.265) and FK and CP (‖67‖ = 0.280). On the 
contrary, SP and HB are the most distant points in the space 
(‖67‖ = 1.000). SP is also far from TB (‖67‖ = 0.956), PH 
(‖67‖ = 0.879), and HD (‖67‖ = 0.868). These results are 
aligned with the outputs of the confusion matrix (Fig. 4).  

From the comparison of the “mean gestures” with the KM 
centroids, HB and HD show the highest values of ‖67‖ computed between these corresponding points in the 
3D-PCA space (1.000 and 0.525 respectively). In effect, these 
gestures are mutually confused, as confirmed by the lower 
values of the F-measure (0.572 for HB and 0.588 for HD). In 
contrast, HA has the most similar points. Other similar points 
are TB (0.185) and SP (0.072). Nevertheless, as shown in Fig. 
6, all the centroids are included in the range of the standard 
deviation. 

V. DISCUSSION 

The aim of this work was to evaluate whether the selected 
sensors’ configuration is able to discriminate among the 
gestures using an unsupervised approach compared to a 
supervised one. Starting from our previous work [23], where it 
was shown that the addition of the sensor on the index finger 
improved the recognition rate with respect to a single sensor 
on the wrist (the F-measure increases from 0.622 to 0.884 
using a polynomial kernel SVM in a LOSO analysis), we 
compared the outcomes of unsupervised and supervised 
approach using the same sensors’ configuration. 

The proposed analysis achieves high results for both 
approaches (complete results are reported in Table III), 
showing that our system is able to distinguish among the 
different gestures achieving good values of accuracy with 
respect to the state of the art. For instance, in [18], the 
recognition of eating activities with a wrist sensor was very 
low (accuracy equal to 0.527 and 0.627 for eating soup and 
drinking activities in the case of an impersonal analysis) with 
respect to our system (overall accuracy of ~0.81 for the 
unsupervised analysis), suggesting that the addition of the 
index can improve the recognition rate. The explanation of 

 
Fig. 6 - Features space representation considering the mean values of each 
gesture (circle) and the centroids (diamond) on the plane of the first, second
and third principal component. The gray grid represent the standard deviation. 
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that could lie in the fact that a ring sensor on finger allow to 
encompass kinematics features of movement more related to, 
for example, fine manipulation, digital grasping or pinch, that 
thus make possible the distinction of gestures that would be 
very similar if only tracked by wrist sensor. 

Regarding the unsupervised analysis, the three methods 
have difficulty in showing a precise separation among the 
clusters. The collected gestures are not distributed in a 
spherical shape and they are noisy, as confirmed by the 
analysis of the feature space, the ‖ED‖ values and the standard 
deviation of the mean value (Fig. 6) reported in the previous 
section.  

As concern the k-unknown analysis, we evaluated how the 
system is able to manage the situation by comparing the NMI 
and the accuracy parameters (Fig. 5). The highest value of 
NMI correspond to k=9 for KM and SOM, similarly, the high 
accuracy values are for k=9. Therefore, this means that the 
proposed system configuration and the selected set of features 
are able to discriminate among the different gestures even in 
this “blind” condition. Nevertheless, the proposed approach 
presents some limitations that we would like to overcome in 
our future works. In particular, we force the algorithm to 
cluster all gestures in the k clusters without considering the 
option “new gesture”, in other words, a specific gesture has 
been assigned to the nearest cluster. New sophisticated 
algorithm should be able to adapt and learn “new gesture” 
from streaming sensor data. In this context, we plan to 
investigate and develop a new algorithm to properly manage 
unseen gestures.  

As regards the approach with k=9, the supervised and 
unsupervised approaches present similar behavior in 
recognizing specific gestures in terms of precision, recall, and 
F-measure as depicted in Fig. 3. Both approaches show the 
best results in terms of F-measure in PH and HA, while among 
the worst recognized are HB and HD as shown in Fig. 3. 
These results are confirmed also by the analysis of the feature 
space (Fig. 6) and the unsupervised confusion matrix (Fig. 5).  

It is worth to highlight that our activity dataset has been 
designed to include similar gestures all involving the 
movement of the hand to the head, thus making more difficult 
to recognize them. According to the state of the art (see Table 
I), only few works consider this set of gestures that can be 
easily confused but are important for the recognition of daily 
activities. Indeed, among the important activities to be 
recognized, there are feeding and personal hygiene, which are 
in fact included in the dataset proposed in this work. The 
recognition of these activities allows to monitor people at 
home and fosters the ability to detect changes in daily patterns 
in order to identify possible critical situations and check 
whether elderly persons are still able to live at their own 
home. Moreover, the possibility to recognize eating and 
drinking activities could allow to check on the diet of elderly 
persons, helping them to maintain a healthy lifestyle. 

In the proposed work, the experimentation was carried out 
with young healthy people to evaluate whether this system 
could be used to recognize significant daily gestures. It is 
necessary, therefore, to test the system also with elderly 

people to check the performances of the same configuration of 
sensors. Hence, future experimentation will involve old 
persons that could have physical impairment also linked to 
neurodegenerative diseases like Parkinson’s Disease. 

To make the activity monitoring really part of daily life, it is 
important to have systems that require little training or 
configuration effort and that integrate easily in the person 
everyday life [21]. Nowadays, these aspects are a concrete 
technical challenge that the researchers need to address.  

The use of unsupervised algorithms allows to overcome 
issues related to the need of labelled data, thus making easier 
to analyze large quantity of data and getting a step closer to 
real applications. The combination of sensors described in this 
work provides good recognition rate with unsupervised 
approaches, even if according to the state of the art, one of the 
drawbacks of the use of wearable sensors is the perceived 
obtrusiveness. However, in order to overcome this limitation, 
wearable sensors can become part of already used objects or 
accessorized, like jewelry [31]. In this way, the presented 
configuration can come a step closer to the application in daily 
life.  

VI. CONCLUSION 

Recognition of daily activities is crucial in the monitoring 
of elderly people at home, improving the ability of the 
caregivers to check on the conditions of the persons and 
increasing the possibility for old persons to stay longer at their 
own place. 

Hence, in this paper, we proposed a comparison between 
unsupervised and supervised approaches for the recognition of 
nine daily gestures. We evaluated the performance and 
obtained high performances for both approaches (see Table 
III). This work shows, therefore, how a sensor on the wrist and 
one on the index finger can be used to recognize gestures 
associated with daily activities even with an unsupervised 
approach. These results highlight the possibility to get a step 
closer to real applications in the recognition of daily activities.  

Moreover, the use of an inertial ring, such as the one 
developed in [32], together with the use of a sensor on the 
wrist could be further investigated to evaluate the recognition 
rate of other activities, such as physical activities. In this way, 
it could be possible to increase the number of recognized 
activities, increasing the ability of the system to detect 
changes in daily routine and analyze the lifestyle of people.  

Future works will be, therefore, focused on the increase in 
the number of activities that can be recognized by using the 
proposed system and on the analysis of how the unsupervised 
approach manages the addition of new items to be recognized. 
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