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Abstract.  In this paper, we describe a human posture classification and a falling de-

tector module suitable for smart homes and assisted living solutions. The system uses 

a neural network that processes the human joints produced by a skeleton tracker  using 

the depth streams of an RGB-D sensor. The neural network is able to recognize  stand-

ing, sitting and lying postures. Using only the depth maps from the sensor, the  system 

can work in poor light conditions and guarantees the privacy of the person.  The neural 

network is trained with a dataset produced with the Kinect tracker, but  it is also tested 

with a different human tracker (NiTE). In particular, the aim of this  work is to analyse 

the behaviour of the neural network even when the position of  the extracted joints is 

not reliable and the provided skeleton is confused. Real-time  tests have been carried 

out covering the whole operative range of the sensor (up to  3.5 meters). Experimental 

results have shown an overall accuracy of 98.3% using  the NiTE tracker for the fall-

ing tests, with the worst accuracy of 97.5%. 
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1 Introduction 

In the recent years, the development of technologies strictly connected to humans  

increased exponentially. Nowadays, the advent of powerful mobile devices such as  
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smartphones and tablets are a reality, but in the near future smart home technologies 

will represent a huge market [1-3]. Distributed environmental sensors [4], robots [5], 

computers and wearable devices [6] will share the home environment with us. These 

kinds of smart systems need to be aware of humans in order to effectively interacts 

with them to address several tasks such as energy management or behavioral and 

health monitoring. In the context of home care application, especially if we consider 

elderly people, one of the most desirable feature is the ability to detect a falling event. 

Each year, one in every three older adults falls in their home [7], but less than half talk 

to their health-care providers about it [8]. Older adult falls lead to reduced functions 

and premature loss of independence, and oftentimes a fall may indicate a more serious 

underlying health problem. For these reasons, the importance of the fall detection to 

have a fast and quick reaction is crucial. In the past, video surveillance systems have 

been proposed to address this issue, but some of their limitations include the light con-

ditions and the lack of privacy. The recent emergence of depth sensors, so-called 

RGB-D sensors (e.g. Microsoft  Kinect, Asus Xtion, PrimeSense Carmine), has made 

it feasible and economically sound to capture in real-time not only color images, but 

also depth maps with appropriate resolution and accuracy. A depth sensor can provide 

three-dimensional data structure as well as the 3D motion information of the sub-

jects/objects in the scene, which has shown to be advantageous for human detection 

[9]. Several works about human postures detection with the RGB-D sensors exploit 

the use of skeleton tracking algorithms for rapidly transforming persons depth infor-

mation to spatial joints that represent the human figure [10, 11]. Unfortunately, when 

these methods are used for real world applications the output is not always stable and 

reliable (see Fig. 1).  The reasons that reduce their performance depend on several 

factors. Among these, we have the distance between the person and the sensor, the 

occlusions that occur when people interacts with environmental objects and also side-

ways poses that hides some parts of the user that are not visible to the sensor. 

Fig. 1: Examples of worst skeleton detection. (a) The person is far from the sensor and 

at least two joints are missed. (b) The user is lying on a sofa and the skeleton is fused 

with the sofa. (c) The person falls down in front of the sensor and the output seems 

unusable. 
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 The aim of this work is to develop a system, based on depth cameras, which is  

able to classify three human postures, including standing, sitting, and lying positions 

that reliable works in real conditions. In order to do that, we need to deal with the 

aforementioned problems that afflict the skeleton tracker methods. Therefore, an arti-

ficial Neural Network (NN) model is adopted to rely on its generalization ability and 

its robustness against noisy and missed data. As opposed to other similar works [12, 

13], real-time tests, conceived to reproduce realistic and challenging situations for the 

tracker, covering the whole operative range of the sensor, have been carried out. Dur-

ing these experiments, the NN has been continuously fed with all the available joints 

generated by the skeleton tracker in order to analyse its robustness to unreliable and 

uncertain joints. At the end of the paper, an application for smart homes and a scenario 

that includes a domestic robot that integrates the trained NN for falling detection is 

presented. The paper is structured as follows. Sect. 2 presents the related work on hu-

man postures, while Sect. 3 gives an overview of the proposed system, describing the 

NN architecture, the dataset, the training and test phases. The real-time experiments  

are presented in Sect. 4, while the results are summarized in the Sect. 5. A falling  

event application example for smart environment is presented is Sect. 6 and Sect. 7  

concludes the paper. 

2 Related Work 

The importance of detecting human postures, especially for recognize or prevent hu-

man falls, is addressed in various previous work. According to Yu [14], a system for 

the falling recognition must have three main properties, it has to be reliable, unobtru-

sive and has to preserve the privacy. Several proposed systems make use of wearable 

devices [15], such as accelerometers [16], gyroscopes [17] and RFID sensors [18]. 

However, these approaches are often cost prohibitive and they rely on the willingness 

of the subjects to wear devices, reducing the overall acceptability of the system. Non-

invasive methods such as computer vision techniques have been extensively investi-

gated. In [19], a 2-D human posture classification by means of a neural fuzzy network 

is presented. However, 2-D video based methods generally give not robust and inaccu-

rate results, and they are influenced by the light conditions without providing an ade-

quate privacy.   
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Recently, the advent of low-cost depth camera received a great deal of attention from 

researchers. This technology offers several advantages compared to standard video 

cameras. In addition to color and texture information, depth images provide three-

dimensional data useful for segmentation and detection. Moreover, a system that uses 

only depth information is able to work in poor light conditions (high risk of falling 

accidents), providing privacy at the same time. In literature, several works address the 

problem of the posture detection using depth data. Some of these take into account the 

relation between the human and the ground [20], but, in order to perform floor seg-

mentation, they often assume the floor as a large part of the scene and this assumption 

seems unrealistic in real home application. Silhouette extraction methods use the cen-

troid as detector feature [19, 21], but the centroid is strong dependent on the posture 

and on the size of the user. Other works exploit proper skeleton tracking algorithms to 

use human joints as feature descriptor [22]. However, the depth data are usually af-

fected by noise and the joints are not always available. As it has been pointed out by 

[11], depending on the quality of the segmented target and the level of occlusion, the 

skeleton trackers might not detect all the joints and their location cannot be totally 

reliable. A poor estimation of the skeleton joints occurs when the person is partially 

occluded or somewhat out of the image, or not facing the sensor (sideways poses pro-

vide some challenges regarding the part of the user that is not directly visible), or it is 

at the far end of the sensor range. For these reasons, it is common to find works based 

on skeleton tracker, limiting the test phases to samples that are free of excessive noise 

[12] or performing tests that allow to retrieve easily distinguishable human body fea-

tures [13]. In order to deal with the aforementioned problems, a feed-forward NN, 

trained  with all the available skeleton joints, is adopted to detect the target postures. 

Fig. 2: Three examples of the samples extracted from the dataset: (a) standing, 

(b)sitting and (c) lying posture. 
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 During the real-time tests, the NN is fed with the output of a tracking algorithm 

also when its 

output is confused and not reliable. Tests have been carried out in order to analyse the 

behaviour of the NN at different distances, covering the whole range of the sensor. 

3 System Overview 

The proposed human posture detection relies on a skeleton tracker algorithm that is 

able to extract the joints of a person from the depth map. Among the most used skele-

ton tracker we can find the Microsoft Kinect SDK, which works with its namesake 

device, and the NiTE SDK [23], used in conjunction with the OpenNI framework [24] 

that is generic and runs both for Kinect and Asus Xtion or PrimeSense device. These 

software tools are similar and provide the 3D position of the skeleton joints combined 

with an additional confidence value for each of them. This datum can assume three 

values: “tracked” when the algorithm is confident, “inferred” when it applies some 

heuristics to adjust the position, and “untracked” when there is uncertainty. Both 

SDKs are affected by the same drawbacks when used in real world application. The 

undesirable conditions happen when the user is too close (< 1 m) or too farther from 

the sensor (> 3 m), or when the person assumes sideways poses and occlusions are 

present. In all these cases, the position of the calculated joints are not reliable and sta-

ble, so the associated confidence values are set as “untracked”. The Fig. 1 shows three 

examples of the aforementioned cases. A distant person produces fewer joints than 

usual, a human lying on a sofa confuses the tracker, while a  person that falls down 

abruptly generates a messy output that seems unusable. Nevertheless, the “untracked” 

joints are anyway part of the whole skeleton and they have been used to analyse the 

robustness of the NN against noisy and uncertain values. 

3.1 Dataset 

The choice of the dataset samples for the training and the validation of the NN is a 

crucial step. Although there are some online RGB-D datasets about human performing 

daily activities, unfortunately very few of them contains people in lying position. For 

this work, the MSRDailyActivity3D dataset [25] has been chosen. It is recorded with 

the Kinect SDK and contains 10 subjects performing various activities at the distance 

of about 2 meters. For each frame of the video sequence, the position of 20 skeleton 

joints is stored in a text file. A total of 120 samples has been taken from these text files 
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to build a set containing subjects in sitting, standing and lying position, equally 

subdivided (see Fig. 2). 

 

3.2 NN Architecture  

The aim of the NN is to detect the three different postures using as input the skeleton 

joints extracted by the tracker algorithm. The structure of the NN has three layers, with 

60 input neurons (3 coordinates for each 20 joints, as provided by the text files of the 

MSRDailyActivity3D dataset) and 3 output neurons, whose values range from 0 to 1 

according to the posture. The neuron number of the hidden layer needs to be mini-

mized in order to keep the amount of free variables, namely the associated weights, as 

small as possible [26], decreasing also the need of a large training set. The cross-

validation technique is adopted to find the lowest validation error as a function of the 

number of hidden neurons. As a result, an amount of 42 hidden units has been found 

as sufficient value. The activation function for the hidden and the output layer is the 

sigmoid, defined as: 

 

y=
1

1+e
− 2 sx

 
 

 

where x is the input to the activation function, y is the output and s is the steepness 

(=0,5). The selected learning algorithm is the iRPROP- described in [27], which is an 

heuristic for supervised learning strategy and that represents a variety of the standard 

resilient back-propagation (RPROP) training algorithm [28]. It is one of the fastest 

weight update mechanisms and it is adaptive, therefore does not use the learning rate. 

The NN is developed in C++ using the Fast Artificial Neural Network Library [29]. 

 

3.3 Training, Validation and Testing Sets 

In order to estimate the generalization performance of the NN and to avoid the over-

fitting of the parameters, the dataset is randomly divided into a training set, to adjust 

the weights of the NN, a validation set, to minimize the over-fitting, and a testing set 

to confirm the predictive power of the network. There is no common splitting rule for 

the dataset. In the present work, we follow the procedure described in [30] in which is 

stated that the fraction of patterns reserved for the validation set should be inversely 
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 proportional to the square root of the number of free adjustable parameters. In our 

case, these sets are divided in 63, 21 and 36 samples respectively.  

     All the data are recorded at a distance of about 2 meters from the sensor. If the NN 

is trained with them, the network will produce better result only around 2 meters. To 

overcome this issue, a preprocessing step has been introduced. The NN is trained with 

normalized joints to ensure a depth invariant feature. Each joint vectors is normalized 

with the Euclidean norm: 

 

ĵ=
j

‖ j‖  
 

where j is the joint and ĵ  is the normalized joint. 

      During the learning phase, the Mean Squared Error (MSE) is separately computed 

for the training and for the validation set. To guarantee optimal generalization perfor-

mance, this process is stopped when the validation error starts to increase, since it 

means that the NN is over-fitting the data [31]. The final errors of the process is 2 ∗ 10 

−4 for the training and 0.028 for the validation. This process took 339 ms on a Intel 

Core 2 2GHz 32bit producing a 100% recognition rate on all the 36 samples of the 

testing set. 

 

4 Real-Time tests 

As expected, testing the NN with the samples of the dataset gives a True Positive Rate 

(TPR) of 100%, since the data are well acquired and free of excessive noise. To under-

stand the real performance of the network, real-time experiments have been set up. 

Since the original dataset is built only with the Kinect SDK tracker, in order to prove 

the generalization power of the NN tests have been carried out with both Kinect SDK 

and NiTE tracker of the OpenNI framework. Although these two software behave in a 

similar way, they have a significant difference. The first one represents the human 

skeleton with 20 joints, while the latter uses only 15 joints. Therefore, to work with 

our trained NN, the input is preprocessed to fill the missed joints with the closest 

available, as depicted in the Fig. 3. 

 

 

 

 

 

 

Fig. 3: Difference between skeleton representation. The Kinect 

SDK (left) uses 20 joints, while the NiTE SDK (right) only 15. 

The missing joints are replaced with the closest. 



                                                                                                   A. Manzi, F. Cavallo and P. Dario 

 

8 
 

 

 

4.1 Experimental Setup 

Two different kinds of experiments have been conducted. The first one is about the 

detection of the three human postures in daily life environment with a sofa, while the 

second tests how the network behaves when a person falls down. The output of the NN 

is “standing”, “sitting”, and “lying” according to the value of the output neuron that is 

closest to 1. To analyze the results, the outputs are compared with the actual posture of 

the person, but the intermediate poses between a posture and another are discarded, i.e. 

when the user is sitting down or standing up. All the tests run at 25 fps. Since the input 

of the NN is the skeleton data, which are extracted purely from depth maps, the light 

conditions do not influence the performed experiments. 

 

4.1.1 Sit and Lie on a Sofa 

This experiment has been conducted in a real living room with a sofa. The sensors 

(Kinect and Xtion) have been placed at 1 meters from the ground facing the sofa.  A 

person, starting from the left, goes to the sofa, sits for a while, lies down on it, and 

then gets up again and goes away. The experiments have been carried out with 6 peo-

ple (3 male and 3 female) at 3 different distances (3.5, 2.5 and 1.5 meters). This setup 

is intended to address the human trackers problems about the distance (Fig. 1 (a)) and 

the melting issue between human and objects (Fig. 1 (b)) as already mentioned in Sec. 

2. 

4.1.2 Falling Tests 

Given the lack of available dataset containing falling people, we want to understand 

the ability of the NN to recognize a falling as a lying posture. Therefore, we set up a 

series of tests in which a man falls down to the side and to the front of the sensor (Fig. 

1 (c)). The device is placed at 1 meter from the ground and the NN is fed with all the 

available joints, even if their confidence value is labelled as “inferred” or “untracked”. 

In this way, the robustness of the NN against data uncertainty has been evaluated. Fall-

ing tests are divided in frontal and lateral to take into account also the self-occlusion of 

some parts of the body. They have been conducted in a kitchen environment with a 
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 person that falls down abruptly while its moving toward and sideways and repeat-

ed 5 times each. The frontal fall distance from the sensor is about 2 meters, while the 

distance of the lateral fall is about 3 meters. 

 

              Table 1. Confusion matrix of the Sofa experiments (NiTE) 

 standing sitting lying 

standing 100% 0% 0% 

sitting 0% 100% 0% 

lying 0% 2.8% 97.2% 

 

 
 Table 2. Confusion matrix for the falling tests (NiTE) 

 (a) Frontal Fall 

 standing sitting lying 

standing 100% 0% 0% 

sitting 0% 100% 0% 

lying 0% 6.7% 93.3% 

 

 

 Table 3. Confusion matrix for the falling tests (NiTE) 

        (b) Lateral Fall 

 standing sitting lying 

standing 98.9% 1.1% 0% 

sitting 0% 100% 0% 

lying 0% 4.9% 95.1% 

 

 

 

 Table 4. Accuracy (NiTE) 

 Sofa Frontal Fall Lateral Fall 

standing 100% 100% 99.4% 

sitting 99.5% 97.6% 97.5% 

lying 99.5% 97.6% 98.1% 

overall 99.6% 98.4% 98.3% 
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5 Results 

The experiment with the sofa has been conducted with 6 persons at different distances 

and two types of sensors, Kinect and Xtion, and trackers, Kinect SDK and NiTE re-

spectively. The total number of analysed frame are 5214. The NN output with the Ki-

nect SDK proves to be extremely robust and reliable, achieving a 100% for all the 

three postures. The output with the NiTE skeleton tracker is less reliable and it is 

summarized with the confusion matrix of the Tab. 1. As expected, lying is the most 

challenging posture to classify, since the skeleton tracker provides clearer output with 

the other two postures. It is worth to know that,  in all the cases, the actual lying pos-

ture can be misclassified only as sitting, and that neither standing nor sitting is classi-

fied as lying. Considering the falling tests, the Kinect tracker yields a TPR of 100% 

for all the postures, while the NiTE is less reliable, but still satisfactory. The Tab. 2 

contains the confusion matrices for these experiments and the results are consistent 

with the previous tests. To be thorough, since the person falls down quickly, there are 

not actual sitting posture. The Tab. 3 contains the accuracy calculated for the sofa and 

the falling experiments. In general, the real standing posture is always recognized even 

when the user is sideways, given that the output of the tracker is cleaner and reliable in 

this case. We have to point that these human trackers have been developed for natural 

interaction and gaming and the players must stand in front of the sensor. As expected, 

the lying posture is the most challenging to detect, but the rate of the false positive is 

always null and the actual lying posture is misclassified only with the sitting class and 

never with the standing. Since the NN is trained with a dataset built on Kinect tracker, 

using it produces excellent results. However, the use of the NiTE tracker does not in-

volve bad effects. The most interesting result is about the falling test. The NN produc-

es a TPR of 95.1% for the lateral test and 93.3% for the frontal. In particular, if we 

consider only the lying posture, the frontal fall test has a False Discovery Rate (FDR) 

of 0%, and the probability of the False Negative Rate (FNR) is 6.7%, while for the 

lateral fall test the FDR is 0% and the FNR is 4.9%.The overall accuracy is 98.4% and 

98.3% respectively. Another important aspect to underline is that, for most of the cas-

es, misclassification happens during postures transitions. These results make it feasible 

the use of the adopted NN for a falling event application that is described in the next 

section.  
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6 Fall Detector Application 

Considering the results about the above experiments, a fall detector application has 

been developed. It is able to generate warning or emergency signals according to the 

NN output. The Fig. 4 outlines its flowchart. The event generator reads the outputs of 

the NN storing them with an associated timestamp. When a lying posture is detected 

and its internal state is not equal to warning, it finds the last standing detected posture 

and computes the delta time. As already stated by Fu et. al [32], if this value is less 

than 2 seconds, the system considers it as a falling event and generates a warning sig-

nal. The detector still continues to check the input and if the posture stands in lying 

position for more than 10 seconds, it sends also an emergency signal. Currently, we 

Fig. 4: The Fall Detector module reads the output of the neural 

network continuously. According to the posture and to appropriate 

threshold, it is able to send warning or emergency signals. 
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are simulating this system with a domestic robot, which is able to retrieve these 

kinds of events and react consequently. When the robot receives a warning signal from 

the falls detector, it moves to the area of interest and starts an interaction procedure 

with the person to ask him/her if an help is needed. If no answer is received it warns a 

specific person (i.e. a caregiver or relatives) through a video-call mechanism. If the 

robot receives an emergency signal, it starts soon an automatic video-call and at the 

same time it moves to the area of interest to provide as much information as possible 

to the caregiver. 

 

7 Conclusion and Future Work 

In this paper, a feed-forward artificial Neural Network to detect three target postures 

(i.e. standing, sitting and lying) by means of an RGB-D sensor is presented. The NN is 

trained with samples extracted from a public dataset recorded with the Kinect SDK, 

while the real-time tests are carried out both with the Kinect and the Asus Xtion Pro 

Live device using the Kinect proprietary skeleton tracker and the NiTE tracker respec-

tively. The input data are preprocessed and normalized in order to be depth invariant, 

improving the results of the NN all along the field of view of the sensors. The output 

of these skeleton tracker algorithms in real world application is not always stable and 

accurate, especially when the user is not standing and parts of the human body are 

occluded by the person itself or by external objects. A series of real-time experiments, 

conceived to analyze the behavior of the trained NN in challenging situations, have 

been conducted. During these tests, the NN processes continuously the output of the 

skeleton tracker also when the joints are labelled as unreliable. Our results demon-

strate its high robustness against the uncertainty of the data, achieving an accuracy of 

more than 98% for the falling tests. The NN, trained with a Kinect dataset, demon-

strates its power of generalization also when it is fed with data produced by a different 

tracker (NiTE software). Following the results of the experiments, a fall detector ap-

plication which integrates the NN is also presented. The proposed system runs in real-

time and, since it is based only on depth maps that do not use color information it 

guarantees the privacy of the person and it is able to work also in poor light condi-

tions. Further improvements can be obtained creating an ad-hoc database containing 

fallen people in a real environment. For our best knowledge, an RGB-D dataset of  this 

type is not yet available, and it will concern one of our next works. In this way, it will 

be possible to train a model using more realistic data. Future developments will also 

focus on the development of a multiple depth cameras system, which covers areas of 
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3 the home with high risk of fall, such for example bathroom and bedroom. Moreo-

ver, additional depth cameras give the possibility to estimate the user position in the 

home. 
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