
Noname manuscript No.
(will be inserted by the editor)

Virtualised e-Learning on the IRMOS Real-time Cloud

Tommaso Cucinotta · Fabio Checconi · George Kousiouris · Kleopatra
Konstanteli · Spyridon Gogouvitis · Dimosthenis Kyriazis · Theodora
Varvarigou · Alessandro Mazzetti · Zlatko Zlatev · Juri Papay ·
Michael Boniface · Sören Berger · Dominik Lamp · Thomas Voith ·
Manuel Stein

the date of receipt and acceptance should be inserted later

Abstract This paper presents the real-time virtual-

ized Cloud infrastructure that was developed in the

context of the IRMOS European Project. The paper

shows how di�erent concepts, such as real-time schedul-

ing, QoS-aware network protocols, and methodologies

for stochastic modelling and runtime provisioning, were

practically combined to provide strong performance guar-

antees to soft real-time interactive applications in a

virtualized environment.The e�ciency of the IRMOS

Cloud is demonstrated by two real interactive e-Learning

applications, an e-Learning mobile content delivery ap-

plication and a virtual world e-Learning application.

The research leading to these results has received funding from
the European Community's Seventh Framework Programme FP7
under grant agreement n.214777 IRMOS � Interactive Realtime
Multimedia Applications on Service Oriented Infrastructures.

Tommaso Cucinotta · Fabio Checconi
Real-Time Systems Laboratory, Scuola Superiore Sant'Anna,
Pisa, Italy
E-mail: {t.cucinotta,f.checconi}@sssup.it

George Kousiouris · Kleopatra Konstanteli · Spyridon Gogouvi-
tis · Dimosthenis Kyriazis · Theodora Varvarigou
National Technical University of Athens, Greece
E-mail: {gkousiou,kkonst,spyrosg,dimos,dora}@mail.ntua.gr

Alessandro Mazzeti
eXact learning solutions S.p.A., Sestri Levante, Italy
E-mail: mazzetti@planasia.eu

Zlatko Zlatev · Juri Papay · Michael Boniface
University of Southampton, IT Innovation Centre, Southampton,
UK
E-mail: {zdz,jp,mjb}@it-innovation.soton.ac.uk

Sören Berger · Dominik Lamp
University of Stuttgart, Germany
E-mail: {soeren.berger,dominik.lamp}@rus.uni-stuttgart.de

Thomas Voith · Manuel Stein
Alcatel Lucent, Stuttgart, Germany
E-mail: {thomas.voith,manuel.stein}@alcatel-lucent.com

Keywords Real-time scheduling · virtualised infras-

tructures · stochastic modelling · e-Learning.

1 Introduction

A current trend in the software engineering industry

is to rely increasingly on the distributed computing

paradigm, which is becoming mainstream and ubiqui-

tous, especially due to the high market penetration of

low-cost high-speed Internet connectivity. To this direc-

tion, more and more applications are developed in a dis-

tributed fashion to be hosted on dedicated infrastruc-

tures, such as the Clouds, that can be easily accessed

by remote users, whether they are using local worksta-

tions, laptops, palmtop devices or mobile phones.

According to the Cloud computing model, distributed

applications are developed by Software-as-a-Service (SaaS)

providers to be hosted in Cloud infrastructures. During

this process, the SaaS provider may use tools o�ered by

Platform-as-a-Service (PaaS) providers that facilitate

the design, development, and testing of their applica-

tions in a virtualized environment. The Infrastructure-

as-a-Service (IaaS) providers use virtualization tech-

niques to deploy these applications inside their Cloud

infrastructure. By using such techniques, the IaaS providers

are able to achieve a better server consolidation level by

deploying multiple virtual machines (VMs) with di�er-

ent Operating Systems (and services therein) over the

same physical resources. Furthermore, the IaaS providers

utilize virtualization techniques at network level, such

as live migration, to seamlessly migrate the VMs from

one physical host to another one, for maintenance, fault-

tolerance or load-balancing reasons.

However, as the number of VMs deployed over the

same physical resources (e.g., links and CPUs) increases,

2

the level of performance experienced by each VM be-

comes unstable. Indeed it depends heavily on the overall

workload imposed by the other VMs competing for the

shared resources, as has been observed, for example,

in Amazon EC2 [10]. Therefore for a virtualised Cloud

environment to provide proper accommodation to this

increasing number of soft real-time distributed appli-

cations, proper CPU and network scheduling technolo-

gies, coupled with proper performance modelling and

runtime provisioning techniques are needed.

In this paper we present the way these techniques

have been combined into one virtualised Cloud Com-

puting service-oriented infrastructure that has been de-

veloped in the context of the IRMOS European Project1,

and we show how these concepts have been practically

applied to provide strong performance guarantees to

each individual real-time interactive application that

is hosted on the virtualized resources of the IRMOS

Cloud. This is realised by allowing applications to be

deployed in the form of a Virtual Service Network (VSN),

a graph whose vertices represent Virtual Machine Units

(VMUs) that encapsulate the di�erent application com-

ponents, and whose edges represent the network con-

nections among them. In order for the VSN representa-

tion of the application to comply with real-time con-

straints as a whole, each VSN element is associated

with precise requirements in terms of the computing re-

sources and networking resources for each node and link

respectably. These requirements are ful�lled thanks to

the soft real-time scheduling mechanism and the QoS-

aware network protocol in place. However, the accuracy

of the estimations for the required computing and net-

working resources for each VMU may a�ect the perfor-

mance of the latter.

To this end, the values of the performance parame-

ters are obtained after a proper benchmarking and mon-

itoring process of the service components on the IR-

MOS virtualized resources that allows for an accurate

estimation of their behavior during the performance

modelling of the application. However, the lack of in-

formation (e.g. source code) across the entities makes

performance analysis a di�cult task. To overcome this

problem, ANNs were used to e�ectively model the ap-

plication's performance when their internal structure is

unknown.

The IRMOS PaaS layer consists of tools that facili-

tate the described above benchmarking, monitoring and

performance modelling processes. Furthermore, in or-

der to address cases of bad performance modelling, the

IRMOS PaaS continuously collects and evaluates mon-

itoring data at run-time to identify possible deviations

1 More information is available at: http://www.irmosproject.
eu.

between the agreed and achieved QoS levels, the source

of the problem, and possible corrective actions, such as

adjusting the allocated resources share, and recon�gu-

ration of the running application. Apart from these cor-

rective actions, the IRMOS PaaS also enable the SaaS

provider to de�ne a range of application-driven events

that may automatically trigger certain actions by the

IRMOS PaaS during the run-time of the application,

such as automatic renegotiation/recon�guration when

certain usage terms are met.

This paper is organised as follows. Relevant related

work is given in Section 2. Section 3 gives an overview of

the way IRMOS achieves performance isolation by com-

bining temporal isolation techniques at computing and

networking level with proper performance modelling.

A detailed description of the IRMOS PaaS is given in

Section 4, whereas Section 5 presents in detail the two

real e-Learning applications, a Mobile e-Learning ap-

plication and a Virtual World e-Learning application,

that were integrated in the IRMOS platform and were

used to evaluate its performance. Section 6 presents the

methods that are used for estimating the performance

behavior of the applications to be hosted in IRMOS. In

Section 7, the results gathered from a large set of exper-

iments using the Mobile e-Learning application on the

IRMOS platform under realistic settings are presented.

A use case based on the Virtual World e-Learning ap-

plication that highlights the runtime QoS provisioning

capabilities of the platform is presented in Section 8.

Finally, conclusions are drawn in Section 9.

2 Related Work

In this section, related works that have appeared in the

research literature are brie�y summarised.

The work by Lin and Dinda in [21] presents various

similarities with the one presented in this paper. First,

an EDF-based scheduling algorithm [23] for Linux is

used on the host to schedule Virtual Machines (VMs).

Furthermore, an analysis is conducted on the applica-

tion performance, investigating the e�ects of scheduling

decisions and concurrent virtual machines execution.

The analysis is very thorough and interesting, however

the major limitation of the work resides in the way

low-level scheduling is achieved. In fact, the authors

make use of a scheduler built into a proper user-space

process (VSched), which exploits POSIX real-time pri-

orities in order to achieve an EDF-based scheduling

of VMs, and SIGSTOP/SIGCONT signals for realis-

ing optionally hard resource reservations. Such an ap-

proach presents high scheduling overheads due to the

forcibly increased number of context switches, whilst

our scheduler [5] is directly built into the kernel and

3

does not introduce any additional context switch. Fur-

thermore, VSched cannot properly react to those situ-

ations in which a VM blocks or unblocks, e.g. as due to

I/O operations, something that is needed to guarantee

a proper level of temporal isolation. In order to address

this issue our scheduler uses the CBS algorithm [1].

Another very interesting work by the same authors

is [22], where the users of a virtual machine are given

the opportunity to adapt the allocated CPU through a

simple interface, based on their experience with the ap-

plication. The cost of the increase is shown, so that the

user may decide on the �y. While it is a very promis-

ing approach and would eliminate a vast number of is-

sues with regard to application QoS levels, its main

drawback is in the case of work�ow applications. The

degrading performance of a work�ow application may

be due to a bottleneck on various nodes executing a

part of it. The users will most likely be unaware of the

location of the bottleneck, especially if they are non-

experts. Instead, the work by Nathuji et al. [26] focuses

on automatic on-line adaptation of the CPU allocation

in order to keep a stable performance of VMs. However,

the framework does not treat a VM as a �black-box�,

and needs application-speci�c metrics to run the neces-

sary QoS control loop, going beyond the common IaaS

business model.

Gupta et al. investigated on the performance isola-

tion of virtual machines [13], focusing on the exploita-

tion of various scheduling policies available in the Xen

hypervisor [6]. Furthermore, Dunlap proposed [9] var-

ious enhancements to the Xen credit scheduler in or-

der to address various issues related to the temporal

isolation and fairness among the CPU share dedicated

to each VM. Instead, the IRMOS real-time scheduler is

based on the KVM2 hypervisor. Having already demon-

strated the way temporal isolation of compute and net-

work intensive VMs can be achieved using the KVM

hypervisor in our previous work [7][8], the scheduling

method proposed in this paper also addresses the mod-

elling issues that arise during the deployment of an e-

Learning application under proper QoS guarantees.

Shirazi et al. [28] proposed DynBench, a method for

benchmarking infrastructures that support distributed

real time applications under dynamic conditions. While

promising, this framework is mainly oriented towards

investigating the limits of the infrastructure and not

towards understanding the application's behaviour in

relationship to di�erent scheduler con�gurations.

In [11], Germain et al. present DIANE for Grid-

based user level scheduling. However, the focus is on

controlling the execution end time of long processing

applications, and not on real time interactive ones as

2 More information at: http://www.linux-kvm.org

done in this paper. The problem of optimum allocation

of work�ows of virtualised services on a set of physical

resources under a stochastic approach has been investi-

gated in [16], in the context of soft real-time interactive

applications.

In terms of application performance modelling in

distributed infrastructures a number of interesting works

exist. A code analysing process that allows for the sim-

ulation of system performance is described in [14]. It

models the application by a parameter-driven Condi-

tional Data Flow Graph (CDFG) and the hardware

(HW) architecture by a con�gurable HW graph. The

execution cost of each task block in the application's

CDFG is modelled by user-con�gurable parameters, which

allows for highly �exible performance estimation. The

CDFG of the application and the HW graph are used

to perform a low-level simulation of the HW activities.

While very promising, it needs the source code in or-

der to provide the CDFG. In our work, we deal with

VMs as black boxes, what allows for the deployment of

applications where the source code is not available for

con�dentiality purposes.

Another interesting work is presented by Lee et al.

in [20]. The application, whose performance must be

measured, is run under a strict reservation of resources

in order to determine if the given set of reservation pa-

rameters satis�es the time constraints for execution. If

this is not the case, then these parameters are altered

accordingly. If there is a positive surplus, the resources

are decreased and if it is negative they are increased un-

til a satisfying security margin is reached. While assur-

ing high utilisation rates, the main disadvantage of this

methodology is that this must be performed for every

individual execution with the speci�c SLA parameters

before the actual deployment.

Bekner et al. introduce the Vienna Grid Environ-

ment (VGE) [3], a framework for incorporating QoS

in Grid applications. It uses a performance model to

estimate the response time and a pricing model for de-

termining the price of a job execution. In order to de-

termine whether the client's QoS constraints can be ful-

�lled, for each QoS parameter a corresponding model

has to be in place. However, VGE does not prescribe

the actual nature of performance models. Instead VGE

uses an abstract interface for the performance models,

and it is assumed that these models become available

through analytical modelling or historical data analysis.

Although analytical performance modelling in general

requires a thorough knowledge of the application, the

method proposed in this paper allows for those parts

of the application that are not visible to the external

world to be handled as �black boxes�.

4

Other works exist that address QoS assurance via

performanc eprediction [18] and control via service se-

lection [19]. While numerous promising solutions ex-

ist to the problem of performance analysis of VMs in

presence of real-time scheduling, these are either not

focused on critical parameters that are necessary for

running real time applications on SOIs, or they lack

of a proper low-level real-time scheduling infrastruc-

ture, which is needed for supporting temporal isolation

among concurrently running VMs.

3 Performance Isolation � The IRMOS/ISONI

Way

One of the core components which is being developed in

IRMOS is the Intelligent (virtualised) Service-Oriented

Networking Infrastructure (ISONI) [29]. It acts as a

Cloud Computing3 IaaS provider for the IRMOS frame-

work and manages a set of physical computing, net-

working and storage resources available in form of mul-

tiple nodes/sites within a provider domain (see Fig. 1).

ISONI provides those virtualised resources over which

IRMOS applications are deployed. One of the key inno-

vations introduced by ISONI is its capability to ensure

guaranteed levels of resource allocation for each indi-

vidual application instance hosted within the ISONI

domain.

This is realised by allowing applications to be de-

ployed in form of a Virtual Service Network (VSN).

This is a graph whose vertices represent individual Ser-

vice Components (SCs) of an application which may

be deployed in form of Virtual Machine Units (VMUs),

and whose edges represent communications � the vir-

tual links (VLs) � among them.

In order for the system represented by a VSN to

comply with real-time constraints as a whole, QoS needs

to be supported for all the involved resources, partic-

ularly for network links, computing hosts and storage

resources. To this purpose, VSN elements are associated

with precise resource requirements, e.g., in terms of the

required computing performance (e.g. working memory,

speed, scheduling) for each node and the required net-

working performance (e.g. bandwidth, latency, jitter)

for each link. These requirements are ful�lled thanks

to the allocation and admission control logic pursued

by ISONI for instantiating VMs within the managed

set of available physical resources, and to the low-level

mechanisms shortly described in what follows (a com-

prehensive ISONI overview is out of the scope of this

paper and can be found in [29]).

3 More information at: http://www.cloudcomputing.org/.

Fig. 1 Deployment of Service Components (SCs) within Virtual
Machine Units (VMUs) over IRMOS/ISONI.

3.1 Isolation of Computing

In order to provide scheduling guarantees to individual

VMs scheduled on the same system, processor and core,

IRMOS incorporates a hybrid deadline/priority (HDP)

real-time scheduler [5] developed within the IRMOS

consortium for the Linux kernel. This scheduler pro-

vides temporal isolation among multiple possibly com-

plex software components, such as entire VMs (with the

KVM hypervisor 4, a VM is seen as a process). It uses a

variation of the Constant Bandwidth Server (CBS) al-

gorithm [1], based on Earliest Deadline First (EDF),

for ensuring that each group of processes/threads is

scheduled for Q time units (the budget) every interval

of P time units (the period). The CBS algorithm has

been extended for supporting multi-core (and multi-

processor) platforms, achieving a partitioned scheduler

where the set of tasks belonging to each group may

migrate across the associated CBS scheduler instances

running on di�erent CPUs, according to the usual multi-

processor real-time priority-based scheduling in Linux.

The scheduler exhibits an interface towards user-

space applications based on the cgroups [24] framework,

which allows for con�guration of kernel-level param-

eters by means of a �le system-based interface. This

interface has been wrapped within a Python API, in

order to make the real-time scheduling services accessi-

ble from within the IRMOS platform. The parameters

that are exposed by the scheduler are the budget Q and

the period P, as explained above.

3.2 Isolation of Networking

Tra�c isolation of independent VSNs within ISONI is

achieved by provisioning each VSN deployment with

an individual virtual address space and by policing the

4 More information at: http://www.linux-kvm.org.

5

network tra�c of each deployed virtual link. The auto-

mated deployment of policed virtual link overlays pre-

vents unwanted crosstalk among services sharing physi-

cal network links and prohibits intrusion attempts from

unnamed endpoints. The tra�c policing in place en-

sures that the network tra�c traversing the same net-

work elements causes no overload which would lead to

an unduly, uncontrolled growth of loss rate, delay and

jitter for the network connections of other VSNs. A gap-

less policing ensures that the network multiplex stages

always get a controlled load of tra�c. Therefore, band-

width policing is an essential building block of QoS as-

surance for the individual virtual links. It is important

to highlight that ISONI allows for the speci�cation of

the networking requirements in terms of common and

technology-neutral tra�c characterisation parameters,

such as the needed guaranteed average and peak band-

width, latency and jitter.

Depending on the speci�ed networking requirements,

an adequate transport network is chosen in order to

meet the application requirements (see Fig. 1). By de-

fault, non-critical tra�c without estimable performance

requirements can be deployed on Internet transit that

does not provide guarantees on the delivery and perfor-

mance of tra�c. On the other hand, soft real-time dis-

tributed applications that rely on capacity guarantees

can be mapped onto network resources for which ISONI

controls the network utilization. The stronger the soft

real-time application requirements on delay and jitter

become for a virtual link, the shorter is the allowable

network distance of the transport resource, which leaves

either the site-local network or the use of leased lines as

suitable transport resource. Since there exist transport

network resources with classi�cation, reservation and

other technology-individual mechanisms to enforce QoS

of tra�c, an ISONI transport network adaptation layer

abstracts from transport network technology-individual

QoS mechanism like Di�serv [4], Intserv [30][31] and

MPLS [27] (see Fig.1).

3.3 Performance Modelling

One of the key steps in deploying applications with

precise real-time or generally QoS guarantees within

IRMOS is the one of building a performance model

of the application behavior. This means that, given

application-speci�c con�gurable parameters (e.g., num-

ber of users, resolution of multimedia contents, etc.),

and given possible performance levels that one may

want to achieve, it should be possible to determine what

allocation is needed on the physical resources in order

to accomplish that. This is a core information needed

by the SaaS provider in order to establish an accurate

pricing policy for the customer(s).

Application performance in the cloud depends on

many complex factors such as application workload,

conditions of the network paths between the user(s)

and the server(s) and the computing workload of the

physical host(s). Computing workload factors are es-

pecially signi�cant in multi-tenant clouds where single

hosts are used to service multiple applications. How-

ever, as already described, the IRMOS real-time sched-

uler provides temporal protection, and thus the level of

interference among di�erent VMs sharing the same re-

sources becomes negligible. Therefore the applications

can be easily benchmarked using the facilities of the IR-

MOS PaaS (see Section 4) and their performance can

be modelled as a pure function of application-speci�c

parameters and allocated resources, independently of

other applications that may be hosted in the IRMOS

cloud.

4 The IRMOS PaaS

The IRMOS PaaS, namely the IRMOS Framework Ser-

vices (FS), acts as a mediator between the SaaS and the

ISONI provider. It consists of a family of services and

tools that can be used by the SaaS provider for bench-

marking, modelling and managing applications on the

service-oriented virtualized environment that is o�ered

by the ISONI provider. We can make the following cat-

egorization of the IRMOS FS:

� Engineering services: These include services for per-

forming application modelling, benchmarking and

performance modelling which are needed by the SaaS

provider to make an application ready to be incor-

porated and hosted in the underlying ISONI cloud.

� Management services: These include services that

support the management of the full life-cycle of the

service-oriented application. Therefore, the FS in-

clude services for discovery, negotiation, reservation,

enactment, monitoring and event handling during

the execution of an application inside the ISONI

virtualized environment.

Using the services above, a description of the VSN can

be created and used by the FS for the purpose of ne-

gotiating resources with the ISONI provider. This de-

scription includes the required resources for the services

that make up the application and their interconnec-

tions, including instances of some key FS responsible for

real-time critical tasks, such as enactment and monitor-

ing. Upon agreement, the ISONI provider is responsible

for delivering a �just-in-time� deployment of the dis-

tributed application on the reserved physical resources

6

according to the speci�ed QoS requirements. From then

on, the end user is able to use the application without

any knowledge of the underlying Cloud infrastructure.

4.1 Monitoring and Benchmarking

By using the FS tools, the SaaS provider is able to

model behavioral aspects of its application, which aid

in the performance modelling analysis for deriving crit-

ical information about the �uctuation of resource uti-

lization. To this direction, a number of important pa-

rameters when benchmarking the application needs to

be de�ned. These include the critical inputs of the ser-

vices that in�uence the produced workload, as well as

parameters whose values can be chosen by the customer

depending on its needs, e.g. the maximum number of

clients that are allowed to connect to an e-Learning ap-

plication.

Another factor is the QoS outputs of the services

that comprise the application. These are collected and

stored during benchmark runs by the FS monitoring

system. The latter is a suite of components for moni-

toring, evaluating possible performance anomalies, and

visualizing the performance of the application inside

the VSN, along with the levels of the resources that

are o�ered to the application by the ISONI provider.

These components acquire this information through an

extensible interface that is used to execute application-

speci�c external programs to collect high-level data about

the performance of the applications. Furthermore, the

FS monitoring system establishes communication with

ISONI's monitoring system for retrieving low-level in-

formation about computing and networking resources

of the VSN. More information about the design and

implementation of the FS monitoring system can be

found in [15].

The monitoring information is aggregated and stored

in the PaaS infrastructure, and is used both for bench-

marking and performance modelling of an application

to be deployed in the ISONI. Through this exchange of

information, the FS are able to benchmark the applica-

tion and generate the rules needed for the mapping of

high level parameters (used by the SaaS provider for de-

scribing the QoS levels), to low-level parameters (used

by the ISONI provider for the deployment of the VSN).

These rules correlate the con�gurable workload inputs,

the QoS outputs and the hardware assignments of the

benchmark runs, and are used in conjunction with an-

alytical approaches to generate an overall end-to-end

performance model for the application. This model en-

ables various trade-o�s and con�gurations in order to

select the most suitable combination of resources at the

lowest cost, while guaranteeing the QoS levels needed

by the SaaS (see Section 3.3).

4.2 Run-time QoS Provisioning

In a dynamic environment such as the Cloud, the num-

ber of the resources and their availability can change

frequently. For example, new resources (compute servers,

�le servers, etc) may be added, old ones may be re-

moved or become temporarily unavailable for mainte-

nance purposes, etc. Furthermore, there is always the

chance of bad performance modelling that may result in

deviations between the agreed and achieved QoS levels

at application run-time.

For these reasons, there is a need of continuous ob-

servation of the resources and the application's perfor-

mance for purposes such as �xing problems and track-

ing down their origin. Because the business entities be-

hind the SaaS, PaaS and IaaS, often have con�icting

interests and di�erent mechanisms and levels of fault

tolerance, assessment on the source of the problem can

be a signi�cant undertaking. To this end, monitoring

data are collected during run-time and are being eval-

uated by the FS monitoring system to identify possible

deviations, the source of the problem, and corrective

actions that could be undertaken. Typical corrective

actions include adjustments of the resource allocation

to the application resource utilization, recon�guration

of a running steering service of the application, notify-

ing the end user and the SaaS provider when certain

events that a�ect the availability of the application oc-

cur, among others [12].

Apart from these corrective actions, the FS also en-

able the SaaS provider to de�ne a range of application-

driven events that may automatically trigger certain

actions by the FS during the run-time of the appli-

cation. For example, it may be desirable for the SaaS

provider that the FS automatically launch a renegotia-

tion/recon�guration process when certain usage terms

are reached. Such scenarios can be found in a variety

of soft real-time applications. In the speci�c case of a

virtual world application such as the one described in

Section 5.2, the number of users could be modelled into

a trigger for launching automatic renegotiation and re-

con�guration of the application by the FS (see Section

8).

5 E-Learning Applications

The IRMOS platform was especially designed to pro-

vide strong performance guarantees to distributed, in-

teractive, soft real-time applications. In order to demon-

7

Fig. 2 Components of the Mobile Outdoor e-Learning applica-
tion.

strate the IRMOS platform functionality, the two inter-

active applications listed below were selected because of

the soft real-time requirements that they impose on the

Cloud infrastructure hosting them:

� Mobile Outdoor e-Learning, which is a mobile ap-

plication, applied to outdoor usage, and

� Virtual World e-Learning, an ubiquitous application

for enabling cooperative e-Learning.

Both applications focus on e-Learning and were o�ered

as SaaS, and they were executed on the IRMOS IaaS

layer (ISONI) after being modelled using the tools of

the IRMOS PaaS layer (IRMOS FS).

5.1 Mobile Outdoor e-Learning

We focus on an e-Learning mobile instant content de-

livery application, developed to take advantage of a

service-oriented architecture paradigm, in which real-

time requirements play an important role. In this sce-

nario a user can receive on a mobile phone some e-

Learning contents relevant to the current geographi-

cal position (e.g., when approaching historical monu-

ments). It consists of a Tomcat5-based e-Learning server

that exploits a MySQL database for content manage-

ment (see Fig. 3). The application is able to receive

queries with GPS data from multiple clients, search the

database and respond with e-Learning contents corre-

sponding to the provided GPS coordinates (see Fig. 2).

The application server is provided as a Web Applica-

tion Archive (war) �le, installed on Tomcat, and made

available as a Virtual Machine image within the IRMOS

infrastructure. Using ISONI, each instance of the appli-

cation can be assigned precise computing and network-

ing resources to ensure that the high-level requirements

de�ned within an application provider's Service-Level

Agreement (SLA) can be met with an agreed level of

reliability.

The timing requirements of the application are mainly

related to the response times of individual requests sub-

5 More information at: http://tomcat.apache.org

Fig. 3 Software architecture of the Mobile Outdoor e-Learning
application.

mitted by the multitude of users.The response times

are gathered by `ascmon.jar'and communicated to the

FS by the `monitor' script (see Fig. 3). As discussed

in Section 3.3, thanks to the deployment within IR-

MOS, these response times depend merely on high-level

application-speci�c parameters, i.e., on the number of

concurrent users querying the same e-Learning instance

and the size of the downloaded contents.

5.1.1 Application Client Simulation Description

In order to investigate application performance, we de-

veloped a multi-user client simulator. This is capable of

simulating the random movements of a certain num-

ber of users walking around given GPS coordinates.

Then, the simulator mimics the behaviour of the real

mobile client associated with the application: whenever

the monitored GPS coordinates move su�ciently away

from the position of the last queried content, a new

request is submitted to the server with the new user

position. The number of users and a few parameters

governing how each emulated user exactly moves (e.g.,

the user speed) determine the exact pattern of requests

submitted to the server, thus strongly impacting on the

imposed server load.

5.2 Virtual World e-Learning

In the Virtual World e-Learning application we consider

remote users interacting through avatars in a virtual

world system. The Virtual World reproduces a museum,

where works of art are associated to e-Learning lessons

(see Fig. 4). The avatars can move independently from

each other and can communicate through a chat or a

voice line. When an avatar comes close to a work of art,

he or she can invite the other avatars, through chat, to

download the corresponding lesson . Each user can play

the lesson by themselves, while communicating via chat.

8

Fig. 4 The Virtual World e-Learning application's GUI

This collaborative virtual world application is com-

posed by two main elements: the application service

component (ASC), dealing with user's communication,

and the application client component (ACC or World

Player), dealing with the graphic rendering. The ASC

builds on top of an Open Wonderland server with mod-

i�ed modules for IRMOS adaptation and a MySQL

database for managing performance data. A detailed

architecture of the Virtual world application is shown

in Fig. 5, in which the parts that have been created or

adapted to the IRMOS speci�cations, such as modules

for con�guration and monitoring, are marked with yel-

low color. It should also be noted that the Virtual World

application provides a multi-avatar simulator for bench-

marking purposes. This tool allows the simulation of a

large number of users, which are moving continuously

to generate the maximum amount of tra�c between the

clients and the server.

Compared to the Mobile Outdoor e-Learning ap-

plication, the Virtual World application is more real-

time intensive and thus requires a greater number of

high level performance parameters such as the avatar

speed, the chatting quality, etc. The Virtual World ASC

must satisfy real-time constraints (e.g. response time

and processing time), in order to support realistically

�uid movement of the avatars. The performance of this

component strongly depends on the number of con-

nected users, because the quantity of dispatched mes-

sages increases polynomially with the number of avatars.

6 Performance Estimation

In order to estimate what QoS level can be achieved

using di�erent resource con�gurations, we use perfor-

mance modelling techniques. Many times, the applica-

tion internal software structure may be too complex to

be modelled. Or, it may be unknown because develop-

ers are reluctant to share detailed information about

their application internals, for con�dentiality purposes.

Fig. 5 Software architecture of the Virtual World e-Learning
application.

Fig. 6 Modelled elements of the e-Learning application.

Fig. 7 Stochastic performance model: t_wan_in and
t_wan_out are modelled as exponential distributions, the
other delays as Erlang ones.

In other cases, the use of external libraries or compo-

nents whose internals are unknown makes it impossible

to build an exact model. So, from a modelling point of

view, it is critical to be able to identify the expected

QoS output using a black-box approach.

Therefore, we use a combination of a stochastic model

for predicting statistics over the expected run-time net-

working performance [2], and an Arti�cial Neural Net-

work (ANN) for identifying the dependency of a com-

ponent QoS from factors like application-level parame-

ters (e.g., number of clients) or scheduling parameters

(e.g., allocated budget and period). These two models,

put together, allow for a precise estimate of the overall

end-to-end QoS experienced by end-users.

6.1 Stochastic Performance Model

We built a Matlab model for simulating, by means of

Monte-Carlo type discrete event simulation, a system

composed of (see Figure 6): a request generator (mod-

elling the end users), a Public Wide Area Network (WAN),

a Private Network internal to an ISONI domain and

the VMU hosting the actual Application Service Com-

9

ponent (ASC). In order to account for interactivity, we

modelled both paths from the user to the ASC and the

other way round. The model uses a mix of exponen-

tial and Erlang probability distributions (see Figure 7)

for modelling the latencies of application requests while

traversing the involved networks, and it may also sim-

ulate packet loss due to bu�er saturation in the various

networks (particularly useful for UDP-based communi-

cations).

The individual parameters of the model need to be

tuned by resorting to proper benchmarking techniques.

The behaviour of the latencies inside the ISONI inter-

nal network may be accurately estimated thanks to the

ISONI networking isolation, and they depend merely

on the requested network-level QoS parameters speci-

�ed in the VSN, and the expected application request

pattern. On the other hand, parameters relative to the

QoS-unaware WAN must be estimated based on avail-

able statistics on the overall network workload fore-

seen at the time of usage of the application. However,

a widespread usage of ISONI would reduce the need

for traversing QoS-unaware networks. The behaviour of

the ASC was also estimated as an Erlang distribution.

However, due to the non-trivial dependency of the per-

formance from application-level parameters, in addition

to the resource allocation ones, the Erlang parameters

were tuned by resorting to an ANN model (see below).

The described simulator is capable of providing, for

each con�guration, the full probability distribution of

the end-to-end response-times, as well as simpler statis-

tics that may be easily leveraged at design-time, such

as the average or a given percentile of the distribution.

For example, this allows for �nding the con�guration

parameters granting a given end-to-end response-time

with a given probability.

6.2 Arti�cial Neural Networks in the Model

As already described in Section 6, the ASC part of Fig-

ure 7 is modelled through Erlang distributions. How-

ever, the characteristics (mean value and standard de-

viation) of these distributions are a�ected by applica-

tion level parameters (such as the number of users)

and hardware level parameters (such as the choice of

scheduling periods or CPU percentages). Thus, a way

of identifying and predicting these variations in the dis-

tribution characteristics must be inserted, for each dif-

ferent execution of the service instance on the Cloud

infrastructure. We have chosen ANNs due to the fact

that they can model this relationship (both linearly and

non-linearly) and interpolate it for cases that have not

been met before. Furthermore, they represent a black

box approach, thus they do not need information re-

garding the internal structure of the software compo-

nent. This structure (e.g. source code) is not available

as seen in the introduction.

An ANN model is used for modelling the time the

server needs in order to retrieve the results from the in-

ternal database. The factors that are taken under con-

sideration are mainly the number of connected clients

and the scheduling decisions (Q and P parameters). Fol-

lowing the black-box approach, the use of ANNs allows

for an easy addition of further inputs (or outputs) as

needed (e.g., hardware-speci�c parameters like the re-

served memory or processor speed), once the necessary

training data sets are collected.

The investigation of the e�ect of parameters like

the allocated CPU time Q over a period P is critical

due to its in�uence in the QoS output. The choice of

P is mainly driven by the time granularity for the al-

location needed by the application. For example, for

interactive applications, with fast response times and

relatively light computations, the granularity must be

kept small (in the order of 10�100 ms). For scienti�c

applications performing long and heavy computations,

large periods will result in lower overheads (500 ms and

beyond).

The outputs of the ANN have been chosen to rep-

resent the average and the standard deviation of the

expected response times, as due to the con�guration

represented at the ANN inputs. These outputs are eas-

ily mapped to the Erlang parameters needed for mod-

elling the ASC temporal behaviour in the general model

in Figure 7. The ANN model structure is described in

V.C., while the data gathered as training set is pre-

sented in VI.B.

6.3 ANN Structure and Design

In order to implement the ANN, a standard form of net-

work was selected. The type of operation that was de-

sired was function approximation, in order to determine

the e�ect of the input parameters (number of clients,

Q, P) on the predicted output (mean value of inner

server response time and standard deviation). The col-

lection of the data set was performed with the process

described in [17]. Two more inputs were included, CPU

speed and VM memory size, but the main focus was on

the initial 3 parameters. The resulting network for the

mean time prediction was a 3-layer, feed-forward, back

propagation network, created through the GNU Octave

tool6. It was trained with the Octave 'trainlm' func-

6 More information is available at:
http://www.gnu.org/software/octave/.

10

Table 1 Structure of Mean Response Time and Standard Devi-
ation Prediction ANN.

Layer Transfer Function
Size

(Neurons)

Mean response

time

Standard

deviation

Input Tansig Logsig 5

Hidden Tansig Logsig 2

Output Linear (Purelin) Linear (Purelin) 1

Mean Absolute Error

Mean response time 2.51%

Standard deviation 2.75%

tion, using the Levenberg-Marquardt algorithm [25].

The structure of the network is shown in Table 1. All

the inputs and outputs are normalized in the (-1,1) in-

terval. A standard form of function approximation net-

work was used, with one hidden layer and Tansig trans-

fer functions for the input and hidden layer and linear

transfer function for the output layer.

For the standard deviation, a similar process was

followed (but with the Logsig transfer function) and

the resulting network also appears in Table 1.

7 Experimental Results

This section presents experimental results that validate

the presented approach, in terms of achieving temporal

isolation and performance estimation accuracy of the

ANN model.

First, the assumptions of temporal isolation over

which the modelling technique relies are validated. To

this direction.....

Then, some experimental data used for training the

ANN models is described, and �nally the accuracy of

the ANN-based estimations is discussed. For the ANN

section, the main motivation was to validate the ac-

curacy of the predicted expected outputs in terms of

mean response time and standard deviation. Further-

more, in order to validate why ANNs were used, graphs

depicting the variation of the metrics with regard to

scheduling parameters are used to demonstrate the ef-

fect of the scheduling parameters. Di�erent scheduling

periods may have an e�ect on some of the metrics like

standard deviation. Furthermore, the results highlight

the di�erence in the distributions for varying number

of users, which is a high level application parameter.

This di�erence is predicted by the ANNs for cases that

may or may not been included in the data set, through

interpolation.

All experiments were conducted using instances of

the Mobile Outdoor e-Learning application that has

been presented in detail in Section 5.1.

7.1 Temporal Isolation by Real-Time Scheduling

We ran an experiment for the purpose of validating our

approach to the temporal isolation of VMs concurrently

running on the same CPU based on real-time schedul-

ing. To this purpose, we considered two instances of

the e-Learning application deployed on the same host

and physical core. Two instances of the Mobile Outdoor

e-Learning multi-user simulator, deployed on a second

machine in an isolated networking context, were used

to simulate the requests from 10 di�erent users. We

collected the response-times experienced by the two

multi-user simulator instances under various conditions

in terms of the scheduling parameters con�gured for the

two VMs on the server host.

In Figure 8 we report the average response-time of

the �rst VM as a function of the CPU share (on the x-

axis) assigned to it, at varying CPU shares assigned to

the second competing VM (corresponding to the various

curves). Under the ideal conditions of perfect temporal

isolation, we would like the second competing VM work-

load, ranging from completely idle (continuous curve)

to having a 50% of load on the system (dashed curve

tagged with little triangles), to have no impact at all on

the performance of the �rst VM. This would correspond

to having all the curves perfectly superimposed.

As it can be seen from the experimental results, the

soft real-time scheduler achieves a nearly good approx-

imation of such a condition, realising a set of curves

which are quite close to each other, where the increase

of computing resources granted to the second VM cor-

responds to a slight decrease of the performance of the

�rst VM. This may be mainly attributed to an increased

contention on the cache, and constitutes a minimum of

interference which cannot be removed. Other factors of

interference which are not trivial to keep under control

are due to shared resources on the host OS, like the net-

working stack and interrupts. For example, see [8] for a

discussion of the interference due to network-intensive

VMs, and the extent to which it can be controlled by

real-time scheduling of the CPU.

7.2 Experimental Performance of the e-Learning

Application

In this section, experimental performance data gath-

ered for various con�gurations of both application-level

and resource allocation parameters is presented. The

range of values that were altered for the con�guration

parameters are:

� Number of Users: 30-150

� Q/P (CPU share) : 20-100% with a step of 20

11

 0

 50

 100

 150

 200

 250

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

V
M

U
1

A
ve

ra
ge

 R
es

po
ns

e-
T

im
e

VMU1 CPU Share

VM2 Idle
VM2 CPU Share: 10%
VM2 CPU Share: 20%
VM2 CPU Share: 30%
VM2 CPU Share: 40%
VM2 CPU Share: 50%

Fig. 8 Average response-time of the �rst VM as a function of
the CPU share (on the x-axis) assigned to it, at varying CPU
shares assigned to the second competing VM (corresponding to
the various curves).

Fig. 9 Standard deviation of response time with regard to chang-
ing P for 90 users.

Fig. 10 Mean response time with regard to changing P for 70
users and 40% CPU share.

� P: 10000�560000 (µsec) with a step of 50000

For each con�guration, about 800 response times were

collected, and the corresponding average and standard

deviation �gures computed. An indicative set of these

measurements is discussed below.

The e�ect of changing granularity on the deviation

of the response time values can be observed in Figure 9.

This is expected since with high values of P, the service

has long active and inactive periods. If the requests fall

in the active interval, they will be satis�ed quickly but if

they fall in the inactive one then they will have to wait

until the next active period begins. This e�ect decreases

Fig. 11 Comparison of normalised probability distribution of
delay times for di�erent number of users.

at increasing allocated CPU shares, since then the CPU

is almost dedicated to the application and whenever a

request arrives, it is served. The mean response time,

as shown in Figure 10, seems not to be a�ected greatly

given that the percentage of CPU assigned is the same.

In Figure 11, the comparison of the normalised prob-

ability distribution of delay times is shown for two dif-

ferent numbers of users (30 and 50 users). The di�er-

ence especially in the maximum values of the distribu-

tions depicts the e�ect of the application workload in

the response times. Figure 12 shows the cumulative dis-

tribution function and the con�dence intervals for the

same combination of number of users, given that the

CPU share allocated to the VMU remains the same.

In Figure 13 all the di�erent con�gurations are shown

for two di�erent numbers of users. In this case, each

group of columns (the �rst high one followed by 4 lower

ones) represents one period con�guration (P) for di�er-

ent CPU share percentages. The upper line is for low

utilization. While the utilization increases the response

time decreases. In the horizontal axis, the di�erent P

con�gurations represent increasing period values.

From these measurements it seems interesting that

the best granularity (P) should depend also on the per-

centage of the CPU assigned to the application. In this

occasion, for low percentages of utilization it is best

to assign values near the middle of the investigated in-

terval (10000-560000 us), as is depicted in Figure 13.

For higher percentages of utilisation, lower values of P

are more bene�cial for the response times of the ap-

plication. Furthermore, Figure 13 highlights the e�ect

of the increased CPU share allocation to the response

time.

7.3 Prediction accuracy of the ANN Model

For the estimation of the ANN accuracy, about 30%

(87 test executions) of the data set was used only for

validation. After the training of the model with the 70%

of the test cases, we applied the according inputs of

12

Fig. 12 Cumulative distribution function and con�dence inter-
val for di�erent number of users.

Fig. 13 Di�erent P's and CPU shares for 110 users.

Fig. 14 Accuracy of the ANN for Mean Response Time Predic-
tion.

the validation cases and compared the estimated output

with the observed one. The overall accuracy was around

2.5% and the error of the network for each individual

test case appears in Figure 14. For each validation case,

the network error appears in Figure 15.

The accuracy of the ANN models is evident from

these measurements, giving su�cient reliability for this

part of the overall model. The maximum deviation from

the validation cases is very satisfying and so is the mean

error for all the experiments. Furthermore, the predic-

tions are not biased, a factor that is critical for the

merging of di�erent modelling approaches like in this

paper.

Fig. 15 Accuracy of the ANN for Standard Deviation Predic-
tion.

8 The Virtual World Use Case

Within the IRMOS context, the Virtual World e-Learning

application, as presented in Section 5.2, was used to

promote collaborative education through an immersive

experience. In more detail, several people (learners, teach-

ers, tutors, organizers, etc.) were allowed to meet in

an interactive three-dimensional virtual world environ-

ment and interact with 3D-objects that were linked to

e-Learning contents (Fig. 4).

This particular use case was used to demonstrate

the run-time QoS adaption capabilities behind the IR-

MOS platform as described in Section 4.2. The nego-

tiation of the Virtual World application is based on a

�pay-as-you-reserve� model, i.e. the cost �uctuates ac-

cording to the amount of resources that are reserved

to achieve the requested performance which heavily de-

pends on maximum number of avatars. Therefore in or-

der to maintain the given QoS level, any extra requests

for entrance should be rejected when the number of

avatars already in the Virtual World is maximum.

However, the IRMOS ISONI is able to support the

seamless extension of the resources, by either extending

the reserved CPU, memory, network bandwidth share

of the reserved resources or by performing other ac-

tions such as live-migrating the application onto other

physical resources. Furthermore, the IRMOS FS Moni-

toring system, as already described in Section 4, is con-

tinuously collecting high-level monitoring data during

run-time, such as the number of logged avatars and re-

quests for entrance, and can combine them into rules

that may trigger certain actions. To this end, the IR-

MOS customer is given the ability to satisfy a demand

for extra resources at run-time, in order to maintain

the overall performance without interruption. This has

been concretized by a structured negotiation in which

the customer can enable the IRMOS FS to automati-

cally re-negotiate an extension of the resources by pre-

13

Fig. 16 Negotiation of automatic resource extension.

agreeing to pay an additional cost. Figure. 16 shows the

application negotiation in which 5 additional avatars

are foreseen.

At the end of the negotiation, the resources for the

basic number of avatars (i.e. 10 avatars) are reserved

and the application is deployed. Thus up to 10 avatars

can enter the Virtual World with the guarantee that

the requested QoS level is respected. With 10 already

logged avatars, any request after that is being blocked,

while the IRMOS FS are re-negotiating with the ISONI

provider for resources that are able to sustain the 15

avatars under the same QoS level. In the background,

the allocated resources (CPU share, memory, network

bandwidth) are being increased according to the out-

put of the performance model for the new maximum

number of avatars. At the end of the re-negotiation,

a VSN able to support additional users (15 avatars in

total) is instantiated and the Virtual World applica-

tion is recon�gured to accept 15 avatars. The blocked

avatar requesting access is now allowed to enter, and

the customer is charged with the agreed additional fee.

The entire process of renegotiation and recon�guration,

including the addition of the blocked avatar in the Vir-

tual World is complete in less than a minute (≈ 50
secs) with the monitoring polling rate set to 10 secs for

keeping the monitoring overhead absolutely negligible.

However, if appropriate, one can increase the monitor-

ing rate, to achieve a more responsive infrastructure

at the cost of higher monitoring overheads imposed on

computing and networking resources.

Figure 17 is an illustrative example of the renego-

tiation process showing also the XML-based syntax of

the gathered monitoring data (see yellow box labeled

'monitor script' in Fig. 5). The monitoring parameters

Fig. 17 Illustrative example of the QoS adaption process using
snapshots (enclosed in a box). Moving left to right: at the �rst
snapshot the renegotiation is triggered, at the second snapshot
the reserved CPU share is increased, and at the last snapshot the
Virtual World application is recon�gured to accept 15 avatars.
The blocked avatars are allowed to log-in afterwards.

have 10 values, with each of them collected 10 seconds

after its previous one.

9 Conclusions

In this work, we discussed how two real e-Learning

distributed applications have been deployed with pre-

dictable and stable QoS levels within the IRMOS plat-

form. We showed how we �anked the temporal isolation

mechanisms available within the platform with proper

performance analysis, modelling and benchmarking tech-

niques, in order to investigate the performance levels

achievable by the application under the various possi-

ble con�gurations. Furthermore, we demonstrated the

run-time QoS adaption capabilities behind the IRMOS

platform and the way they build proper monitoring and

evaluation of application performance on top. In the

future, we plan to leverage the black-box approach for

performance estimation, so as to apply the described

technique to other applications that are already being

adapted for deployment within IRMOS, such as dis-

tributed editing of professional-quality video and a vir-

tual reality application. Also, we plan to extend the

used performance models by accounting for possibly

heterogeneous hardware within an ISONI domain. Fi-

nally, we plan to extensively compare the predicted

performance and the actually realised one, in presence

of a variety of other deployed workload types, from

compute-intensive to network-intensive ones.

References

1. L. Abeni and G. Buttazzo. Integrating Multimedia Appli-
cations in Hard Real-Time Systems. In Proceedings of the
IEEE Real-Time Systems Symposium, Madrid, Spain, 1998.

14

2. M. Addis, Z. Zlatev, W. Mitchell, and M. Boniface. Mod-
elling Interactive Real-time Applications on Service Oriented
Infrastructures. In Proceedings of NEM Summit - Towards
Future Media Internet, September 2009.

3. S. Benkner and G. Engelbrecht. A Generic QoS Infrastruc-
ture for Grid Web Services. In Proceedings of the Inter-
national Conference on Internet and Web Applications and
Services, Guadeloupe, French Caribbean, February 2006.

4. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. RFC2475. An Architecture for Di�erentiated
Service, December 1998.

5. F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari. Hi-
erarchical Multiprocessor CPU Reservations for the Linux
Kernel. In Proceedings of the 5th International Workshop
on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), Dublin, Ireland, June 2009.

6. L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of
the three CPU schedulers in Xen. SIGMETRICS Perform.
Eval. Rev., 35:42�51, September 2007.

7. T. Cucinotta, G. Anastasi, and L. Abeni. Respecting tempo-
ral constraints in virtualised services. In Proceedings of the
2nd IEEE International Workshop on Real-Time Service-
Oriented Architecture and Applications (RTSOAA), Seattle,
Washington, July 2009.

8. T. Cucinotta, D. Giani, D. Faggioli, and F. Checconi. Pro-
viding Performance Guarantees to Virtual Machines using
Real-Time Scheduling. In Proceedings of the 5th Workshop
on Virtualization and High-Performance Cloud Computing
(VHPC), Ischia (Naples), Italy, August 2010.

9. G. Dunlap. Scheduler development update. Xen Summit
Asia, Shanghai, 2009.

10. D. Durkee. Why Cloud Computing Will Never Be Free.
Queue, 8:20:20�20:29.

11. C. Germain-Renaud, C. Loomis, J. Moscicki, and R. Texier.
Scheduling for Responsive Grids. Journal of Grid Comput-
ing, 6:15�27, 2008. 10.1007/s10723-007-9086-4.

12. S. Gogouvitis, K. Konstanteli, S. Waldschmidt,
G. Kousiouris, G. Katsaros, A. Menychtas, D. Kyriazis, and
T. Varvarigou. Work�ow management for soft real-time
interactive applications in virtualized environments. Future
Generation Computer Systems, In Press:�, 2011.

13. D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. En-
forcing performance isolation across virtual machines in Xen.
In Proceedings of the ACM/IFIP/USENIX International
Conference on Middleware, pages 342�362, New York,USA,
2006. Springer-Verlag New York, Inc.

14. Z. He, C. Peng, and A. Mok. A Performance Estimation
Tool for Video Applications. In Proceedings of the 12th IEEE
Real-Time and Embedded Technology and Applications Sym-
posium, pages 267�276, Washington, DC, USA, 2006. IEEE
Computer Society.

15. G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis,
and T. A. Varvarigou. A service oriented monitoring frame-
work for soft real-time applications. In SOCA'10, pages 1�4,
2010.

16. K. Konstanteli, T. Cucinotta, and T. Varvarigou. Optimum
allocation of distributed service work�ows with probabilis-
tic real-time guarantees. Service Oriented Computing and
Applications., 4:68:229�68:243, December 2010.

17. G. Kousiouris, F. Checconi, A. Mazzetti, Z. Zlatev, J. Papay,
T. Voith, and D. Kyriazis. Distributed interactive real-time
multimedia applications: A sampling and analysis frame-
work. In Proceedings of the 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS), Brussels, Belgium, July 2010.

18. G. Kousiouris, D. Kyriazis, K. Konstanteli, S. Gogouvitis,
G. Katsaros, and T. Varvarigou. A Service-Oriented Frame-
work for GNUOctave-Based Performance Prediction. In Pro-
ceedings of the IEEE International Conference on Services
Computing (SCC), Miami, Florida, August 2010.

19. D. Kyriazis, K. Tserpes, A. Menychtas, I. Sarantidis, and
T. Varvarigou. Service selection and work�ow mapping for
Grids: an approach exploiting quality-of-service information.
Concurr. Comput. : Pract. Exper., 21:739�766, April 2009.

20. J. W. Lee and K. Asanovic. METERG: Measurement-
Based End-to-End Performance Estimation Technique in
QoS-Capable Multiprocessors. In Proceedings of the 12th
IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), 2006.

21. B. Lin and P. Dinda. Vsched: Mixing batch and interactive
virtual machines using periodic real-time scheduling. In Pro-
ceedings of the IEEE/ACM Conference on Supercomputing,
November 2005.

22. B. Lin and P. Dinda. Towards Scheduling Virtual Machines
Based On Direct User Input. In Proceedings of the 2nd In-
ternational Workshop on Virtualization Technology in Dis-
tributed Computing, Washington, DC, November 2006.

23. C. L. Liu and James W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environment. J.
ACM, 20:46�61, January 1973.

24. P. Menage. CGROUPS, 2008. Available on-line at:
http://www.mjmwired.net/kernel/Documentation/cgroups.txt.

25. J. More. The Levenberg-Marquardt algorithm: Implementa-
tion and theory. In Numerical Analysis, volume 630 of Lec-
ture Notes in Mathematics, pages 105�116. Springer Berlin
/ Heidelberg, 1978. 10.1007/BFb0067700.

26. R. Nathuji, A. Kansal, and A. Gha�arkhah. Q-Clouds:
Managing Performance Interference E�ects for QoS-Aware
Clouds. In Proceedings of the 5th European Conference on
Computer systems (EuroSys), Paris, France, April 2010.

27. E. Rosen, A. Viswanathan, and R. Callon. RFC3031, Multi-
protocol Label Switching Architecture. IETF, January 2001.

28. B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B. Yana-
mula, R. Brucks, and E. Huh. Dynbench: A dynamic bench-
mark suite for distributed real-time systems. In Proceedings
of IPDPS Workshop on Embedded HPC Systems and Appli-
cations, S. Juan, Puerto Rico, 1999.

29. T. Voith, M. Kessler, K. Oberle, D. Lamp, A. Cuevas,
P. Mandic, and A. Reifert. ISONI Whitepaper, September
2008.

30. J. Wroclawski. RFC2210, The Use of RSVP with IETF In-
tegrated Services. IETF, September 1997.

31. J. Wroclawski. RFC2211, Speci�cation of the Controlled
Load Quality of Service. IETF, September 1997.

