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The paper presents a new framework to assess firm level heterogeneity
and to study the rate and direction of technical change. Building on the
analysis of revealed short-run production functions by Hildenbrand
(1981), we propose the (normalized) volume of the zonotope composed
by vectors-firms as indicator of inter-firm heterogeneity. Moreover, the
angles that the zonotope�s main diagonal form with the axes provide a
measure of the rates and directions of productivity change. The
proposed framework also accounts for n-inputs and m-outputs and,
crucially, the measures of heterogeneity and technical change do not
require many of the standard assumptions from production theory.

I. Introduction

In recent years an extremely robust evidence regarding firm– and plant–
level longitudinal microdata has highlighted striking and persistent hetero-
geneity across firms operating in the same industry. A large body of
research from different sectors in different countries (cf. Baily et al. 1992,
Baldwin and Rafiquzzaman 1995, Bartelsman and Doms 2000, Disney
et al. 2003, Dosi 2007, Syverson 2011, among many others) documents the
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emergence of the following �stylized facts�: first, wide asymmetries in pro-
ductivity across firms; second, significant heterogeneity in relative input
intensities even in presence of the same relative input prices; third, high
intertemporal persistence in the above properties. Fourth, such heterogene-
ity is maintained also when increasing the level of disaggregation, thus
plausibly reducing the diversity across firms� output.

The latter property has been vividly summarized by Griliches and
Mairesse (1999): �We [. . .] thought that one could reduce heterogeneity by
going down from general mixtures as “total manufacturing” to something
more coherent, such as “petroleum refining” or “the manufacture of cement.”
But something like Mandelbrot�s fractal phenomenon seems to be at work
here also: the observed variability-heterogeneity does not really decline as we
cut our data finer and finer. There is a sense in which different bakeries are
just as much different from each others as the steel industry is from the
machinery industry.�

The bottom line is that firms operating in the same industry display a
large and persistent degree of technological heterogeneity while there does
not seem to be any clear sign that either the diffusion of information on
different technologies, or the working of the competitive mechanism bring
about any substantial reduction of such a heterogeneity, even when involv-
ing massive differences in efficiencies, as most incumbent theories would
predict.

This evidence poses serious challenges not only to theory of competition
and market selection, but also to any theoretical or empirical analysis
which relies upon some notion of industry or sector defined as a set of pro-
duction units producing under rather similar input prices with equally simi-
lar technologies, and the related notion of �the technology� of an industry
represented by means of a sectoral production function. Indeed, the aggre-
gation conditions needed to yield the canonic production functions build-
ing from the technologies of micro entities are extremely demanding,
basically involving the identity of the latter up to a constant multiplier (cf.
Fisher 1965 and Hulten 2001).

Note that these problems do not only concern the neoclassical produc-
tion function, whose well known properties may either not fit empirical
data or fit only spuriously,1 but also non neoclassical representations of
production at the industry level. If input-output coefficients �a la Leontief
(1986) are averages over distributions with high standard deviations and
high skewness, average input coefficients may not provide a meaningful
representation of the technology of that industry. Moreover, one cannot

1 Shaikh (1974), for instance, shows that Cobb-Douglas production functions with constant
returns to scale, neutral technological change and marginal products equal to factor rewards
in presence of constant distributional shares of labour and capital (wages and profits) tend to
yield a good fit to the data for purely algebraic reasons.
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take for granted that changes of such coefficients can be interpreted as
indicators of productivity change as they may be just caused by some
changes in the distribution of production among heterogeneous units, char-
acterized by unchanged technologies.

How does one then account for the actual technology - or, better, the dif-
ferent techniques - in such industry? Hildenbrand (1981) suggests a direct
and agnostic approach which instead of estimating some aggregate produc-
tion function, offers a representation of the empirical production possibil-
ity set of an industry in the short run based on actual microdata. Each
production unit is represented as a point in the input-output space whose
coordinates are input requirements and output levels at full capacity.
Under the sole assumptions of divisibility and additivity of production
processes,2 the production possibility set is represented geometrically by
the space formed by the finite sum of all the line segments linking the ori-
gin and the points representing each production unit, called a zonotope (see
below).3 Hildenbrand then derives the actual �production function� (one
should more accurately say “feasible” production function) and shows that
�short-run efficient production functions do not enjoy the well-known proper-
ties which are frequently assumed in production theory. For example, constant
returns to scale never prevail, the production functions are never homothetic,
and the elasticities of substitution are never constant. On the other hand, the
competitive factor demand and product supply functions [. . .] will always
have definite comparative static properties which cannot be derived from the
standard theory of production� (Hildenbrand, 1981, p. 1095).

In this paper we move a step forward and show that by further exploit-
ing the properties of zonotopes it is possible to obtain rigorous measures
of heterogeneity and productivity change without imposing on data a
model like that implied by standard production functions. In particular, we
develop a measure of productivity change that takes into consideration the
entire observed production possibility set derived from observed heterogene-
ous production units, instead of considering only an efficient frontier. In
that, as we shall discuss below, our representation of industry-level dynam-
ics bear some complementarities to as well as differences from non-
parametric estimates of (moving) efficiency frontiers (cf. Farrell 1957, F€are
et al. 1994, Simar and Zelenyuk 2011).

The promise of the methodology is illustrated in this work with reference
to the evidence on micro data of Italian industries and the dynamics of
their distributions.

The rest of the work is organized as follows. We start with an empirical
illustration of the general point (Section II). Next, Section III builds on the

2 Already not entirely innocent assumptions: for a discussion cf. Dosi and Grazzi (2006).
3 Note that convexity comes as a result of the chosen analytical framework and is not an

assumption of an underlying theory or production (Hildenbrand, 1981, pp. 1008-9).
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contribution of Hildenbrand (1981) and introduces the (normalized) vol-
ume of the zonotope as a measure of industry heterogeneity. We then pro-
pose a measure of productivity change based on the zonotope�s main
diagonal and we assess the role of firm entry and exit on industry level pro-
ductivity growth. Section IV presents an empirical application on manufac-
turing firms in narrowly defined industries. Section V discusses the
implications of this work and further applications of the proposed
methodology.

II. PERSISTENT MICRO HETEROGENEITY: AN ILLUSTRATION

In order to vividly illustrate the ubiquitous, wide and persistent heterogene-
ity across firms within the same lines of business and in presence of roughly
identical relative prices, consider two sectors of the Italian industry which
one could expect not too different in terms of output, namely meat prod-
ucts, NACE 151, and knitted and crocheted articles, NACE 177, see
Figure 1. Each of the two plots reports the empirical distribution4 of labor
productivity in a three-digit NACE sector and it shows the coexistence of
firms with much different levels of productivity across firms highlighting a
ratio �top to bottom� greater than 5 to 1 (in logs!). Disaggregation well
reveals the �scale freeness� of such distribution: the width of their support
does not shrink if one considers the four-digit NACE sectors nested
therein. The observed heterogeneity is not the result of the chosen level of
industry aggregation.

Further evidence that firm-level techniques do not belong to the same
�production function� - at least of any canonic form - stems from the lack of
correlation between labour productivities and �capital productivities� (i.e.
value added/capital stock). In our two foregoing sectors it is, respectively, -.02
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Figure 1
Empirical Distribution of Labor Productivity in 3 and 4 Digit NACE Sectors in 2006.

4 Densities estimates are obtained using the Epanenchnikov kernel with the bandwidth set
using the optimal routine described in Silverman (1986).
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and.2, and over all the 3-digit sectors of the Italian manufacturing industry it
ranges between 20.07 and.425 with a median of.13.

Figure 2 graphically illustrates the point in our two sectors, with a three
dimensional graph where horizontal axes represent inputs (labour and capi-
tal) and the vertical one output (value added). Using the kernel estimation
techniques, smooth surfaces have been obtained from the discrete sets of
observations. As a reference, the location of the observed amount of inputs
(l, k) has been reported on the bottom of plots, each dot represents the input
mix of a firm. The �isoquants� report on the l-k plane the corresponding out-
put levels. Note, first, that dots are quite dispersed over the plane and do not
seem to display any regularity resembling conventional isoquant (a feature
already emphasized by Hildenbrand 1981). Second, output does increase - as
it should be expected - in both inputs. However, this happens in quite non-
monotonic manners: given a quantity of one input, different firms attain the
same level of output with very different levels of the other input. In other
words, overall degrees of efficiency seemingly widely differ.

Further, heterogeneity is very persistent over time. In our two sectors illus-
trations, the autocorrelation coefficients in firm-level labour productivities
over a two years period rests around.8, as it does in most of the comparable
3-digit industrial sectors. Such an evidence is quite in tune with both the para-
metric and non-parametric estimates discussed in Bartelsman and Dhrymes
(1998); Haltiwanger et al. (1999); Dosi and Grazzi (2006) among others.

All together, the evidence is robustly �Schumpeterian� and consistent
with idiosyncratic firm-level capabilities, quite inertial over time and rather
hard to imitate (much more on that in Winter 2005, 2006; Nelson 2008;
Dosi et al. 2008).

Granted that, how does one concisely represent the corresponding distri-
butions of micro coefficients and their dynamics over time?

III. ACCOUNTING FOR HETEROGENEOUS MICRO-TECHNIQUES

Let us present a novel methodology to study production activities at the
level of firms and industries which allows to account for the widespread
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Figure 2
Adopted Techniques and Output Level in Two Different Three-Digit NACE Sectors, in 2006.
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and persistent heterogeneity in productivity and production techniques, as
shown in the previous section. In order to make our illustration more intui-
tive we develop, alongside our model, a toy example with hypothetical
firms5, while an application to real data will be developed in section IV.

Without loss of generality it is possible to represent the actual technique
of a production unit by means of a production activity represented by a vec-
tor (Koopmans 1977; Hildenbrand 1981)

a5ða1; . . . ; al ; al11Þ 2 Rl11
1 :

A production unit, which is described by the vector a, produces during the
current period al11 units of output by means of ða1; . . . ; alÞ units of input.6

Also notice that in this framework it is possible to refer to the size of the
firm as to the length of vector a, which can be regarded as a multi-
dimensional extension of the usual measure of firm size, often proxied
either by the number of employees, sales or value added. In fact, the length
of the vector allows to employ both measures of input and output in the
definition of firm size.

Table 1 introduces our toy example, in which we consider a hypothetical
industry containing only 10 firms. Each firm employs a given combination
of labor, L, and capital, K, and produces a certain level of value added,
VA, as output. We consider four years each characterized by different
events. In going from year one to year two, firms 8, 9 and 10 report an
unequivocal productivity increase. Then, in both years three and four one
firm leaves the industry. In Table 1, vectors representing the most diverse

TABLE 1
PRODUCTION SCHEDULES IN YEAR 1 TO 4 FOR AN ARTIFICIAL INDUSTRY

Year 1 Year 2 Year 3 Year 4

L K VA L K VA L K VA L K VA

Firm 1 8 2 10 8 2 10 8 2 10 8 2 10
Firm 2 2 8 10 2 8 10 2 8 10 2 8 10
Firm 3 6 2 9 6 2 9 6 2 9 6 2 9
Firm 4 3 3 8 3 3 8 3 3 8
Firm 5 3 3 6 3 3 6 3 3 6 3 3 6
Firm 6 6 6 4 6 6 4
Firm 7 2 2 9 2 2 9 2 2 9 2 2 9
Firm 8 6 5 4 3 5 12 3 5 12 3 5 12
Firm 9 6 2 3 2 2 11 2 2 11 2 2 11
Firm 10 3 7 4 2 6 10 2 6 10 2 6 10
Industry Total 45 40 67 37 39 89 31 33 85 28 30 77

Notes: Number of employees (L), Capital (K) and Output (VA). External production activities in bold.

5 Detailed instruction for replicating the toy model are available at http://mgrazzi.github.io/
zonotope_replication.html.

6 Our model holds also for the multi-output case, see Appendix B for details.
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production techniques, which we call external vectors (more in Section C),
are in bold. Figure 3 displays the 10 firms-vectors reported in Table 1.

In this framework, as noted by Hildenbrand (1981), the assumption of
constant returns to scale (with respect to variable inputs) for individual
production units is not necessary: indeed it is redundant if there are �many�
firms in the industry. Anyhow, the short run production possibilities of an
industry with N units at a given time are described by a finite family of vec-
tors fang1�n�N of production activities. In order to analyze such a structure
Hildenbrand introduces a short-run feasible industry production function
defined by means of a Zonotope generated by the family fang1�n�N of pro-
duction activities. More precisely let fang1�n�N be a collection of vectors in
Rl11, N � l11. To any vector an we may associate a line segment

½0; an�5fxnanjxn 2 R; 0 � xn � 1g:

Hildenbrand defines the short run total production set associated to the
family fang1�n�N as the Minkowski sum

Y5
XN

n51

½0; an�

of line segments generated by production activities fang1�n�N. More explic-
itly, it is the Zonotope

Y5fy 2 Rl11
1 jy5

XN

n51

/nan; 0 � /n � 1g:

Figure 4 displays the zonotope generated by the 10 firms in the first year
of our toy example.
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Figure 3
Vectors Representing Firms of the Toy Example in Year 1.
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Remark. Geometrically a Zonotope is the generalization to any dimension of a
Zonohedron that is a convex polyhedron where every face is a polygon with point
symmetry or, equivalently, symmetry under rotations through 180

�
. Any Zonohe-

dron may equivalently be described as the Minkowski sum of a set of line seg-
ments in three-dimensional space, or as the three-dimensional projection of an
hypercube. Hence a Zonotope is either the Minkowski sum of line segments in an
l-dimensional space or the projection of an ðl11Þ-dimensional hypercube. The
vectors from which the Zonotope is formed are called its generators.7

Figure 4
The Zonotope Generated by Firms of the Toy Example in Year 1.

7 The interested reader can refer to Ziegler (1995) for a survey on Zonotopes.
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Analogously to parallelotopes and hypercubes, Zonotopes admit diago-
nals. We define the main diagonal of a Zonotope Y as the diagonal joining
the origin O5ð0; . . . ; 0Þ 2 Y � Rl11 with its opposite vertex in Y. Algebrai-

cally it is simply the sum
XN

n51

an of all generators. That is, in our frame-

work, each of the three coordinates denoting the upper edge of the main
diagonal is given by the sum of, respectively, labor, capital and value added
of the firms making up the industry. In our toy example, such coordinates
are given by (45, 40, 67).

In the following, we will denote the diagonal by dY and we will call it
�production activity of the industry�, as it expresses both the amount of
inputs employed by the industry, and its output level.

Denote by D the projection of Y on the firsts l coordinates, i.e.

D5fv 2 Rl
1j9x 2 R1 s:t: ðv; xÞ 2 Yg

and the production function F : D! R1 associated with Y as

FðvÞ5max fx 2 R1jðv; xÞ 2 Yg:

In the definition above the aggregation of the various production units
implies a �frontier� associating to the level v1,. . ., vl of inputs for the indus-
try the maximum total output which is obtainable by allocating, without
restrictions, the amounts v1,. . . vl of inputs in a most efficient way over the
individual production units. However, as already argued by Hildenbrand
(1981) it might well be that the distribution of technological capabilities
and/or the market structure and organization of the industry is such that
the efficient production function could not be the focal reference either
from a positive or from a normative point of view in so far as the �frontier�,
first, does not offer any information on the actual technological set-up of
the whole industry, and, second, does not offer any guidance as to what the
industry would look like under an (unconstrained) optimal allocation of
resources. This notwithstanding, estimates of the �frontier� offer important
clues on the moving best-practice opportunities and the distance of individ-
ual firms from them. Here rests also the notional complementarity between
this approach and the contributions in the Data Envelopment Analysis
(DEA) tradition: see Farrell (1957); Charnes et al. (1978); Daraio and
Simar (2007b); Simar and Zelenyuk (2011) for major contributions in the
field and Murillo-Zamorano (2004) for a review. In the DEA approach
one focuses on a measure of firm�s efficiency which is provided by the dis-
tance between any single firm and the efficient frontier. Conversely, in our
approach, the way in which a firm contributes to industry heterogeneity
depends on how such a firm combines and compares with all other firms. A
similar point applies to how productivity change is measured (see below).
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The representation of any industry at any time by means of the Zono-
tope provides a way to assess and measure the overall degree of heterogene-
ity of an industry. As we shall show below, it allows also to account for the
variation of production techniques adopted by firms in any industry and,
at least as important, it allows to ascertain the rate and direction of pro-
ductivity change.

III(i). Volume of Zonotopes and heterogeneity

Let us begin by noting that if all firms in an industry with N enterprises
were to use the same technique in a given year, all the vectors of the associ-
ated family fang1�n�N of production activities would be multiples of the
same vector. Hence they would lie on the same line and the generated

zonotope would coincide with the diagonal
XN

n51

an, that is a degenerate

zonotope of null volume. This is the case of one technology only and per-
fect homogeneity among firms. At the opposite extreme the maximal heter-
ogeneity would feature an industry wherein there are firms with nearly zero
inputs and other firms producing little output with a large quantity of
inputs. This case of maximal heterogeneity is geometrically described by
vectors that generate a zonotope which is almost a parallelotope.

In the following we provide the formula to compute the volume of the
zonotope.

Let Ai1;...;il11 be the matrix whose rows are vectors fai1 ; . . . ; ail11g and
Di1;...;il11 its determinant. In our framework, the first l entries of each vector
stand for the amount of the inputs used in the production process by each
firm, while the last entry of the vector is the output. It is well known that
the volume of the zonotope Y in Rl11 is given by:

VolðYÞ5
X

1�i1<...<il11�N

jDi1;...;il11
j

where jDi1;...;il11 j is the module of the determinant Di1;...;il11 .
When computed in this way, the volume of the zonotope depends both

on the units of measure and on the number of firms. We are therefore inter-
ested in obtaining a pure measure of the heterogeneity in techniques that
allows comparisons across firms and time; that is, a measure which is inde-
pendent both from the unit in which inputs and output are measured and
from the number of firms making up the sector. In order to address this
issue we need a way to normalize the volume of the zonotope.

The normalization we introduce is a generalization of the Gini index,
which we call Gini volume of the zonotope. Analogously to the Gini index,
we will consider the ratio of the volume of the zonotope Y generated by
the production activities fang1�n�N over the volume of an industry with
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production activity dY 5
XN

n51

an and maximum heterogeneity. As we have

already pointed out, the parallelotope is the zonotope with largest volume
if the main diagonal is fixed. If PY is the parallelotope of diagonal dY, its
volume VolðPY Þ, i.e. the product of the entries of dY, is obviously the maxi-
mal volume that can be obtained once we fix the industry production

activity
XN

n51

an, that is the total volume of an industry with production

activity dY 5
XN

n51

an.

Note that alike the complete inequality case in the Gini index, i.e. the
case in which the index is 1, also in our framework the complete heteroge-
neity case is not feasible, since in addition to firms with large values of
inputs and zero output it would imply the existence of firms with zero
inputs and non zero output. It has to be regarded as a limit, conceptually
alike and opposite to the 0 volume case in which all techniques are equal,
i.e. the vectors fang1�n�N are proportional and hence lie on the same line.

In what follows we consider the Gini volume defined above for the short
run total production set Y:

GðYÞ5 VolðY Þ
VolðPY Þ

:(1)

In the first year of our toy example (Table 1 and 2), the volume of the
zonotope is 15217, the volume of the parallelotope built around the
zonotope�s main diagonal is 120600, so that the ratio or Gini volume,
GðY tÞ, is 0.1262. As apparent from Table 1, in year two firms 8, 9 and 10
change their production schedule and their productivity increases. The
position in the input-output space of the modified firms-vectors also results
in a more homogeneous industry. As reported in Table 2 the volume of the
zonotope, VolðY tÞ, decreases, as well as the normalized measure of Gini

TABLE 2
VOLUMES AND ANGLES ACCOUNTING FOR HETEROGENEITY AND PRODUCTIVITY CHANGE

Year 1 Year 2 Year 3 Year 4

VolðY tÞ 15217 12528 6020 4890
GðY tÞ 0.1262 0.0975 0.0692 0.0756
Gð �Y tÞ 0.1243 0.0940 0.0668 0.0749
GðY t

eÞ 0.1555 0.1407 0.0941 0.0941
Solid Angle 0.4487 0.3009 0.1238 0.1238
GðY tÞ/GðY t

eÞ 0.81111 0.6931 0.7358 0.8036

tg ht
3 1.1128 1.6555 1.8773 1.8764

tg ut
1 0.8889 1.0540 1.0645 1.0714
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volume, GðY t). In going from period two to three, firm 6, an external vec-
tor exits the industry and further reduces heterogeneity, as GðY tÞ decreases.
In year four, firm 4, an internal vector, exits the industry and the Gini vol-
ume signals an increase in heterogeneity. Section III(v). below investigates
under what conditions firm exit (or entry) determines an increase
(decrease) of heterogeneity.

III(ii). Unitary production activities

An interesting indicator of how size differences affects industry heterogene-
ity is provided by comparing the Gini volume G(Y) of the short run total
production set Y with the same index computed for the zonotope �Y gener-
ated by the normalized vectors f an

jjanjjg1�n�N, i.e. the unitary production

activities. This latter Gini volume Gð �Y Þ is an indicator of the heterogeneity
of the industry in a hypothetical setting where all firms have the same size
(norm is equal to one). Hence the only source of heterogeneity is the differ-
ence in adopted techniques, since differences in firm size do not contribute
to the volume.

The comparison between the Gini volumes of the original zonotope Y
and of the unitary zonotope �Y is informative on the relative contribution
of large and small firms to the overall heterogeneity in techniques within
the given industry. Intuitively, if the Gini volume G(Y) of Y is bigger than
Gð �Y Þ this means that big firms contribute to heterogeneity more than the
small ones, and viceversa, if the volume G(Y) is smaller than Gð �Y Þ. In our
toy example, for instance, the Gini volume of the normalized zonotope
Gð �Y Þ is 0.1243, which is smaller than 0.1262, the value of the original Gini
volume. This suggests that larger firms, i.e. companies 1 or 2, contribute
relatively more to industry heterogeneity than smaller ones.

III(iii). Solid angles and external production activities

In general, the vectors-firms making up the industry can be divided into
two types according to their position in the zonotope. Some vectors con-
tribute to form the external perimeter of the zonotope, while others lie
inside it. We call the former the external vectors as they define the external
zonotope Ye. In order to provide a more formal definition of it, we need to
introduce the notion of solid angle. For the ease of exposition let us start
with the solid angle in a 3-dimensional space, but the idea can be easily
generalized to the ðl11Þ dimension.

In geometry, a solid angle X is the two-dimensional angle in three-
dimensional space that an object subtends at a point. It is a measure of
how large the object appears to an observer looking from that point. In the
International System of Units, a solid angle is a dimensionless unit of mea-
surement called a steradian (symbol: sr). The measure of a solid angle X
varies between 0 and 4p steradian.
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More precisely, an object�s solid angle is equal to the area of the segment
of a unit sphere, centered at the angle�s vertex, that the object covers, as
shown in Figure 5.

In our framework, the production activities are represented by a family
fang1�n�N of vectors. Their normalization f an

jjanjjg1�n�N will generate an

arbitrary pyramid with apex in the origin. Note that, in general, not all
vectors ai, i51; . . . ;N will be edges of this pyramids as some vectors may
lie inside the pyramid. We will call external vectors those vectors feig1�i�R

of the family fang1�n�N such that their normalizations f ei
jjei jjg1�i�R are

edges of the pyramid generated by the vectors f an
jjanjjg1�n�N. All the other

vectors will be called internal.
This pyramid will subtend a solid angle X, smaller or equal than p

2 as the
entries of our vectors are all positive. We will say that the external vectors
of the family fang1�n�N subtend the solid angle X if it is the angle sub-
tended by the generated pyramid. A representation of the solid angle and
of the external vectors for our illustrative example is provided in Figure 6.
External production activities (i.e. firms 1, 7, 2, 10, 6, 9 clockwise) define

Figure 5
The Solid Angle of a Pyramid Generated by 4 Vectors.
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Figure 6
Planar Section of the Solid Angle Generated by All Firms of the Toy Example in Year One (left)
and Two (right). The Section Plane is the One Perpendicular to the Vector Sum of Generators.
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the span of the solid angle and intuitively, they can be thought of as the
analogous of the support of an empirical distribution for a single variable.
Also note the variation of the solid angle captures the transition to a more
homogeneous industry in going from period one to period two, as shown
by Figure 6 and Table 2.

We define the external zonotope Ye as the one generated by vectors
feig1�i�R. A pairwise comparison between GðYeÞ and G(Y) shows the rela-
tive importance of the density of internal activities in affecting our pro-
posed measure of heterogeneity.

In R3 the solid angle of an arbitrary pyramid defined by the sequence of
unit vectors representing edges fs1; s2; . . . ; sng can be computed as

X52p2arg
Yn

j51

ð< sj; sj21 >< sj; sj11 > 2 < sj21; sj11 > 1ijsj21sjsj11jÞ(2)

where parentheses <sj; sj21 > are scalar products, brackets jsj21sjsj11j
are scalar triple products, i.e. determinants of the 3 3 3 matrices whose
rows are vectors sj21; sj; sj11, and i is the imaginary unit. Indices are
cycled: s05sn and sn115s1 and arg is simply the argument of a complex
number.

The generalization of the definition of solid angle to higher dimensions
simply needs to account for the l-sphere in an l 1 1-dimensional space.

III(iv). Technical Change

Let us consider a non-zero vector v5ðx1; x2; . . . ; xl11Þ 2 Rl11 and, for any
i 2 1; . . . ; l11 the projection map

pr2i : Rl11 ! Rl

ðx1; . . . ; xl11Þ7!ðx1; . . . ; xi21; xi11; . . . ; xl11Þ:

Using the trigonometric formulation of Pythagoras� theorem we obtain
that if wi is the angle that v forms with the xi axis, hi5

p
2 2wi is its comple-

ment and jjvijj is the norm of the projection vector vi5pr2iðvÞ, i.e. the
length of the vector vi, then the tangent8 of hi is:

8 Note that, even if the change in productivity is effectively defined by the variation of the
angles hi, we choose to define it using the tangent to those angles. We do this for the sake of
simplicity and coherence with the 1-input and 1-output case. Indeed, the tangent is much eas-
ier to compute and, in general, the values of angles are derived by the values of the tangent.
Moreover in the 1-input and 1-output case the change in productivity is simply the quotient
between output and input, i.e. the tangent of the angle formed by the vector of production
activity with the input axis. Notice finally that if angles increase, respectively decrease, so do
their tangents.
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tg hi5
xi

jjvijj
:

In our framework we are primarily interested in the angle hl11 that the
diagonal of the zonotope, i.e. the vector dY, forms with the space generated
by all inputs, that is the arctg ðdl11=jjdY jjÞ where dY is equal to d1; . . . ; dl11.
Note that it is possible to think of the angle formed by dY with the space
generated by all inputs, as a weighted average of the productivities of all
firms making up the industry, with weights given by the length of the
vectors-firms. Clearly the same also applies to each individual firm, so that
the angle formed by a vector-firm with the space generated by inputs
expresses that firm�s productivity. In this respect, the distribution of such
angles can be interpreted in an analogous manner as the distribution of
firms� productivities in Figure 1. Finally, this setting with two inputs and
one output can easily be generalized to the case of multiple outputs, so
that if we have m different outputs we will consider the angles hi for
l < i � l1m (see Appendix B for more details).

In order to assess if and to what extent productivity is growing in a given
industry, it is possible to analyze how the angle hl11 varies over the years.
For example if the angle hl11 increases then productivity increases, because
a steeper diagonal implies that the industry is able to produce more output
with the same quantity of inputs. Conversely, a decrease in hl11 is a sign
that productivity has decreased. Figure 7 depicts the main diagonal of the
zonotope generated by the vectors-firms in our example in year 1 (solid
line) and 2 (dotted line). As shown in Table 1, in year two, firms 8, 9,
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Figure 7
Productivity Increase and the Angle of the Zonotope�s Main Diagonal With the Input Space
in Year 1 and 2 of the Toy Example.
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and 10 report an apparent productivity increase. Using the notation intro-
duced above, in this setting with two inputs and one output we study the
change in

tg ht
35

dt
3

jjpr23ðdY tÞjj

which is our index of productivity change, i.e. a measure of improvement
in �total factor productivity�. tg ht

3 is 1.1128 in year one and 1.6555 in year
two, hence signaling the productivity increase of the industry. Then, in year
three, firm 6, a relatively inefficient one, has exited the industry and the
change in tg ht

3 records another productivity increase.
Also notice that it is possible to study how the relative intensity of inputs

changes over time. In order to do this, it is enough to consider the angles
that the input vector, i.e. the vector with entries given by only the inputs of
dY, forms with the different input axes. More precisely, if there are l inputs
and m outputs and the vectors of production activities are ordered such
that the first l entries are inputs, then we can consider the projection func-
tion on the first l coordinates:

prl : Rl1m ! Rl

ðx1; . . . ; xl1mÞ7!ðx1; . . . ; xlÞ:

The change over time of the angle ui between the projection vector prðdY Þ
and the xi axis, 1 � i � l, captures the changes in the relative intensity of
input i over time with respect to all the other inputs. In our example, with
only two inputs, labor and capital, and one output, we can write the rela-
tive �intensity� of the first input (labor) as

ut
15

dt
2

jjdt
1jj

The increase in tg ut
1, which is equal to 0.889 and 1.054 in year one and

two, suggests that the productivity change is biased in the labor saving
direction, as also apparent from Figure 7.

It is also informative to measure the changes in the normalized angles �hi.
Indeed, as we have done for volumes, we can consider the normalized pro-
duction activities f an

jjanjjg1�n�N. Call d �Y the resulting industry production
activity. Of course, one can study how it varies over time and this is equiva-
lent to studying how the productivity of an industry changes independently
from the size of the firms. In particular, the comparison of the changes of
two different angles, hi and �hi, reveals the relative contribution of bigger
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and smaller firms to productivity changes and, hence, on the presence of
economies or diseconomies of scale.

III(v). Entry and exit

Under what circumstances does the entry of a new firm increase or
decrease the heterogeneity of a given industry? In order to compute how
entries and exits impact on industry heterogeneity it is enough to remark
that, by the above definition of volume, given a zonotope Z in the space
Rl11 generated by vectors fang1�n�N and a vector b5ðx1; . . . ; xl11Þ 2 Rl11,
the volume of the new zonotope X generated by fang1�n�N [ fbg can be
computed as follow:

VolðXÞ5VolðZÞ1Vðx1; . . . ; xl11Þ

where Vðx1; . . . ; xl11Þ is a real continuous function on Rl11 defined as:

Vðx1; . . . ; xl11Þ5
X

1�i1<...<il�N

jKi1;...;il j;

Ki1;...;il being the determinant of the matrix Bi1;...;il whose rows are vectors
fb; ai1 ; . . . ; ailg.

If dZ5ðd1; . . . ; dl11Þ is the diagonal of the zonotope Z, then the diagonal
of X will be dX 5dZ1b5ðd11x1; . . . ; dl111xl11Þ. The heterogeneity for the
new industrial set-up will be the continuous real function

GðX Þ5 VolðZÞ1Vðx1; . . . ; xl11Þ
VolðPX Þ

5
VolðZÞ1Vðx1; . . . ; xl11Þ

Pl11
i51ðdi1xiÞ

and the tangent of the angle with the input space will be the continuous
real function

tg hl11ðx1; . . . ; xl11Þ5
dl111xl11

jjpr2ðl11ÞðdX Þjj

Studying the variation (i.e. gradient, hessian etc. . .) of these real continuous
functions is equivalent to analyzing the impact of a new firm on the industry.
So, for example, when these functions increase then the new firm positively
contributes both to industry heterogeneity and productivity. We consider as
an example the entry of a firm in the 3-dimensional case. If Z is the zonotope
generated by vectors fang1�n�N in R3 with entries an5ða1

n; a
2
n; a

3
nÞ, the func-

tion Vðx1; x2; x3Þ for a generic vector b5ðx1; x2; x3Þ is
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Vðx1; x2; x3Þ5
X

1�i<j�N

jx1ða2
i a3j 2a3i a2

j Þ2x2ða1
i a3

j 2a3
i a1j Þ1x3ða1i a2

j 2a2
i a1

j Þj:

The diagonal of the new zonotope X is

dX 5
XN

i51

a1
i 1x1;

XN

i51

a2
i 1x2;

XN

i51

a3
i 1x3

 !
:

We get the Gini volume for X as:

GðXÞ5
VolðZÞ1

X
1�i<j�N

jx1ða2i a3
j 2a3i a2

j Þ2x2ða1
i a3j 2a3

i a1j Þ1x3ða1
i a2j 2a2

i a1j Þj

XN

i;j;k51

ða1i 1x1Þða2j 1x2Þða3k1x3Þ
;

(3)

where Vol(Z) and fa1
n; a

2
n; a

3
ng1�n�N are given and the tangent of the angle

with the input space is:

tg h3ðx1; x2; x3Þ5

XN

i51

a3
i 1x3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i51

a1i 1x1

 !2

1
XN

i51

a2
i 1x2

 !2
vuut

:

If we set the output x3 constant or we fix the norm of b, i.e. the size of the

firm, setting x35

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjbjj2x2

12x2
2

q
then G(X) and tg h3ðx1; x2; x3Þ become

functions in two variables, GðXÞ5GðXÞðx1; x2Þ and tg h3ðx1; x2Þ, which
can be easily studied with differential calculus.

It is important to notice that all the foregoing measures not only can be
easily applied to any l 1 1-dimensional case with multi-dimensional outputs
(i.e., for example, l inputs and m outputs in the space Rl1m), but also to
the more general case of a vector space V over a field K.9

Going back to our toy example, Figure 8 shows how heterogeneity
changes when a generic firm of fixed value added (VA 5 5) enters the

9 All the tools we introduced hold for any finite dimensional vector space. In that respect
recall that the setHomðV ;W Þ of all linear maps between two vector spaces V and W over the
same field K is a vector space itself. Thus we can consider the vector space HomðRl ;RmÞ in
which a vector is a linear function from Rl to Rm. More in general, our model applies to all
finite dimensional topological vector spaces such as, for example, the space of degree l 1 1 pol-
ynomials over a field K, the finite dimensional subspaces of smooth functions on R and so on.
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industry in year 1 of the example. The function plotted in Fig. 8 is the
function G(X) in equation (3) with Z5Y 1, N 5 10 and vectors an5a1

n. The
value on the z-axis is the degree of heterogeneity in terms of the Gini index
for the different values that labour and capital might take. Analogous
graphs can be plotted in order to visualize productivity change.

III(vi). The Zonotope approach and other non parametric methods

Let us consider some distinguishing features of the zonotope approach and
compare it to other non-parametric methods, such as the efficient frontier
approach.

The normalized volume of the zonotope, or Gini volume, provides a multi-
dimensional measure of the heterogeneity characterizing the industry in terms
of production techniques. The more the vectors-firms are spread in the input-
output space, the bigger is the volume of the generated zonotope, and hence,
the more heterogeneous the industry. Referring to our example with two inputs
and one output, it is possible to have a first assessment of the firms that mostly
contribute to heterogeneity by looking at the external vectors-firms (see also
Table 1 and Figure 6 and 9). In year one, we find on the one hand firms 1 and
2 that are very diverse in the way they combine inputs but of comparable effi-
ciency, and, on other hand, firms 6 and 7 that employ inputs in the same pro-
portion, but are quite diverse in their efficiency level. Hence the diversity in
both input combination and efficiency levels contributes to increasing the nor-
malized volume of the zonotope, our measure of heterogeneity. Therefore, in
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Figure 8
Variation of Heterogeneity (on the z axis) When a Firm Using x Units of Labor and y of
Units of Capital and Producing a Constant Value Added Enters the Industry.
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order to have a measure of cross-sectional dispersion of efficiency, that is the
analog to a productivity distribution, one can refer to the distribution of firms�
h3, that is the angle that each vector-firm forms with the input axis.

The focus on assessing intra-industry heterogeneity as distinguished
from measuring purported inefficiencies vis �a vis some frontier differenti-
ates our method from the �efficiency frontier� approach (Farrell 1957;
Charnes et al. 1978). Although both approaches are non-parametric in
nature, the emphasis of the latter is on measuring firms10 inefficiency in
terms of the distance from the efficient frontier, recovered by enveloping
the data: the more distant a firm from the frontier, the less efficient it is.
Consider, for instance, firm 10 in Figure 9 of our illustrative example which
is far from the efficient frontier (solid line) or, similarly, firm 9, which
employs inputs in the same proportion as firm 3, but is much less efficient.

Recent developments in efficiency analysis (Daraio and Simar 2007a)
have overcome many shortcomings of the traditional deterministic
approach, such as the sensitivity to measurement errors and outliers: given
that all firms are compared to the frontier, a misspecification of it would
heavily bias the entire analysis. In this respect robust frontiers offer a way
to overcome such a problem (Cazals et al. 2002; Daraio and Simar 2005).
Note, however, that our computed values for the volume (heterogeneity)
and the angle (productivity change) are measures not estimates.

The focus on the frontier also enables the homonymous stream of litera-
ture to decompose productivity growth into two factors that accounts for
technical change and for the change in efficiency. The former is represented

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

Firm 3

Firm 6

Firm 7

Firm 9

Firm 10

Firm 1

Firm 2

C
ap

ita
l/V

A

Labor/VA

efficient frontier

Figure 9
Data Envelopment Analysis on the Illustrative Example, Year One.

10 In this stream of literature the unit of interest is called Decision Making Unit.
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by a shift of the frontier while the latter by the move of a firm towards the
frontier.11 Clearly, in the approach that we propose, in the absence of a fron-
tier, there is no such decomposition and all firms in the industry are consid-
ered together. Indeed, the absence of a decomposition is well in tune to a
good deal of the economics of innovation literature, which emphasize the
fact that all changes in technologies and in the underlying organizational
routines involve in fact innovative activities - involving, to different degrees,
novel discoveries, imitation, learning by doing and by using, etc (cf. the clas-
sic Nelson and Winter 1982, Rosenberg 1982 and Freeman and Soete 1997;
see also Dosi and Nelson 2010). Come as it may, precisely because of these
differences between the two methodologies, they are likely to offer comple-
mentary information on the state of an industry and its dynamics. In order
to better appreciate the common and distinguishing features, in Appendix D
we report side by side the results obtained with the zonotope approach and
with frontier efficiency analysis both on the toy example and on the empiri-
cal application which we introduce in the next section.12

What the zonotope approach tells us about the revealed short-run elasticities
of substitution between inputs? There is indeed a tricky measurement issue,
analogous to that faced by the frontier approach where the �computation of
trade-offs presents particular difficulties within DEA since the piecewise linear
nature of the envelopment surfaces does not allow for unique derivatives at
every point� (Rosen et al. 1998, see also Cooper et al. 2000; Greene 2008).
Again, we tackle the issue following the contribution of Hildenbrand (1981)
and observing that every isoquant is a polygon generated by the planar section
of the zonotope. Hence, the observed elasticity of substitution is either 0 or1.
It is however possible to compute the elasticity of substitution by applying
smoothing techniques (Hildenbrand, 1981, pp. 1100) to the edges of the poly-
gon. Similarly to Hildenbrand (1981) we also find values of elasticities that are
rather small and vary a lot. In Appendix E we report the distribution of the elas-
ticities of substitutions for two of the sectors investigated in the next section.

IV. AN EMPIRICAL APPLICATION

In the following we put the methodology at work on longitudinal firm-
level data of an ensemble of Italian 4-digit industries, chosen also on the
grounds of the number of observations. The dataset is based on the census
of Italian firms year conducted by the Italian Statistical Office (ISTAT)

11 Recent developments of the frontier approach have also focussed on the investigation of
external or environmental variables, that is, variables that are neither inputs nor output under
the control of the firm, but are nonetheless related to the different efficiency scores of firms
(see, among the others, Daouia and Simar, 2007; B�adin et al., 2012; Mastromarco and Simar,
2015).

12 Computations have been carried out using the package FEAR for R software, (Wilson
2008).
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and contains information on all firms above 20 employees (Grazzi et al.
2013). Values have been deflated with the industry-specific production price
index. Output is measured by value added13 at constant prices (thousands
of euro), capital is proxied by (deflated) gross tangible assets (thousands of
euro) and labor is simply the number of employees (full time equivalent).
More details on the data set are in Appendix A. The list of sectors and the
number of observations is reported in Table 3 together with the number of
�external vectors�, as defined above, in brackets.14

Figure 10 reports the analog of Figure 6 for our empirical data and
shows the coordinates of the normalized vectors on the unit sphere for
firms making up the industry in 2002 and 2006. Both plots show that the
solid angle provides a snapshot of the extreme techniques at use in a given
industry. Thus, outliers matter a lot and this measure can change consider-
ably following a variation in the adopted technique by one firm only. Hence
we will not refer to the solid angle as our measure of heterogeneity, but we
will focus on some normalized measures of the zonotope�s volume.

TABLE 3
SECTORS AND NUMBER OF OBSERVATIONS IN 1998, 2002 AND 2006.

NACE Description 1998 2002 2006

1513 Meat and poultrymeat products 162 (7) 162 (10) 190 (9)
1721 Cotton-type weaving 139 (9) 119 (11) 113 (7)
1772 Knitted & crocheted pullovers, cardigans 137 (8) 117 (10) 100 (7)
1930 Footwear 616 (9) 498 (6) 474 (9)
2121 Corrugated paper and paperboard 186 (7) 176 (9) 199 (11)
2222 Printing n.e.c. 297 (11) 285 (10) 368 (8)
2522 Plastic packing goods 204 (7) 217 (10) 253 (11)
2524 Other plastic products 596 (9) 558 (9) 638 (10)
2661 Concrete products for construction 208 (8) 231 (11) 272 (7)
2663 Ready-mixed concrete 103 (8) 114 (8) 147 (10)
2751 Casting of iron 94 (7) 77 (9) 88 (9)
2811 Metal structures and parts of structures 402 (9) 378 (8) 565 (10)
2852 General mechanical engineering 473 (11) 511 (8) 825 (11)
2953 Machinery for food & beverage processing 131 (6) 134 (7) 159 (6)
2954 Machinery for textile, apparel & leather 191 (10) 170 (10) 154 (12)
3611 Chairs and seats 205 (8) 201 (10) 229 (7)

Notes: In brackets the number of external vectors in each year.

13 In principle our approach should use data at full capacity utilization. One should indeed
represent each production unit in a n 1 1 dimensional space, where one dimension is produc-
tion capacity, rather than output, and the other n are the inputs needed at full capacity. This
holds in Hildenbrand�s 1981 paper, where he has data on maximum capacity for tankers and
power plants. Unfortunately Census data do not provide this kind of information and there-
fore we must use output (value added) instead of capacity.

14 Numerical calculations for the empirical analysis that follows as well as for the toy exam-
ple above have been performed using the software �zonohedron�, written by Federico Ponchio,
whom we deeply thank. More details on the software are provided in Appendix C and the soft-
ware is available for download at http://vcg.isti.cnr.it/ ponchio/zonohedron.php.
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IV(i). Within Industry Heterogeneity and its dynamics

Table 4 reports the normalized volumes for the sectors under analysis. The
first set of columns reports G(Y) which is, to repeat, the ratio between
the zonotope�s volume and the volume of the parallelotope build on the
zonotope�s main diagonal, for 1998, 2002 and 2006. The volume of the
cuboid (denominator) is of course much bigger than that of the zonotope
(nominator) because the former is built under assumptions of maximal
heterogeneity. That is why the ratio, G(Y), is small in absolute value, but it
signals nonetheless big differences in the production techniques employed
by firms in the same industry. The dynamics over time of the ratio within
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Figure 10
Planar Section of the Solid Angle Generated by All Firm-Vectors in 2002 and 2006. The Sec-
tion Plane is the one Perpendicular to the Vector Sum of Generators. Meat and Poultrymeat
(Sector 1513) on the Left and Footwear (Sector 1930) on the Right.

TABLE 4
NORMALIZED VOLUMES IN 1998, 2002 AND 2006 FOR SELECTED 4 DIGIT SECTORS.

I II III

NACE G(Y) Gð �Y Þ GðYeÞ

Code �98 �02 �06 �98 �02 �06 �98 �02 �06
1513 0.059 0.051 0.062 0.082 0.062 0.096 0.391 0.201 0.301
1721 0.075 0.068 0.103 0.075 0.078 0.124 0.135 0.120 0.133
1772 0.160 0.122 0.136 0.154 0.126 0.130 0.142 0.273 0.172
1930 0.108 0.139 0.150 0.110 0.115 0.123 0.361 0.562 0.249
2121 0.108 0.043 0.062 0.081 0.064 0.081 0.257 0.105 0.178
2222 0.062 0.077 0.087 0.077 0.086 0.115 0.239 0.328 0.356
2522 0.065 0.061 0.070 0.071 0.064 0.074 0.197 0.261 0.266
2524 0.089 0.083 0.094 0.097 0.088 0.096 0.458 0.269 0.307
2661 0.079 0.088 0.099 0.100 0.094 0.110 0.376 0.234 0.352
2663 0.066 0.067 0.088 0.111 0.106 0.111 0.306 0.192 0.277
2751 0.035 0.037 0.070 0.064 0.055 0.073 0.174 0.107 0.184
2811 0.105 0.109 0.109 0.117 0.113 0.122 0.327 0.480 0.416
2852 0.088 0.102 0.110 0.100 0.103 0.111 0.227 0.395 0.391
2953 0.072 0.095 0.096 0.098 0.104 0.111 0.233 0.155 0.248
2954 0.078 0.074 0.093 0.086 0.130 0.113 0.170 0.141 0.352
3611 0.078 0.099 0.118 0.107 0.096 0.121 0.288 0.233 0.281
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any one industry allows to investigate how heterogeneity in the adopted
techniques evolves. G(Y) displays indeed an increase over time in most sec-
tors, suggesting that heterogeneity has actually increased.15 Since G(Y) is
an absolute number, we can also compare this measure of heterogeneity
across industries. As it might be expected, there are relevant differences in
such degrees of heterogeneity, with G(Y) varying in the range.03-.16. Inter-
estingly, also sectors that are supposed to produce rather homogeneous
output, such as 2661 (concrete materials) and 2663 (ready-mixed concrete)
display a degree of heterogeneity comparable, if not higher, to that of the
other sectors.

The second set of columns reports the value of Gð �Y Þ, that is the Gini
volume of the unitary zonotope. As discussed in Section III, in this case the
zonotope is formed by vectors having the same (unitary) length; hence firm
size plays no role. For most sectors, Gð �Y Þ is bigger than G(Y) suggesting
that, within any industry, smaller firms contribute relatively more to heter-
ogeneity than bigger ones. In particular, in some industries, such as the
Ready-mixed concrete (NACE 2663), industry heterogeneity almost dou-
bles when all firms are rescaled to the same size. Remarkably, Gð �Y Þ dis-
plays an increasing trend over time, from 2002 to 2006, pointing to
growing differences in the techniques in use.

Finally, GðYeÞ (column III) reports the Gini volume for the zonotope
built on the external vectors only. As it could be expected, for all sectors G
ðYeÞ is bigger than G(Y) as the former maps a sort of �overall frontier�
made of the best and worst techniques.

IV(ii). Assessing industry level productivity changes

Let us now analyze productivity change in our sample of Italian firms by
means of the angle that the main diagonal of the zonotope forms with the
input plane.

As shown in the toy illustration above, an increase in the tangent of such
an angle provides evidence of an increase in the overall productivity in the
industry (which innovation economists would take as an overall proxy for
technical change). The first two columns of Table 5 report the rates of
growth of tg h3 respectively for the period 1998-2002 and 2002-2006.16

Overall, not many sectors display a constant increase of productivity (i.e.
increase in tg ht

3) in all periods. Reassuringly, the results from the method
are broadly in line with the rougher evidence stemming from sheer sector-
level average productivities and the simple observation of their micro

15 This result is coherent with the evidence shown in Dosi et al. (2012) on Italian firms,
although employing a different methodology to explore heterogeneity.

16 Note that changing the unit of measurement, i.e. considering value added in millions
(rather than thousands) of euro of course changes the value of the angle, but the variation
over time - our proxy of productivity change - is not affected by the unit of measure.
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distribution, highlighting a widespread stagnation in Italian manufacturing
over the first decade of the new millennium (cf. Dosi et al. 2012). Notice
that, in tune with it, also the values computed on the unitary zonotope
point to the same pattern.

The change over time of the angle ui between the projection vector
prðdY Þ and the xi axis captures the changes of the quantity of input i over
time with respect to all the other inputs. Results are reported in Table 6.
For some sectors the value of tg u1 decreases over time, suggesting that

TABLE 5
ANGLES OF THE ZONOTOPE�S MAIN DIAGONAL, RATES OF GROWTH. (A) ORIGINAL

ZONOTOPE; (B) UNITARY ZONOTOPE.

NACE (a) rates of growth of tg h3 (b) rates of growth of tg �h3

Code 1998-2002 2002-2006 1998-2002 2002-2006

1513 211.9073 211.4541 23.5540 23.8569
1721 10.5652 4.3723 3.6084 1.4179
1772 22.5717 32.9763 20.3235 3.1497
1930 3.1152 25.2797 0.3005 1.9487
2121 26.8362 28.8206 23.1977 24.4401
2222 223.8199 2.8973 28.2509 1.0216
2522 218.0316 216.8038 28.2018 28.9011
2524 215.2821 0.4118 24.6589 0.1282
2661 6.7277 218.5953 1.4119 24.6636
2663 25.4457 219.6427 6.6499 25.9972
2751 233.6675 12.9994 215.6436 5.9044
2811 6.4256 27.9102 0.9619 21.2723
2852 212.0712 2.1536 22.4139 0.4289
2953 19.3637 24.7927 1.1784 20.3032
2954 20.3020 221.2919 20.0209 21.8708
3611 217.9141 0.0892 22.0263 0.0102

TABLE 6
ANGLES OF THE ZONOTOPE�S MAIN DIAGONAL WITH THE LABOUR INPUT AXIS. (A)

ORIGINAL ZONOTOPE; (B) UNITARY ZONOTOPE.

Nace (a) tg u1 (b) tg �u1

Code 1998 2002 2006 1998 2002 2006

1513 23.0224 25.5508 27.0043 21.8256 22.6442 20.1068
1721 21.0047 21.3726 18.4777 15.1804 16.0332 12.8776
1772 6.8281 6.7041 5.5909 5.0274 6.2307 5.6227
1930 4.5795 5.3113 5.0533 3.8295 4.5798 4.4675
2121 39.0274 39.3436 40.0129 23.9678 26.6887 24.8705
2222 19.1097 26.1785 24.3621 13.2630 17.2095 14.6962
2522 30.2555 37.3270 43.8918 23.9336 27.9305 27.1886
2524 17.9118 21.4862 19.9956 13.4808 15.7137 14.6993
2661 14.1626 16.5427 17.9402 10.5512 12.3908 12.0912
2663 26.9417 26.3218 26.9437 15.1537 16.5539 15.0585
2751 21.8179 36.6899 31.9027 19.4979 30.2839 24.7586
2811 9.1053 9.7865 9.8170 6.9113 7.8659 6.6393
2852 10.0784 13.1988 13.2519 7.9099 10.4204 10.0850
2953 5.4316 5.3541 5.9111 4.1020 5.0619 4.7180
2954 5.0435 5.1530 5.8891 4.0276 3.7809 4.6053
3611 5.7162 6.3274 6.2222 4.5100 5.3190 5.0401
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industries have moved towards relatively more labor intensive techniques
(indeed a result which might reveal the peculiarities of the most recent pat-
terns of growth, or more precisely, lack of it, of the Italian economy).

V. CONCLUSIONS

How does one synthetically account for the actual �state of the technology� of an
industry when firm-level techniques are widely and persistently heterogeneous?

Hildenbrand (1981) suggested a seminal methodology focusing on the
geometric properties of the actual activities - that is the actual input-output
relations - displayed by the firms composing the industry. He analyzed the
features of such constructs in terms of the standard properties normally
postulated by production functions but not born by the actual data. Here
we pushed the investigation some steps further.

First, we used different measures of the volumes of the geometrical
objects defined by firms� activities as measures of inter-firm technological
heterogeneity.

Second, we investigated the properties of the dynamics of such objects
over time as meaningful proxies for industry-level productivity change
quite independent of any behavioral assumptions on allocative strategies of
individual firms, and on the relationships between input prices and input
intensities.

A straightforward step ahead involves indeed the study of the relation-
ships of the foregoing dynamics with relative input prices, if any, and, prob-
ably more important, with the patterns of learning and competition
characteristic of each industry.

APPENDIX A: FIRM LEVEL DATA

The database employed for the analyses, Micro.3, has been built through to the col-
laboration between the Italian statistical office, ISTAT, and a group of LEM research-
ers from the Scuola Superiore Sant�Anna, Pisa.17

Micro.3 is largely based on the census of Italian firms yearly conducted by ISTAT
and contains information on firms above 20 employees in all sectors18 of the economy
for the period 1989-2006. Starting in 1998 the Census of the whole population of
firms only covers companies with more than 100 employees, while in the range of
employment 20-99, ISTAT directly monitors a �rotating sample� which varies every
five years. In order to complete the coverage of firms in the range of employment 20-
99, Limited Liability firms have been added, subject to disclosure requirements of
Italian laws.19

17 The database has been made available for work after careful censorship of individual
information. More detailed information concerning the development of the database Micro.3
are in Grazzi et al. (2013).

18 In the paper we use the Statistical Classification of Economic Activities known as
NACE, Revision 1.1.
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APPENDIX B: MULTI-OUTPUT CASE

Given a collection of vectors fang1�n�N in the space Rp; N � p, the definition of
Zonotope

Y5fy 2 Rl11
1 jy5

XN

n51

/nan; 0 � /n � 1g

depends equally on all entries ðan
1; . . . ; an

pÞ of vectors an5ðan
1; . . . ; an

pÞ; 1 � n � N. The
same holds for the Volume of the Zonotope

VolðYÞ5
X

1�i1<...<ip�N

jDi1 ;...;ip j

where jDi1 ;...;ip j is the module of the determinant of all matrices Ai1 ;...;ip whose rows are
vectors fai1 ; . . . ; aipg. Thus, the model we described in this paper naturally extends to
the case where Rp is given by Rp5Rl3Rm, where l is the number of inputs and m> 1
is the number of outputs or Rp5Rp213R1 where p – 1 is the number of inputs with
only 1 output.

If the number of outputs is m> 1 then a vector an 2 Rp is a ðl1mÞ-tuple of entries
an5ðan

1; . . . ; al ; an
l11; . . . ; an

mÞ. Then, if I5fi1; . . . ijg � f1; . . . ;mg is a subset of indices
of outputs, it is possible to consider the projection map:

prI : Rl1m ! Rl1j

ðan
1; . . . ; al ; an

l11; . . . ; an
mÞ 7!ðan

1; . . . ; al ; an
i1 ; . . . ; an

ij Þ:

The vector prI ðanÞ 2 Rl1j will only have j<m outputs out of the m outputs of the
original vector an. Again it is possible to perform all the computations done for the
Zonotope generated by the family fang1�n�N for the family fprI ðanÞg1�n�N. This
allows to investigate heterogeneity with respect to only a subset of all outputs. The
same applies to inputs.

Of course the concept of external vectors that we introduced in the two-inputs,
one-output case (see, Section III(iii)) can easily be extended in a multi-output frame-
work. In general, the algorithm used to compute the Volume of the Zonotope gener-
ates an explicit representation of the Zonotope itself as a set of parallelogram faces.
To compute the faces the algorithm iterates over all the pair of vectors ai, aj the fol-
lowing process: compute the normal ni;j and the sign si;j;k 2 f0; 1g of the dot product
of ni;j with each input vector ak, zero when negative, one when positive.

The first (base) vertex of the face is computed by
X
k 6¼i;j

si;j;kak, the others by adding

ai, aj and ai1aj . Once the zonohedron is in explicit form, it is very easy to identify
the external vectors: i.e. those lying on the convex hull of the normalized vectors. We
only need to keep track of the faces whose base vertex is the origin: in that case the
pair of associated vectors ai, aj are external. Indeed if the base vertex is the origin, all
the other vertices lie on one side of the normal ni;j (every dot product is negative),

19 Limited Liability companies (Societ�a di Capitali) have to hand in a copy of their financial
statement to the Register of Firms at the local Chamber of Commerce.
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thus that plane belong to the convex hull. This trivially extends to the multi output
case. Indeed, also in this case, when we have the explicit representation of the Zono-
tope, the external vectors are those associated to faces with the base vertex in the ori-
gin. Of course in this case any face is defined by n – 1 independent vectors ai1,. . .,ain21 .

Also notice that the algorithm for computing the volume of Zonotopes is polynomial
on the numbers of entries p of vectors, hence the computations can be performed for
any large number of inputs and outputs almost as fast as the 2 inputs/1 output case.

In conclusion, the level of disaggregation of inputs and outputs as well as the
details at which inputs and outputs are considered in the analysis are limited only by
the available data.

APPENDIX C: THE ALGORITHM

This appendix illustrates the core parts of the code developed for the paper. A hands-
on step by step guide to replicate the illustrative example is available at: http://
mgrazzi.github.io/zonotope_replication.htm.

The Gini volume is defined as the ratio between the volume of the zonohedron
generated by all the input vectors and the volume of the hexahedron containing it.
The diagonal of this box can be computed simply adding all the input vectors. A sim-
ple algorithm to compute the zonohedron geometry and its volume is below. The key
properties used in the code are:

1. All the faces of the zonohedron are parallelograms;
2. Each pair of input vectors define a face whose normal is the cross product of the pair;
3. The vertices of the zonohedron are a weighted combination of all the input vectors

with 21 or 1 coefficients;
4. A (1, 21) weighted combination of vectors belongs to a face (and hence is a ver-

tex) if the dot product of the normal of the face with each element of the sum is
greater or equal to zero.

The algorithm iterates over each pair of input vectors to generate a face, compute
its normal and the orientation of each vector respect to this normal. This is Oðn3Þ in
the number of input vectors. The volume of the zonohedron is computed adding the
volume of each pyramid having for base a face and apex the origin. The code in the
library is slightly more complicated by the necessity to take care of degenerate cases.

Quick guide to use the software

Zonohedron is a simple command-line program that computes a zonohedron out of a
collection of 3D vectors. It�s written in C11 without dependencies and thus available
for every platform, and can process zonohedra with thousands of generators in a
short time. The program is started from the command line as such:

./zonohedron input.txt output.obj

The input file for the program is a text file with one generator vector per line:

0.388473 0.199726 0.364303
0.519182 0.144312 0.216584
0.250367 0.445088 0.391104

GIOVANNI DOSI, MARCO GRAZZI, LUIGI MARENGOAND SIMONA SETTEPANELLA902

VC 2016 The Editorial Board of The Journal of Industrial Economics and John Wiley & Sons Ltd

http://mgrazzi.github.io/zonotope_replication.htm
http://mgrazzi.github.io/zonotope_replication.htm


. . .

The program saves the resulting zonohedron as a mesh in OBJ format and it also
computes:

1. the volume of the zonohedra;
2. the solid angle at the origin;
3. the list of generators on the boundary of the solid angle.

For the last two computations it is required that all vectors have positive
coordinates.

APPENDIX D: FRONTIER ANALYSES

In this section we present a set of results to allow the comparisons of frontier effi-
ciency analysis20 with our proposed method. Table 7 reports for the toy example a
measure of the distance of each firm from the production frontier. In particular, we
consider estimates of order-m efficiency measure whose main advantage over tradi-
tional envelopment techniques is that they are more robust to extreme values (Cazals
et al., 2002; Wilson, 2008). Values bigger than one suggests that the firm is not on the
frontier. From the estimates of such distance function it is possible to compute the
Malmiquist index for productivity change. In our toy example (see Table 1) in going
from year one to year two, firms 8, 9 and 10 report an unequivocal increase in pro-
ductivity, this is of course captured by the Malmquist indexes which are smaller than
unity for these three firms, see Table 7. In order to provide an industry-level measure
of productivity change, and as standard in the literature (see, among the others F€are
et al., 1994; Hsiao and Park, 2005), we consider the geometric mean of the Malm-
quist index for all the ten firms making up the toy example. As we consider the input
orientation, we get - as expected - an industry measure smaller than one (0.654),
which signals a productivity increase for the sector. For the following years it is not
possible to compute any meaningful measure of variation of productivity, as the only
changes are due to firms exiting the industry, and for those firms it is not possible to
compute the Malmquist index.

TABLE 7
ESTIMATES OF ORDER-M EFFICIENCY MEASURE FOR THE TOY EXAMPLE

Firms 1 2 3 4 5 6 7 8 9 10

Year 1 1 1 1 1.497 1.495 2.94 1 2.47 0.9988 1.475
(0) (0) (0) (0.035) (0.05) (0.24) (0) (0.14) (0.0177) (0.109)

Year 2 1 1 1 1.5 1.5 2.995 1 1 1 1
(0) (0) (0) (0.0) (0.0) (0.071) (0) (0) (0) (0)

Year 3 1 1 1 1.5 1.5 1 1 1 1
(0) (0) (0) (0.0) (0.0) (0) (0) (0) (0)

Year 4 (1) 1 1 1.5 1 1 1 1
(0) (0) (0) (0.0) (0) (0) (0) (0)

Notes: Standard errors in brackets.

20 R software and FEAR package (Wilson, 2008) have been used for the computations.
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In Table 8 we compare our computation of productivity change to those obtained
with efficiency measure. In order to run the analysis on the same set of data we
�balance� the panel of firms making up the industry in any of the two couples of years
over which we investigate productivity change (1998-2002 and 2002-2006). This
ensures that in the estimates of Table 8 we consider the same number of observations
both in the computation of (a) our proposed measure of productivity change (tg h3)
as in rates of growth, and (b), equally, for the Malmquist index. The two measures
are in agreement in suggesting a productivity increase (decrease) when tg h3 is positive
(negative) and Malmquist index is smaller (bigger) than one. Note that the two meas-
ures are pretty much in accordance, and this is especially true when the productivity
changes are bigger.

TABLE 8
(A) ANGLES OF THE ZONOTOPE�S MAIN DIAGONAL, RATES OF GROWTH. (B) MALM-

QUIST INDEX (INPUT ORIENTATION).

Nace (A) rates of growth of tg h3 (B) Malmquist Index

Code 1998-2002 2002-2006 1998-2002 2002-2006

1513 210.3634 29.8455 1.04102 1.09689
1721 4.0482 5.2562 0.99760 1.08628
1772 1.0693 22.6076 1.13536 0.97827
1930 3.7461 22.9161 0.98939 0.94302
2121 3.7708 28.4136 0.98434 1.05707
2222 217.6103 4.2627 1.07313 0.99490
2522 214.1545 214.9345 0.96290 1.03422
2524 217.6548 22.5974 1.02571 1.09487
2661 1.6817 214.4861 0.88316 1.14890
2663 25.9224 226.8413 0.96624 1.03718
2751 224.7638 23.3005 1.14922 0.97883
2811 27.2750 20.1386 0.92840 1.03361
2852 28.2534 7.3121 0.95301 0.93898
2953 17.8252 21.3819 0.89598 0.94970
2954 6.5688 215.5003 1.03560 1.07015
3611 29.2977 4.4400 0.99338 1.05886
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Figure 11
Distribution of Observed Elasticities of Substitution Between Capital and Labour. In Brack-
ets the Number of Edges Over Which Elasticity is Computed.
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APPENDIX E: ELASTICITIES OF SUBSTITUTION

Figure 11 reports, for two of the industries under investigation, the distribution of the
observed elasticities of substitution between capital and labour computed over the
polygon which results from the planar section of the zonotope on the 50% output-
isoquant, that is, half way between the origin and the upper edge of the zonotope.
Elasticities of substitution are computed by applying smoothing techniques
(Hildenbrand, 1981, pp. 1100) to the edges of the polygon, calculations are performed
with the software zonohedron.
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