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Twenty-five years ago the first operational, ensemble forecasts were issued by the

European Centre for Medium-Range Weather Forecasts and the National Centers

for Environmental Prediction. These centres were followed in 1996 by the Meteoro-

logical Service of Canada, and in the subsequent years by many others. Operational

ensemble-based, probabilistic forecasts signed a paradigm shift in weather pre-

diction: for the first time, forecasters and users could have reliable and accurate

estimates of the range of possible future scenarios, and not just a single realization

of the future. Today, ensembles are used not only to provide reliable and accurate

forecasts for the short and medium range, the monthly and seasonal time-scale, but

also to provide estimates of the initial state of the atmosphere, and to generate future

climate projections. This article provides an overview on how we developed the

early ensembles, illustrates the key characteristics of the seven operational, global,

medium-range ensembles, and discusses ongoing trends to further improve ensemble

performance.
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1 THE ECMWF 2017 ANNUAL SEMINAR
ON “ENSEMBLE PREDICTION: PAST,
PRESENT AND FUTURE”

At the end of 1992, for the first time the European Centre for

Medium-Range Weather Forecasts (ECMWF: Buizza and

Palmer, 1995; Molteni et al., 1996) and the National Centers

for Environmental Prediction (NCEP: Toth and Kalnay, 1993;

Tracton and Kalnay, 1993) started issuing operational prob-

abilistic forecasts generated using ensembles. This signed

a paradigm shift in weather prediction: for the first time,

forecasters and users were given access to not just a single

realization of the future but also to a range of possible future

scenarios.

ECMWF and NCEP were followed by the Meteorologi-

cal Service of Canada (MSC) in 1995, and by many others

afterwards. Today, ensembles are used operationally to

generate forecasts valid for the short (say up to 2–3 days),

medium (say up to 2 weeks) and extended (sub-seasonal

and seasonal) forecast ranges. They are also used to estimate

analysis uncertainties. Thanks to advances in models, data

assimilation schemes and the methods used to simulate initial

and model uncertainties, today ensembles are widely used in

weather prediction (see, e.g., Molteni et al., 1996; Lalaurette,

2003; Dutra et al., 2013). Ensembles are also used outside

the weather sector, in hydrology (Pappenberger et al., 2008;

Thielen et al., 2009), in the energy sector (Taylor and Buizza,

2003) and in aviation (Verlinden and Bright, 2017; Osinski

and Bouttier, 2018).

Despite the complexity of developing and producing

operational ensemble forecasts, it is now widely accepted

that issuing a single forecast is not enough. Forecasts must

include uncertainty estimations, for example in the form

of confidence indicators that allow forecasters to estimate
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how “predictable” the future situations are. These estimates

can be expressed in different ways, as a range of possi-

ble scenarios, as probabilities or cumulative distribution

functions, as clusters highlighting very few possible alterna-

tives or as box-and-whisker plots. Short and medium-range

forecasts, monthly and seasonal forecasts, and even decadal

forecasts and climate projections are today based on ensem-

bles. Ensembles are used also to estimate the current state

of the atmosphere, to provide users with an estimate of the

initial-state uncertainty (the analysis error), and to provide

a range of conditions that can be used to initialize ensemble

forecasts.

This Editorial introduces this Special Issue on “25 years of

ensemble forecasting”, which includes contributions that dis-

cuss different aspects of ensemble prediction: the design of

ensembles, the initialization of ensemble forecasts and model

error schemes, high-resolution and convective-permitting

ensembles, error growth and predictability, verification met-

rics and application of ensemble forecasts.

In this article, in section 2 we discuss how ensembles

have been gradually introduced in operational weather pre-

diction suites. In section 3, we discuss the configuration of

the seven global, medium-range ensembles operational at the

time of writing (June 2018). In section 4, we briefly dis-

cuss how ensembles are now used also to estimate analysis

uncertainties, and for the sub-seasonal and seasonal forecast

range. Finally, some key areas of ongoing research aiming to

improve further ensemble forecasts are discussed in section 5.

2 THE MOVE TOWARDS ENSEMBLES
SIGNALLED A PARADIGM SHIFT IN
WEATHER PREDICTION

Since forecasters started using numerical models to predict

the weather, they realized that also for the synoptic scales

(and not just for local weather), there were cases when fore-

cast errors would remain small for long forecast ranges, while

in other cases even a 1-day forecast would be wrong. This

operational experience was supported by scientific work that

pointed out that due to the chaotic nature of the atmosphere,

even very small initial errors could grow very rapidly and

affect forecast quality in a very short time (Lorenz, 1969a;

1969b; 1982).

In the 1970s and 1980s, scientists and operational forecast-

ers started investigating whether it would be possible to know

in advance, at the time when a forecast is issued, whether the

future situation would be easy (or, say, easier than average)

to predict. In other words, they were looking for an objec-

tive method that could provide a level of forecast confidence.

This confidence could be expressed in probabilistic terms, for

example in terms of the probability that a specific event (e.g.

rainfall more than 50 mm over 6 h) would occur. Otherwise,

it could be expressed in terms of a range of weather scenar-

ios, each with an assigned probability of occurrence. In this

way, forecasters could provide their users with the probability

of occurrence of each scenario, or of any “tailored” weather

condition.

An example of the thoughts of the 1980s comes from

Palmer and Tibaldi (1988), who wrote that “It is apparent,
therefore, that a scheme to predict forecast skill will have
substantial benefit in the medium range, and is an essential
requirement for dynamical extended range forecasting.” To

achieve this, different approaches were tested, mostly based

on ensembles, i.e. on mixing and combining many forecasts

either started from different conditions, or generated using

different models, or using a combination of the two (for some

of the earlier works, see, e.g., Hollingsworth, 1980; Hoffman

and Kalnay, 1983; Molteni et al., 1996).

2.1 Why are probabilistic forecasts generated using
“ensembles” and not by other means?

Ensembles proved to be the only practical way to predict the

time-evolution of the probability density function (PDF) of

forecast states. Indeed, Ehrendorfer (1994a; 1994b) argued

that even integrating a Liouville equation for the forecast PDF

for systems with more than very few degrees of freedom might

require the use of ensemble methods. This means that ensem-

bles are the only feasible way in numerical weather prediction

(NWP), given that the number of degrees of freedom of the

phase space spanned by the NWP models is of order 106 to

1010 for existing operational systems.

The dimensionality of the problem is not the only reason

why approaches other than ensemble-based are not used to

estimate the time evolution of the PDF of forecast states. Talk-

ing about weather prediction, Ehrendorfer (1994b) states that

“… the applicability of the Liouville equation in context
more realistic than considered in this work may be sub-
ject to considerable problems,” and that “… an approach
based on the Liouville equation is generally considered to be
impracticable in the context of forecasting forecast skill.”

2.2 Is there any evidence that ensemble forecasts are
more valuable than single ones?

There are at least two reasons why ensemble-based, proba-

bilistic forecasts are more valuable than single forecasts. The

first reason, as mentioned above, is that they make it possible

not only to predict the most likely scenario but also to estimate

the probability that an alternative event, or in general any

event of interest, can occur. In other words, ensembles pro-

vide users with more complete and valuable information, and

one way to measure the difference in value between single

and ensemble forecasts is to use the Potential Economic Value

metric (PEV: Richardson, 2000). PEV is based on a sim-

ple cost–loss model, whereby a user can decide to pay an

amount (cost) C to protect against a loss L, linked to a spe-

cific weather event. Forecasts’ value can then be assessed by
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considering users with different C/L ratios, and by construct-

ing a curve that shows the savings that users can make if they

used the forecasts. Clearly, PEV is a function of the reliabil-

ity and accuracy of the forecasts: a poor (either unreliable or

inaccurate) ensemble will not be able to outperform a good,

single forecast. Richardson (2000) and Buizza (2001) showed

that the ECMWF ensemble provides more valuable forecasts

than the single, ECMWF high-resolution model. Since its first

use, routine PEV computations at ECMWF have continuously

confirmed this result.

The second reason why ensemble-based, probabilistic fore-

casts are more valuable than single forecasts is that an

ensemble provides forecasters with more consistent (i.e. less

changeable) successive forecasts. This can be assessed if one

compares consecutive ensemble forecasts, issued 24 h apart

and valid for the same verification time. Results indicate

that the most recent ensemble jumps less, i.e. is more con-

sistent with respect to the one issued 24 h earlier, than the

corresponding single forecasts (Zsoter et al., 2009).

3 WHAT CHARACTERIZES AN
ENSEMBLE CONFIGURATION?

Clearly, each institution that issues ensemble-based fore-

casts has developed its ensemble using its model and

its data-assimilation system. If we consider, for example,

ECMWF, the model used by its ensembles is the same

model used to generate its high-resolution forecast, and the

data-assimilation system used to generate the ensemble ini-

tial conditions is the same as the one used to generate the

high-resolution initial conditions. In the past 25 years, both

the model and the data assimilation have been evolving,

their resolutions have been increasing substantially, and these

changes have clearly affected the evolution of the ensemble

performance.

Hereafter, we are not going to review model and data assim-

ilation aspects, but we are going to focus on some of the key

characteristics of an ensemble configuration:

a Initial perturbation strategy;

b Model uncertainty simulation strategy;

c Resolution, forecast length and number of members.

With the term “initial perturbation strategy” we mean the

way uncertainties linked to observation quality and coverage,

and to data-assimilation assumptions, are simulated in the

ensemble. With model uncertainty simulation strategy, we

mean the approach followed to simulate model errors, linked

e.g. to physical parametrizations, and the fact that models

have a finite resolution. These two aspects, together with

ensemble resolution (horizontal and vertical), the forecast

length and the number of members, define the key charac-

teristics of an ensemble system and affect its accuracy and

reliability.

3.1 Initial perturbation strategy

Initial-condition uncertainties arise, for example, because

observations are affected by observation errors, and do not

cover the whole globe with the same quality and frequency.

Furthermore, the process of estimating the initial state of the

system, from which a forecast is computed, is based on some

statistical assumptions and approximations.

There is not a unique perturbation strategy to simulate ini-

tial uncertainties. In the first version of the ECMWF ensemble

(Molteni et al., 1996), initial uncertainties were simulated

using singular vectors (SVs: Buizza et al., 1993; Buizza and

Palmer, 1995): perturbations with the fastest growth over a

finite time interval. Compared to random initial perturba-

tions, SVs are characterized by a faster growth rate, which is

very similar to the forecast error growth rate. SVs remained

the only type of initial perturbation used in the ECMWF

ensemble until 2008, when the ensemble of data assimila-

tions (EDA) started being used together with SVs (Buizza

et al., 2008; Isaksen et al., 2011). SVs are still an essential

component of the ECMWF ensemble, and they keep pro-

viding dynamically relevant information about initial uncer-

tainties that could have a strong, negative impact on forecast

errors.

In contrast to the ECMWF ensemble, the first version of

the NCEP ensemble used bred-vectors (BVs) to simulate ini-

tial uncertainties. The BV cycle (Toth and Kalnay, 1997)

aims to emulate the data-assimilation cycle, and it is based

on the notion that analyses generated by data assimilation

will accumulate growing errors by the virtue of perturbation

dynamics. This is because neutral or decaying errors detected

by an assimilation scheme in the early part of the assimila-

tion window will be reduced, and what remains of them will

decay due to the dynamics of such perturbations by the end of

the assimilation window. In contrast, even if growing errors

are reduced by the assimilation system, what remains of them

will amplify by the end of the assimilation window.

The ECMWF and the NCEP ensembles were followed,

in 1995, by the Canadian ensemble, which was designed

to simulate a wider range of error sources, linked to initial

uncertainties due to observation errors and data assimila-

tion assumptions, and was also linked to model uncertainties

(Houtekamer et al., 1996). Because of this, the Canadian

initial perturbation strategy could take into account uncertain-

ties linked to observations’ quality and coverage, and initial

condition errors linked to model uncertainties.

In rather general terms, the initial perturbation strategies

used by all the other ensembles operational today (see Table 1

and the references reported in section 3.3 for more details

regarding the global medium-range ensembles) have been

inspired by these three approaches, although their detailed

implementation differs from them, and includes upgrades and

changes. The reader is referred to the references included in

section 3.3 for more details.
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TABLE 1 Key characteristics of the seven global, medium-range ensembles operational at the time of writing (June 2018), listed in alphabetic order
(column 1): initial uncertainty method (column 2), model uncertainty simulation (Y/N, column 3), truncation and approximate horizontal resolution
(column 4), number of vertical levels and top of the atmosphere in hPa (column 5), forecast length in days (column 6), number of members for each run
(column 7), and number of runs per day (column 8). The ECMWF ensemble is also run up to 6 days at 0600 and 1800 UTC, see Table 2

Centre
Initial unc.
method (area)

Model
unc.

Truncation
(degrees, km)

No. of Vert
Lev (TOA, hPa)

Fcst
length (d)

No. of Members
(pert+unpert)

No. of Runs
per day (UTC)

CMA BV(globe) No T213 (0.56◦; 70 km) 31 (10.0) 10 14 + 1 2 (0000/1200)

CPTEC EOF(40◦S:30◦N) No T126 (0.94◦, 120 km) 28 (0.1) 15 14 + 1 2 (0000/1200)

ECMWF SV(NH, SH, TC)+
EDA(globe)

YES Tco639 (0.14◦; 18 km) 91 (0.01) 0–15 50 + 1 2 (0000/1200) up to 15 days

(2 per week up to 46 days)

Tco319 (0.28◦; 36 km) 15/46

JMA LETKF and

SV(NH, TR, SH)

YES TL479 (0.35◦; 40 km) 100 (0.01) 11 25 + 1 2 (0000/1200)

KMA ETKF(globe) YES N400 (0.28◦; 32 km) 70 (0.1) 12 24 + 1 2 (0000/1200)

MSC EnKF(globe) YES 800× 400 (0.45◦, 50 km) 40 (2.0) 16/32 20 + 1 2 (0000/1200)

NCEP ETR(globe) YES T574 (0.30◦; 34 km) 64 (2.7) 0–8 20 + 1 4 (0000/0600/1200/1800)

T372 (0.60◦; 55 km) 8–16

3.2 Model uncertainty strategy

Model uncertainties arise because the models that we use

to generate weather forecasts are imperfect, simulate only

certain physical processes on a finite mesh, and do not

resolve all the scales and phenomena that occur in the real

world.

The Canadian ensemble implemented in 1995 was the first

one to include also a simulation of model uncertainties. Fol-

lowing the Canadian example, the simulation of model uncer-

tainties was introduced in the ECMWF ensemble in 1999,

using a stochastic approach to simulate the effect of model

errors linked to the physical parametrization schemes (Buizza

et al., 1999). This was the first time that a stochastic term was

introduced in numerical weather prediction.

At present, four main approaches are followed in ensemble

prediction to represent model uncertainties (see, e.g., Palmer

et al. (2009) and Buizza (2014) for a review):

• A multi-model approach, where different models are used

in each of the ensemble members; models can differ

entirely or only in some components (e.g. in the convection

scheme);

• A perturbed parameter approach, where all ensemble inte-

grations are made with the same model but with different

parameters defining the settings of the model components;

one example is the Canadian ensemble (Houtekamer et al.,
1996);

• A perturbed-tendency approach, where stochastic schemes

designed to simulate the random model error component

are used to simulate the fact that tendencies are known only

approximately; one example is the ECMWF Stochasti-

cally Perturbed Parametrization Tendency scheme (SPPT:

Buizza et al., 1999);

• A stochastic backscatter approach, where a Stochastic

Kinetic Energy Backscatter scheme (SKEB: Shutts, 2005)

is used to simulate processes that the model cannot resolve,

e.g. the upscale energy transfer from the scales below

the model resolution to the resolved scales; an example

is the SKEB scheme that was used at ECMWF in the

medium-range/monthly ensemble (ENS) from Novem-

ber 2010 to June 2018 (the scheme was switched off

in the most recent upgrade of the ECMWF ensemble

on 5 June 2018 since it was not delivering any signifi-

cant improvements and was increasing the computation

cost by about 2.5%); SKEB is still used in the ECMWF

operational seasonal ensemble SEAS5, which was imple-

mented in November 2017 (and was not upgraded in June

2018).

The design of model uncertainty schemes to be used in

ensembles is a key area of active research in many institutions

(see, e.g., Raynaud et al., 2012; Piccolo and Cullen, 2016;

Leutbecher et al., 2017; Lock, 2018).

3.3 Resolution, forecast length and number
of members

Resolution, both horizontal and vertical, forecast length and

the number of members are three further key characteristics

of an ensemble configuration. They are also key cost drivers.

Theoretical work done in the 1970s and 1980s suggested that

one needs at least about 10 members to be able to have a good

ensemble-mean forecast (Leith, 1974), i.e. to have enough

members to filter out the unpredictable scales. Follow-on

works indicated that further increasing the ensemble size

led to improved performance (Buizza and Palmer, 1998).

Today, most of the operational ensemble forecast systems

have between 20 and 50 members (Leutbecher, 2018), with

ensembles used to estimate analysis uncertainties having a

size going up to more than 250 members (Houtekamer, 2018).

Considering that we need to generate forecasts in a rea-

sonable amount of time (say about 1 h) and that we have

a finite amount of computing resources, compromises must

be taken when an ensemble configuration is defined. Ide-

ally, we would like to have high resolution in physical and

probabilistic space, i.e. a very high spatial resolution and as

many members as possible. Furthermore, we would also like
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to extend the forecast length as long as skilful forecasts for at

least certain spatio-temporal scales can be issued, i.e. up to

the time for which forecasts outperform a climatological fore-

cast (for a discussion of the forecast skill horizon, the reader

is referred to Buizza and Leutbecher (2015)). At ECMWF,

for example, to be able to serve as many users’ demands

as possible (in terms of forecast quality and resolution), we

decided to compromise on the design of the ensembles, and

use three different resolutions to generate forecasts valid for

the medium-range, the monthly and the seasonal time-scales.

By using a variable resolution approach (Buizza et al., 2007;

Vitart et al., 2008) and decreasing the resolution past the

medium-range, we had been able to afford to generate oper-

ationally ensemble forecasts with a longer forecast length,

with a minimum impact on the ensemble performance. By

further reducing the resolution, we had been able also to gen-

erate operationally seasonal forecasts (Molteni et al., 2011).

Results so far have suggested that this strategy, to “remove”

scales in the model integration as they lose predictability

(i.e. as forecast skill on these scales is lost) and as their

impact on the slightly larger scales is reduced, is a very effec-

tive way to use computing resources to generate operational

forecasts.

Table 1 shows the key characteristics of the seven ensemble

prediction systems operational at the time of writing (June

2018) that provide global forecasts valid for the medium- and

the extended-range (say for between 7 and 15 days). They are

generated at the following institutions:

1 CMA, the China Meteorological Administration;

2 CPTEC, the Brazilian Center for Weather Prediction and

Climate Studies (Centro de Previsão de Tempo e Estudos

Climáticos);

3 ECMWF, the European Centre for Medium-Range

Weather Forecasts;

4 JMA, the Japanese Meteorological Administration;

5 KMA, the Korean Meteorological Administration;

6 MSC, the Meteorological Service of Canada;

7 NCEP, the US National Centers for Environmental Predic-

tion.

Together, these seven institutions produce every day more

than 500 medium-range forecasts, with a horizontal resolution

that ranges from about 16 to about 120 km. All simulate initial

uncertainties, but only five also simulate model uncertainties

(Buizza (2014) provides an overview of their key character-

istics and performance). They all use different techniques to

generate the initial perturbations:

• The CMA ensemble uses bred-vectors (BV), perturbations

designed to emulate the analysis cycle (Toth and Kalnay,

1993; 1997);

• The CPTEC ensemble uses Empirical Orthogonal Func-

tions (EOF: Coutinho, 1999; Zhang and Krishnamurti,

1999);

• The ECMWF ensemble uses a combination of SVs

and EDA-based perturbations (Buizza and Palmer, 1995;

Buizza et al., 2008);

• The JMA ensemble uses a combination of SVs and per-

turbations generated using a Local Ensemble Transform

Kalman Filter (LETKF: Miyoshi and Sato, 2007);

• The KMA ensemble uses an Ensemble Transformed

Kalman Filter method with localization (Bowler et al.,
2008; Kai and Kim, 2014);

• The MSC ensemble uses an Ensemble Kalman Filter

(EnKF: Houtekamer et al., 2009; 2014);

• The NCEP ensemble uses perturbations generated with

an Ensemble Transform with Rescaling (ETR: Wei et al.,
2006; 2008) technique.

The fact that they also use different approaches to simu-

late model uncertainties indicates that there is not a unique

way to generate reliable and accurate probabilistic forecasts.

This is not to say that ensemble performance is independent

of the ensemble’s design. This was, for example, highlighted

by Buizza et al. (2005), who compared the performance of

the three global ensembles operational in 2004 at ECMWF,

MSC and NCEP. They concluded that performance depends

not only on the quality of the model and the data-assimilation

system, but also on the methodology followed to simulate the

sources of forecast error. Park et al. (2008) also documented

the large difference between the performance of the single

ensembles: for the day-5 prediction of synoptic scales over

the Northern Hemisphere (identified by the 500 hPa geopo-

tential height), the difference between the best and the worst

ensemble skill was about 3 days.

Forecasts from the ensembles listed above are exchanged

routinely, and can be accessed in delayed mode (48 h

after they have been generated) thanks to the WMO

TIGGE project. TIGGE is the World Meteorological Orga-

nization THORPEX Interactive Grand Global Ensemble,

which started in 2004; TIGGE data can be accessed from

the ECMWF web site: https://www.ecmwf.int/en/research/

projects/tigge. TIGGE data can be used, for example, to

understand the impact of using different ensemble method-

ologies on the ensembles’ performance (see, e.g., Park et al.,
2008; Hagedorn et al., 2012).

4 ENSEMBLES ARE USED ALSO FOR THE
SUB-SEASONAL AND SEASONAL
TIME-SCALES, AND TO ESTIMATE
ANALYSIS UNCERTAINTIES

In the 1990s–2000s, operational very high-resolution fore-

casts started including also ensemble components, run with

limited-area models nested in global ensembles, and ensem-

bles started being used also to provide extended-range

(monthly and seasonal) forecasts. Following the Canadian

https://www.ecmwf.int/en/research/projects/tigge
https://www.ecmwf.int/en/research/projects/tigge
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example, ensembles were also developed to estimate anal-

ysis uncertainties at ECMWF (Isaksen et al., 2011) and

Météo-France (Berre et al., 2007). In this article, we are not

going to discuss limited-area ensembles, because the tech-

niques that they use to simulate initial and model uncertainties

are similar to the techniques used in the medium-range ensem-

bles, reviewed in section 3. Hereafter, we continue to discuss

global ensembles for the extended range and to estimate

analysis uncertainties.

4.1 Extended-range ensembles, and reforecast
ensembles

Since the beginning of the 2000s, ensembles have been used

to generate operational sub-seasonal (monthly: Vitart, 2004)

and seasonal forecasts. Extended-range ensembles have, gen-

erally speaking, a coarser resolution then the medium-range

ensembles, to limit the production costs (see, e.g., Table 2 for

ECMWF). Compared to the medium-range ensembles, most

of them also include a dynamical ocean model, to be able to

simulate better the propagation of coupled ocean–atmosphere

phenomena, like the organized convection associated with the

Madden–Julian Oscillation.

Using ensembles is even more essential for the extended

time range, to be able to extract reliable and accurate sig-

nals. It is worth mentioning that there is increasing evidence

to suggest that for this time range the number of ensem-

ble members should be higher than for the medium-range

ensembles, say about 100–200, compared to about 25–50 for

the medium-range (T. Stockdale, personal communication,

2018).

A key ingredient of extended-range ensembles is that they

rely on reforecast ensembles (Hamill et al., 2006; Hagedorn

et al., 2008), i.e. on ensemble forecasts generated with the

operational ensemble configuration but for a large number

of past cases. Extracting predictable signals for the extended

range has benefitted from the use of ensembles of reforecasts,

since they allow us to estimate in a better way the ensem-

ble error characteristics (e.g. model biases, or whether they

tend to under- or over-estimate certain phenomena: Hage-

dorn et al., 2012). At ECMWF, for example, the reforecast

suite of the medium-range/monthly time-scale covers the past

20 years (an 11-member ensemble is run twice a week, for

each week of the past 20 years), and the reforecast suite of

the seasonal ensemble covers the past 30 years (a 15-member

ensemble is run once a month, for the past 30 years). Refore-

cast ensembles are essential also to be able to have a statisti-

cally significant estimate of the skill of monthly and seasonal

forecasts, to understand the predictability of different phe-

nomena and how to extract the predictable signals from the

forecasts. The need of having an ensemble of reforecasts

makes the cost (in terms of computer power, data handling

and data storage) of the monthly and seasonal ensembles

very high, and this is one of the key reasons why they are

characterized by a coarser resolution (Table 2).

4.2 Ensembles of analyses

Since its inception in 1995 (Houtekamer et al., 1996), the

Canadian ensemble included an ensemble of analyses, gen-

erated using an ensemble Kalman filter (EnKF). The initial

conditions of the ensemble forecasts were defined by one

of the members of the EnKF. The EnKF has been provid-

ing MSC Canada with information about uncertainties in the

analysis. ECMWF (Buizza et al., 2008; Isaksen et al., 2011)

and Météo-France (Berre et al., 2007) started producing an

Ensemble of Data Assimilations in 2008.

The ECMWF EDA is based on an ensemble of N sep-

arate data assimilation procedures (where N is 25 at the

time of writing, and is planned to increase to 50 in 2019),

each using perturbed observations and a model uncertainty

scheme. Observations are perturbed to simulate observation

errors, linked to the instruments’ characteristics and to their

representativeness. As for the case of ensemble forecasts,

model uncertainties are simulated in the ensembles of data

assimilations to take into account the fact that the models used

to define the analysis (i.e. the forecast initial conditions) are

not perfect.

Table 3 lists the key characteristics of the EDA used at

ECMWF. As mentioned above, since 2008 the ECMWF EDA

is used in combination with the SVs to define the initial con-

ditions of the medium-range/monthly ensemble. The addition

of EDA-based perturbations has had a major impact on the

ensemble reliability and accuracy in the short forecast range

over the extratropics, and for the whole forecast range over

the Tropics (Buizza et al., 2008).

5 A LOOK INTO THE FUTURE

Looking into the future, three main trends can be detected in

the way ensembles are planned to be upgraded:

• A move towards an Earth-system approach to modelling

and assimilation;

• A move towards a seamless approach in the design of the

analysis, medium-range, sub-seasonal and seasonal ensem-

bles;

• A move towards higher resolution.

The first trend towards an Earth-system approach is linked

to results obtained in the past two decades that showed that

by adding relevant processes we can improve the quality of

the existing forecasts, and further extend the forecast skill

horizon at which dynamical forecasts lose their value. Buizza

and Leutbecher (2015), for example, looked at the evolu-

tion of the skill of the ECMWF ensemble from 1994 to

date, and concluded that “Forecast skill horizons beyond
2 weeks are now achievable thanks to major advances in
numerical weather prediction. More specifically, they are
made possible by the synergies of better and more complete
models, which include more accurate simulation of relevant
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TABLE 2 Key characteristics in June 2018 of the ECMWF ensembles of forecasts for the limited-area community (row 1), the medium-range (row 2),
the sub-seasonal range (row 3) and the seasonal range (row 4), in terms of resolution (truncation and resolution in km; column 2), number of vertical
levels and top of the atmosphere (column 3), forecast length (column 4), number of members (column 5), and frequency (column 6). ENS for the
monthly extension starts from the ENS medium-range forecasts. SEAS5 forecasts are extended to 13 months every quarter (on the 1st of February,
May, August, November). ENS reforecasts include 11 members, run twice a week, for the most recent 20 years. SEAS5 reforecasts include 25
members, run once per month for 36 years (1980–2016)

ECMWF ensembles
of forecasts

Horizontal
resolution:
truncation (km)

No. of
Vertical Levels
(TOA, hPa)

Fcst length
(days/months)

No. of
Members
(pert+unpert) Frequency of operational production

ENS for LAM (BC-project) Tco639 (18 km) 91 (0.01) 0–6.5 day 50 + 1 2 per day (0600/1800)

ENS for the medium-range Tco639 (18 km) 91 (0.01) 0–15 day 50 + 1 2 per day (0000/1200)

ENS for the monthly extension Tco319 (36 km) 91 (0.01) 15–46 day 50 + 1 2 per week (0000, Mon/Thu)

SEAS5 Tco319 (36 km) 91 (0.01) 7/13 months 50 + 1 1 per month (0000 on the 1st)

TABLE 3 Key characteristics in June 2018 of the ECMWF Ensemble of Data Assimilations, in terms of resolution (horizontal truncation and grid
resolution in km; number of vertical levels and top of the atmosphere), assimilation method (4-dimensional variational and assimilation window),
number of members (including times when the ensemble of analyses is produced), and whether they include a simulation of observation and model
uncertainties

Resolution Uncertainties
Hor. Truncation
(km)

Vert. Lev
(TOA)

Assimilation
method (window)

Members
(frequency) Obs Model

ECMWF Ensemble of Data Assimilations (EDA) Tco639 (18 km) 137 (0.01 hPa) 4D-Var (12 h) 25 (0000, 1200 UTC) Yes Yes

physical processes (e.g. the coupling to a dynamical ocean
and ocean waves), improved data-assimilation methods that
allowed a more accurate estimation of the initial conditions,
and advances in ensemble techniques.”

The second trend towards a seamless approach comes partly

from scientific reasons and partly for technical reasons. From

the scientific point of view, for example, there is evidence

that processes that were thought to be relevant mainly for

the extended range are also relevant for the short range. An

example comes from the introduction of a dynamical ocean

in the ECMWF ensembles. At ECMWF, for example, we

started using a coupled ocean–land–atmosphere model for the

seasonal and the monthly time-scales, and we introduced it

in the medium-range ensemble only later, when we realized

that it could contribute to improving its reliability and accu-

racy. From the technical point of view, having an integrated

approach whereby the same model is used in analysis and pre-

diction mode, from day 0 to year 1, simplifies production,

maintenance and the implementation of upgrades. Further-

more, it helps the diagnostics and evaluation of a model ver-

sion, since tests carried out over different time-scales can help

identify undesirable behaviours that could lead to forecast

errors.

The third trend towards higher resolution comes from the

need to resolve better the smaller scales, and their interac-

tion with the slightly-less-small scales, and so on. All scales

are relevant in weather prediction, and errors propagate from

the smallest to the larger scales. For example, at ECMWF

improvements in the treatment of convection in the Tropics

led to improvements in the development and propagation of

organized convection (Bechtold et al., 2014), which had pos-

itive impact on the skill of monthly forecasts over Europe

(Vitart, 2013).

If we consider the current ensembles, we should not forget

that even if they use resolutions of 18–120 km (see Table 1),

they are able to resolve in a realistic way only scales that are

about 5–6 times their resolution. This is because the scales

closer to the model grid spacing are not simulated in an accu-

rate way (e.g. to avoid numerical instabilities, strong diffusion

operators are used, which makes the energy spectra at the

finest scales far from the observed spectra). This means, for

example, that frontal dynamics is still poorly resolved, and

this can have strong impact on the prediction of synoptic-scale

features in the medium-range, and of low-frequency variabil-

ity (e.g. the North Atlantic Oscillation, or European blocking)

in the monthly time-scale.

Thus, at the time of writing (June 2018) the ECMWF

global ensemble has an effective resolution of about 100 km

up to forecast day 15 (although its grid spacing is 18 km),

and the highest-resolution limited-area ensemble run, e.g.

at Météo-France, has an effective resolution of about 15 km

(although its grid spacing is about 3 km). If we want to be able

to predict phenomena such as intense wind gusts or extreme

precipitation linked to convective events, it is essential that we

aim to further increase the models’ resolution. At ECMWF,

the 2016–2025 Strategy talks about aiming to increase the

ensemble resolution to about 5 km by 2025, with limited-area

models expected to run at least with a 1 km resolution by

that time. These plans, as discussed above, should not forget

the need to increase also resolution in probability space, if

we want to provide users with more reliable forecasts also for

very rare events, and this can only be achieved by increasing

the ensemble size.

Another area where progress should be expected is in

the definition of the ensemble initial conditions. Ensembles

of analyses and forecasts should be linked closer together,



8 BUIZZA

to improve the consistency in the simulation of initial

uncertainties. In terms of modelling, physical processes that

are not yet included in the models but are relevant for weather

prediction should be included to make the forecasts more and

more realistic. At ECMWF, for example, as part of our strat-

egy to move towards Earth-system models and assimilation

systems, we are investigating the potential role of including

an interactive aerosol in our ensemble (A. Benedetti and F.

Vitart, personal communication, 2018). Model error schemes

should be redesigned to simulate better the model uncertain-

ties linked to each process, and to the numerical schemes

used in the numerical integrations. Coupled models, which

are now used in ensemble forecasts but not yet in ensembles

of data assimilations, should be used in both to provide better

and more consistent initial conditions for the coupled ensem-

bles. Similarly, coupled initial perturbations (or, even better,

ensembles of coupled initial conditions) should be used to

initialize the coupled ensembles.

The ECMWF 2016–2025 Strategy, adopted by the Council

in December 2015 (ECMWF, 2015) indeed talks about build-

ing an Earth-system model that includes all relevant processes

(“… develop an integrated global model of the Earth system
to produce forecasts with increasing fidelity on time ranges up
to one year ahead”). It talks also about adopting an ensemble

approach for all time-scales (“Operational ensemble-based
analyses and predictions that describe the range of possible
scenarios and their likelihood of occurrence and that raise
the international bar for quality and operational reliability”).

This last point raises the question of whether, as part of

the ECMWF operational forecasts, ECMWF should con-

tinue to generate one high-resolution analysis and one

high-resolution forecast. So far, experimental tests have indi-

cated that re-centring the ECMWF ensemble on the ECMWF

high-resolution analysis leads to better ensemble forecasts.

Results have also indicated that adding the high-resolution

forecast to the 51 ensemble members into a mixed-resolution,

52-member ensemble leads to better short-range forecasts.

As part of the work that we are performing to implement

the ECMWF 2016–2025 Strategy, we have started to investi-

gate further the performance of a mixed-resolution ensemble,

which could include N members at a lower resolution and

M (with M> 1, but with M<N or even M<<N) members

at higher resolution (M. Leutbecher and F. Vitart, personal

communication, 2018). Advances in post-processing and cal-

ibration techniques (Vannitsem et al., 2018) should make it

possible to merge ensembles with different resolutions.

6 CONCLUSIONS

In this article, we have briefly reviewed how ensembles have

become an essential component of the operation suites of

most of the meteorological centres. The main characteristics

of the seven medium-range global ensembles operational at

the time of writing (June 2018) have been illustrated. The

establishment of ensemble methods as key tools not only

for estimating forecast uncertainty at all forecast ranges but

also for estimating analysis uncertainties has been discussed.

Finally, some key trends that are being followed by many

operational centres to improve further their performance have

been highlighted.

In the articles included in this Special Issue, the reader

can find more detailed discussions of some of the aspects

that we discussed above: ensemble size, initial condition

and model error representation, error growth and scale-

dependent predictability, diagnostics of ensemble-based

probabilistic forecasts and applications of ensemble forecasts.

On the issue of ensemble size, it is not clear whether the cur-

rent size of about 20-to-50 is large enough to provide reliable

probabilistic forecasts, especially of the tails of the distribu-

tions, which includes the events that users with low cost/loss

ratios would be more interested in (Leutbecher, 2018). Results

from Canada, for example, indicate that having a large enough

ensemble size is very important if one wants to provide a

reliable analysis error estimate. Indeed, the Canadian Ensem-

ble Kalman Filter has 256 members, while their ensemble

forecast system has only 21 (Houtekamer, 2018).

Together with ensemble size, resolution is a key cost-driver

in ensemble prediction. Although some users would want to

trade resolution for ensemble size, care should be taken in

doing so. Resolution is key if one wants to predict phenomena

characterized or influenced by small scales, such as extreme

wind storms or convection events. Frogner (2018) and Weyn

(2018) discuss some of the issues and challenges linked with

the design of very high-resolution and convective-permitting

ensembles. Designing ensemble systems capable of providing

skilful information for these scales is very challenging, partly

because initializing the small scales is very difficult.

Investigating the predictability of different phenomena

such as the North Atlantic Oscillation (Weisheimer, 2018)

and understanding forecast error growth (Buizza et al., 2018),

and more generally the scale dependency of the forecast skill

horizon (Hoskins, 2013; Buizza and Leutbecher, 2015) are

also key to help us to advance the design of future ensem-

bles. Moving towards more complete Earth-systems can help

to extract predictable signals; the ocean is an example of an

Earth-system component that has been added to operational

global ensembles in the past years, and interactive aerosol

and the inclusion of some atmospheric gases (e.g. ozone,

CO2, other greenhouse gases) might be the next components

that could help further extend the forecast skill horizon. In

this Special Issue, Zanna (2018) discusses the state of the

art in ocean modelling and recent advances in the design of

ocean ensembles, and Xian (2018) raises issues linked to the

prediction of aerosol. Palmer (2018) also provides some very

interesting views on how ensemble prediction will evolve in

the next 25 years.

Two other key topics discussed in this Special Issue

are ensemble verification, and how best to communicate

uncertainty to the users. Siegert (2018) illustrates how
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complex the verification of ensemble performance is. He dis-

cusses the sensitivity of one score that is used to assess the

performance of ensemble systems, the ignorance score, shows

that it depends on the ensemble size, and proposes to apply

an ensemble-adjustment. On the second topic, Fundel (2018)

discusses the difficulty to communicate probabilities to lay

audiences and the user’s prevalent resistance to probability

forecasts, and reports the experience of the German weather

service (DWD) in introducing probabilistic forecast products

to three exemplary user groups.

Let me conclude by saying that, in the past 25 years, ensem-

bles have demonstrated to be extremely valuable and essential

sources of information. In weather prediction, ensemble per-

formance has been improving by about 2 days per decade in

the medium-range (Buizza and Leutbecher, 2015), and even

by up to 1 week per decade for the monthly time-scale for

large-scale phenomena such as the Madden–Julian Oscilla-

tion (Vitart, 2013; Vitart et al., 2014). Their performance will

continue to improve, provided that we can advance in the

areas discussed above (modelling, including model error sim-

ulation, data assimilation and ensemble initialisation, ensem-

ble design and membership), and their use will continue to

increase, provided that we can help users to take decisions

using probabilistic information.

This latter one is, in my view, another very hard chal-

lenge that we are facing. One possible way forward in this

area is to interact more with experts working in other fields

where ensembles are used to estimate a range of possible out-

comes, such as the insurance sector and economics (see, e.g.,

Ravazzolo and Vahey, 2013; Sun and Jin, 2016). By work-

ing together with them and social scientists that have been

studying decision theory under severe uncertainty (see, e.g.,

Busemeyer et al., 1993; Comes et al., 2011), we could identify

the best way to promote the use of ensemble-based, prob-

abilistic forecasts in our field, and thus promote the use of

probabilistic-based information. More work along these lines

should also be promoted.
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