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‡IBIMET - CNR

First Draft - October 19, 2015

Present Version - September 25, 2017

Abstract

We propose an aggregate growth index that explicitly accounts for non-normality in the

micro-economic distribution of firm growth rates and for the presence of a negative scaling

relation between their volatility and the size of the firm. Using Compustat data on US pub-

licly traded company, we show that the new index tracks aggregate fluctuations better than

the sample average, confirming that the statistical properties characterizing the micro-economic

dynamics of firms are relevant for the dynamics of the aggregate. To better characterize the

origins of aggregate fluctuations, we decompose the index in two parts, describing respectively

the modal (typical) value of growth rates and the tilt (asymmetry) of their distribution. Regres-

sion analysis shows that models based on this decomposition, despite their simplicity, possess a

remarkable explanatory and predictive power with respect to the aggregate growth.
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1 Introduction

The distribution of output, employment, productivity, profitability and, in general, of all measures

of firms performance is characterized by a high and persistent level of heterogeneity.1 The same

heterogeneity is present also in the distribution of the corresponding rates of change. In particu-

lar, the distribution of firms growth rate persistently displays tails fatter than those of a normal

distribution (Stanley et al., 1996; Bottazzi and Secchi, 2003b, 2006a) and its dispersion is related

with firms size (Hymer and Pashigian, 1962) through a negative scaling relation with an exponent

approximately equal to −0.2 (Stanley et al., 1996; Amaral et al., 2001; Bottazzi and Secchi, 2006b;

Criscuolo et al., 2016). These properties, which appear robust across countries and sectors, suggest

that idiosyncratic shocks at firm level cannot be considered merely as disturbances or noise around

a common trend but, rather, represent factors directly shaping the observed patterns of industrial

evolution. Their widespread presence rises interesting questions about the link between micro be-

haviors and aggregate dynamics supporting the intuition put forward in Haltiwanger (1997) that

changes in macro aggregates can be better understood by looking at the evolution of the cross

sectional distribution of activity and of their rates of change. Inspired by these considerations,

Higson et al. (2002) show that the variance and skewness of the growth rate distribution in terms

of sales display a countercyclical behavior while kurtosis seems, on the contrary, procyclical. This

link between micro properties and aggregate dynamics was confirmed to be quite robust in later

studies finding the dispersion of the rates of change of productivity, employment, prices and busi-

ness forecasts to be countercyclical while the dispersion of investments rates to be procyclical (see

Bachmann and Bayer, 2014, and the references therein). However, with the only exception in Holly

et al. (2013),2 all these studies focus only on central moments of the micro-economic distributions

and do not take explicitly into account neither the heteroskedastic nature of firm growth rates nor

the fat tails of their distribution.

In this work we attempt to overcome this limitation and we show that exploiting the richer

statistical structure of the firm growth rates distribution developed in the recent years in the field of

industrial dynamics (Amaral et al., 2001; Bottazzi and Secchi, 2006b,a) improve our understanding

of the economic dynamics observed in the aggregate. With this aim we develop a theoretical micro-

founded index, that we call H2, able to synthetically account for both the non-normality and the

scaling of volatility of the distribution of firms growth rate. Using Compustat data on publicly

traded firms operating in US from 1960 to 2013, we show that the index H2, while remaining

simple to compute, tracks the observed aggregate growth better than the first central moment of

the growth distribution, that is the sample average. With respect to the existing literature this

1The effect of this heterogeneity on macroeconomic fluctuations has been the subject of several recent papers:
Gabaix (2011) suggests that a significant part of aggregate fluctuations is explained by idiosyncratic shocks hitting
few large firms, Carvalho and Gabaix (2013) investigate the possibility that the microeconomic structure explains the
swings in macroeconomic volatility and explore the role of idiosyncratic shocks due to input-output linkages across
the economy.

2Indeed, they characterize parametrically the firm growth rates distribution showing that both its shape and its
scale co-move with the business cycle and contribute to the observed volatility of aggregate growth.
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first result highlights the importance of properly characterizing the rich micro-economic statistical

structure of firms growth and the complex economic phenomena embedded in it in order to better

understand the aggregate dynamics.

Not surprisingly the agreement between our micro-economic index H2 and aggregate growth is

far from being perfect pointing at the existence of important economic phenomena not captured by

the fat tails and the scaling of variance characterizing the growth rates distribution. In searching for

a further improvement of the performance of our index H2 and consistently with our empirically-

driven approach, we revert to data and consider the following simple facts. In 1973, at the end

of a three years robust expansion of the US economy, the average growth rate of the US public

companies was around 15%.3 In the same year the modal, or typical, growth rate was much milder,

around 6%, but only 27% of all publicly traded firms were performing worse than that. Two years

later, in 1975, at the end of the 73-75 recession, the average growth was -6.6%, a huge contraction,

but the typical one was a more modest -1.4%. However, in that year, almost 60% of US publicly

traded companies were performing worse than the modal value. A similar picture can be observed

at the end of the Great Recession. These facts suggest that the large aggregate fluctuations often

observed are not exclusively due to a simple common shift in the performances of individual firms,

but they tend to be linked to the change of status of large groups of firms passing from being

relative over-performers to be relative under-performers, and vice versa. These facts show that

one often observes the existence of a wedge between the mean and the mode of the firm growth

rate distribution, implying that the observed typical growth rate tends to be different from the

average one. Despite its simplicity, this observation managed to escape to most of the previous

investigations.

Inspired by these remarks and in line with our distributional approach, we decompose the micro-

economic index H2 into two parts: one part representing the modal growth rate and a residual part,

that we call “distributional tilt”. The former captures, by definition, the most probable growth

rate one can observe in an economy at a given point in time. In this sense, it represents the growth

rate of the typical firm. The latter identifies the share of firms performing better or worse than the

typical one and it represents a measure of the asymmetry of the distribution. Beyond its simplicity,

this decomposition possesses three distinctive features. Firstly, it allows to separate, along the

business cycle, the change in the typical company behavior from the effects of moving firms above

and below the modal threshold. Secondly, being based on the mode, our statistics is robust to the

presence of extreme growth rates, which are likely to emerge in presence of fat tails. This choice

allows us to avoid any trimming of data and to keep the likely important information embedded

in extreme values.4 Thirdly, the distributional tilt captures a form of distributional asymmetry

different from the one captured by the more widely adopted skewness (i.e. third central moment),

3Here we focus on publicly traded firms since they are those covered by the data source we use in the present
paper.

4Trimming or winsoring the data is common in this literature (cfr among others Higson et al., 2002; Gabaix, 2011;
Holly et al., 2013). Any procedure of trimming/winsoring extreme observations, in any case disputable, becomes
highly problematic in presence of fat tails.
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with a likely different informational content.

We explore the validity of the mode-tilt decomposition of the index H2 with regression analysis.

Using the Compustat database, we show that the mode of the firm growth rate distribution tracks

the growth rate of the aggregate output more closely than the average firm growth rate. Both the

mode and the distributional tilt display a rather strong procyclical nature, manifesting a quite sat-

isfactory explanatory power of the aggregate growth. In particular, the latter possesses a predictive

power significantly better than that of the average growth rate. Finally and more interestingly, we

show that these explanatory and predictive powers remain significant if we replace the Compustat

aggregate growth rate with more general measures of macroeconomic growth, such as the growth

rate of the Real Gross Domestic Product. In summary, the single micro-index, by blending to-

gether the typical growth rate and the distributional tilt, confounds important but diverse aspects

of the relation between micro heterogeneity and aggregate dynamics. Conversely, the proposed

decomposing improves our capability of tracking aggregate fluctuations and open new possibilities

to better understand the micro-macro linkages.

The remainder of this paper is organized as follows. Section 2 describes the data and defines

the main variables. Section 3 introduces the micro-index capturing the statistical properties of

the firms growth rate distribution and discuss its decomposition into the typical growth and the

distributional tilt. Section 4 contains the regression analysis while Section 5 concludes.

2 Data

The firm level analysis in this paper is based on US publicly traded companies as collected in the

Compustat North America database and covers the period 1960-2014.5 Firm size is measured in

terms of Net Sales6 expressed in millions of US dollars and deflated using the GDP Implicit Price

Deflator index (base year is 2009), as reported in FRED (Federal Reserve Economic Data). We

denote with Si,t the size of firm i at time t, with Gi,t = Si,t+1/Si,t− 1 the net growth rate and with

gi,t = log(Si,t+1/Si,t) the corresponding logarithmic growth rate.

Economic activity at the macro level is defined using the real Gross Domestic Product (GDP)

and the real Final Sales of Domestic Products (FSDP) expressed in billions of chained 2009 US

dollars, as reported in FRED. We will denote with GGDP

t and GFSDP

t their respective net growth rate

at date t. Notice that micro data from Compustat are organized in fiscal years while aggregate

data are provided in calendar year.7 In order to compare them we express everything in terms of

the fiscal year (see Appendix A.1 for details).

Differently from previous works, we did not perform any trimming or winsorizing of the firm

5Standard & Poor’s Compustat North America is a database of financial, statistical, and market information
covering publicly traded companies in the United States and Canada. Canadian firms are excluded from our study.

6Net sales represents gross sales (the amount of actual billings to customers for regular sales completed during
the period) reduced by cash discounts, trade discounts, and returned sales and allowances for which credit is given
to customers. The result is the amount of money received from the normal operations of the business.

7This simple fact seems to went unobserved in the literature and might be responsible for a spurious dependence
in lagged variables. For example in Higson et al. (2002), Holly et al. (2013) and Gabaix (2011).
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Figure 1: Time evolution over the period 1960-2013 of the net growth rate of the real FSDP
GFSDP

t (dark-violet line with filled circles), of the Compustat aggregate GCOMP

t computed according
to (2) (black line with empty squares) and of the average net growth rate (cyan line with asterisks)
of Compustat companies Ḡt computed according to (1). The reference scale of the latter is on the
right y-axis. Shaded areas represent recessions according to the NBER business cycle dates.

growth rates distribution.8 These procedures are generally adopted to avoid mixing of organic

growth and external growth via e.g. merger and acquisition. However, we checked that the extreme

growth rates present in our database represent perfectly legitimate events of the normal life of a

business firm (See Appendix A.2 for a deeper discussion of this point). Hence we prefer not to

exclude them from the analysis.

3 Aggregate growth rate and firms dynamics

Obviously, if all the companies of the US economy grew at the same annual net growth rate Gt, then

the aggregate total sales, as measured for example by the real FSDP, would growth at the same

rate. Does this trivial equivalence extend to the average micro-level growth rate when a population

of heterogeneous firms is considered? In other words, is the average net growth rate of companies a

good approximation of the aggregate growth rate observed for the whole economy? To answer this

question, Figure 1 reports the time evolution of GFSDP

t , the net rate of change of the real FSDP,

8Higson et al. (2002) and Holly et al. (2013) trim growth rates at (−25%, 25%) and (−50%, 50%) respectively
while Gabaix (2011) winsorize them at 20%.
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Figure 2: Total Sales net growth rates (Gt) distribution in 2013 together with a Gaussian and
Asymmetric Exponential Power (AEP) fit (left panel). Total Sales log-growth rates (gt) distribution
in 2013 together with a Gaussian and Asymmetric Exponential Power (AEP) fit (right panel).

together with the average net firm growth rate of our sample defined as

Ḡt =
1

N

∑

i

Si,t+1 − Si,t

Si,t
. (1)

As can be seen, the difference between the average growth rate of US publicly traded business

companies (reference scale on the right y-axis) and the macro growth rate (reference scale on

the left y-axis) is huge, often spanning two orders of magnitude. And this appears true across

highly diverse historical periods. One possible explanation for the observed difference might be the

limited coverage of the Compustat database, which only includes the relatively few companies that

are publicly traded. One might suspect, indeed, that when averaging over a larger group of US

firms, a stronger agreement between Ḡt and GFSDP

t will emerge. Due to the lack of data, we cannot

increase the number of firms we consider, but we can do a similar test by reducing the scope of the

aggregate variable. To this end we define the Compustat net growth rate as

GCOMP

t =

∑
i Si,t+1∑
i Si,t

− 1 , (2)

which is basically equivalent to the GFSDP

t but it is built considering only the publicly traded com-

panies included in Compustat.9 Its time evolution is reported in Figure 1 (reference scale on the

left y-axis). Even if GCOMP

t fluctuates significantly more than the aggregate growth rate GFSDP

t , the

two quantities have the same order of magnitude and they are highly correlated, with a Spear-

mann rank statistics of 0.58. However, Ḡ does not seem to track GCOMP

t any better than GFSDP

t .

The average growth rate Ḡt constitutes a poor and uninformative approximation not only of the

macro-economic growth rate, but also of the growth rate of the Compustat aggregate. Thus, we

can conclude that the difference between the micro-economic average and the aggregate measure

9Our definition of Gi,t requires to observe the same firm in two consecutive years. For consistency in building
GCOMP

t we consider only those firms that are present in both t+1 and t. Since this might be associated with an
attrition bias Appendix A.3 provides evidence that this bias is not very large.
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persists even when the whole universe of firms contributing to the aggregate measure is used in

computing the average.

Why do we observe such a poor agreement between micro and aggregate growth rates? The

high and persistent heterogeneity observed in firm growth rates (Stanley et al., 1996; Bottazzi and

Secchi, 2003a) surely plays a role in this mismatch. The left panel of Figure 2 displays the empirical

density of the net growth rates for Compustat firms in 2013. Notice its extremely skewed shape.

This skweness implies that the net growth rate at firm level can be extremely diverse and this

diversity is in fact responsible of the high volatility of Ḡt observed in Figure 1. The average values

are in fact driven by a few extreme observations and they are in general a poor and unreliable

approximation of the net growth rate of the typical firm. In presence of such extreme growth

events, the log growth rate gi,t (see the right panel of Figure 2) seems better suited than the net

growth rate Gi,t to represent the growth dynamics of firms. Indeed, the density of log growth rates

presents an apparent smoother and more symmetric behavior.10 This difference in the shape of the

two densities is not peculiar of 2013 but it is common across all the years of our database. However,

the statistical issue posed by the extremely skewed nature of the net growth rates distribution is

not the only phenomenon responsible for the poor agreement between micro and aggregate growth

rates. As discussed in the next section, a more fundamental role is played by the multiplicative

nature of the firm growth process.

Heteroskedasticity and fat tails

As a large amount of empirical studies has made clear, the best synthetic description of the dynamics

of firms is the so called Gibrat’s Law,11 which postulates that a firm’s growth dynamics can be

characterized as a geometric Brownian motion Si,t+1 = ǫi,tSi,t where ǫi,t is a random variable

shocking a firm’s initial size Si,t in a multiplicative way.12

In order to exploit the multiplicative nature of the firm growth process and the observed relative

higher stability of the log growth rate distribution we rewrite the Compustat aggregate net growth

rate GCOMP

t in terms of firm log growth rates gi,t as

GCOMP

t =

∑
i Si,te

gi,t
∑

i Si,t
− 1 . (3)

Applying the expectation operator and using the definition of the cumulant generating function

10Note that fitting an Asymmetric Exponential Power distribution (cfr. Bottazzi and Secchi, 2011) on gi,t suggests
that the empirical distribution is neither perfectly symmetric nor Gaussian in the tails. We will discuss and exploit
these two features in the next Section.

11Sutton (1997) is a complete even if rather old review of the literature on the Gibrat’s legacy. See Lotti et al.
(2003) for an update. See also Fu et al. (2005).

12An alternative, additive, model would be Si,t+1 = Si,t + ǫi,t. This model would imply that the average and the
standard deviation of firm growth rates decrease linearly with the size of the firm, a prediction which is strongly
violated by data. Notice also that Gibrat’s original idea was that a firm’s growth rate is independent from its size.
This is only partly true, as we will discuss below.
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one obtains

E[GCOMP

t ] =

∑
i Si,tE[egi,t ]∑

i Si,t
− 1 =

∑
i Si,te

∑

∞

n=1 Cn[gi,t]/n!

∑
i Si,t

− 1 , (4)

where Cn[gn,t] represents the n-th central cumulant of the distribution of gi,t.

Even if the support of distribution of firm log growth rate gi,t is smaller and more stable than the

support of net growth rate Gi,t, the distribution itself still possesses a significant level of variance

and we have to account for it. If we assume that the growth shocks gi,t are independently and

normally distributed, we can truncate the cumulant expansion at the second order13 and define H1

as

H1
t ≡ E[GCOMP

t ] = eC1[gi,t]+
1

2
C2[gi,t] − 1 = eµt+σ2

t /2 − 1 , (5)

where µt and σt are respectively the mean and standard deviation of log growth rates of Compustat

companies at date t. The expression in (5) takes into account the contribution of the variance of a

Gaussian random variable to the expected value of its exponential. The time profile of GCOMP

t and

of H1
t are both reported in Figure 3. The variable are similar in magnitude, even if seemingly

diverging. Their Spearman rank correlation is 0.32, suggesting a moderate correlation. A stronger

agreement between the two quantities would have been observed, at least on average, with possible

small discrepancies mainly due to sampling errors in the estimate of µt and σt, if the assumptions

of normality and independence of the firm growth shocks were valid.14 In fact, as we will discuss

below, both these assumptions are violated.

Firstly, as it is apparent from Figure 2 (right panel), the empirical density of gi,t presents tails

substantially fatter than those of a Gaussian distribution also within the Compustat database.15

This is in line with Stanley et al. (1996) and Bottazzi and Secchi (2006a).

Secondly, in (5) we did not take into account the dependence of the volatility of a firm’s growth

rates on its size, a relation robustly observed in the literature. This dependence is clearly illustrated

in Figure 4, were a binned plot reports the standard deviation of growth rates in 2013 as a function

of firm (log) size Si in the same year.16 It is clear that the former declines with latter, confirming

that the growth rates of small firms are more volatile than those of large companies. This negative

relation displays an approximate exponential decay with an exponent of about −0.23(0.01), a

value very similar to that found in previous investigations (Stanley et al., 1996; Amaral et al., 2001;

Bottazzi and Secchi, 2006b; Criscuolo et al., 2016). The bottom panel in the same figure reports the

estimate of the scaling exponent in all the years under investigation. The exponent is characterized

by a remarkable stability which confirms that the scaling property is not a peculiar feature of any

13In this case, indeed, Cn[gi,t] = 0 for n>2.
14The weight Si,t being very skewed, the firms in the sample contribute in different ways to the determination of

the sample average and the error does not generally decrease with
√

N . This is basically the central argument of the
“granularity” literature (Gabaix, 2011).

15Results of the Maximum Likelihood estimation of the Asymmetric Exponential Power family on the growth rates
distribution strongly confirm this statement and are available upon request.

16We rank firms according to their size in a specific year, then we split them in equipopulated bins, compute the
standard deviation of growth rates of firms in each bin for that year, and plot this standard deviation against the
average log-size of the bin. This procedure can be repeated for each year separately. Notice that the bin each firm
belongs to can change in different years.
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particular year but it is rather persistent in time.

This evidence implies that in order to improve our approximation of E[GCOMP

t ], we should include

both the observed non-normality of the log growth rate distribution and the heteroskedastic relation

between the size of the firm and the volatility of its growth rates. We again start with the relation in

(4) but we follow a different approach in deriving an approximation for E[GCOMP

t ]. First, given the

fat-tailed nature of the growth rate distribution, we are forced to retain all the central cumulants

since, in general, it will be Cn[gi,t] 6= 0 for any n. Second, in order to capture the heteroskedastic

effect, we assume that the second cumulant, the variance, displays an exponential relation with

size with a characteristic exponent β while all the others cumulants remain independent from size.

Formally, Cn[gi,t] = Cn,t for n = 1 and n > 2, while C2[gi,t] = (S̄/Si,t)
2βtC̄2,t, where S̄ and C̄2,t

represent a reference firm size and the variance of growth rates of firms of that size.17 With these

17The choice of a specific reference size is irrelevant for the argument. However, for statistical reliability, it is better
to chose a moderate value. A too large value would imply a small sample, as the number of firms of larger size are
fewer. Conversely, a too small value would be sensitive to the lower fringe of the size distribution, which is rather
turbulent due to the continuous exit of incumbent and entry of new firms.
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assumptions, the expression in (4) can be rewritten as

E[GCOMP

t ] =

∑
i Si,te

(C2[gi,t]−C̄2,t)/2

∑
i Si,t

eC1,t+C̄2,t/2+
∑

∞

n=3 Cn,t/n! − 1 ,

where we have factorized the size-dependent variance term. Reorganizing the terms in the last

expression we obtain a new approximation of the aggregate growth rate

E[GCOMP

t ] = ΘtE[eg(S̄)]− 1 ≡ H2
t , (6)

where g(S̄) is log growth rate of a firm of size equal to the reference level S̄ and

Θt =

∑
i Si,te

((S̄/Si,t)
2βt−1)C̄2,t/2

∑
i Si,t

(7)

is a correction term that takes into consideration the scaling of the growth rates variance with

size. In order to estimate H2
t we follow a three-step procedure. We begin by estimating the scaling

relation between the standard deviation of growth rates and firm size, thus obtaining an estimate

of βt for each year in the database (cfr. the bottom panel in Figure 4). Then, we split the sample

10



 0.9

 0.95

 1

 1.05

 1.1

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

θt eσ0
2/2

Figure 5: Time evolution over the period 1960-2013 of the factor Θte
σ2
t (S̄)/2 appearing in (6)

computed with S̄ = 1, that is assuming Total Sales equal to 1 million dollar in real terms.20 Shaded
areas represent recessions according to the NBER business cycle dates.

of firms in equally populated size classes and we compute the expected log growth rate of firms

belonging to the size class including S̄.18 In doing this we make the assumption that the distribution

of growth rates for firms in the size class S̄ does not display a large variance, so that we can safely

assume that E[eg(S̄)] = eµt+σ2
t (S̄)/2.19 Finally, we compute the correction factor Θ using the entire

firm size distribution, summing across all firms, each weighed with its observed size Si,t. Notice that

in the expression for Θ the smallest firms, which are weighted less for their reduced size, have in

fact an enhanced effect due to the scaling of the standard deviation. If the latter were not present,

that is if β1 = 0, then it would be Θ = 1 and one would get back to the previous approximation

H2
t ∼ H1

t .

The performance of H2
t in tracking the observed aggregate growth rate GCOMP

t can be judged

once again from Figure 3. Three comments are in order. First, H2
t is substantially better than H1

t

in its capability of tracking GCOMP

t , with an almost doubled Spearmann correlation of about 0.77.

Second, the improvement associated with H2
t becomes more important starting from the 70s when

a well known compositional change of the Compustat database, due to the listing of younger and

smaller firms, began. This observation lends support to our approach: it is precisely when the firms

in the sample become potentially more diverse that explicitly taking into account the distributional

properties of their sizes, their growth rates, and the relationship between the two, becomes more

18The number of classes should be large enough for the firms in each class to have reasonably similar sizes and
small enough to provide a reasonable sample size for the computation of the average growth rate.

19Assuming normality for the distribution of log-growth rates in a single size class is very different, and much less
demanding, than assuming normality for the distribution of log-growth rates in the entire sample, as we did for the
derivation of H1

t in (5).
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important. Third, the estimated value Θt e
σ2
t (S̄)/2 in (6) turns out to be almost 1 in every year of

our data set, as shown in Figure 5. As a consequence, the expression for H2
t can be simplified to

read

H2
t ≃ eµt − 1 ∼ µt .

This means that when one uses COMPUSTAT data the information contained in H2
t in terms of

the cumulants of the underlying growth rates distribution are to a large extent captured by the

simple mean log growth rate. This result is unexpected and not obvious and it derives from the

interplay between the values of the scaling coefficient β and of the variance of the reference size

class σ2(S̄) in the different years.

Asymmetry

While H2
t tracks better than more naive alternatives the aggregate behavior of GCOMP

t , it has been

obtained under the rather restrictive assumption that only the second cumulant of the firms growth

rate distribution depends on firm size while all the others do not. To refine H2 and further improve

20The plot does not change significantly if other reference sizes are adopted.
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Figure 7: Firm level growth rate distribution for high and low levels of observed aggregate growth
rate (dashed lines). Left: the difference is a shift of the mean. Right: in addition to a shift, also
the asymmetry (tilt) of the distribution changes.

its ability to track GCOMP

t one would need to estimate at least a few of the infinite higher order

cumulants Cn[gt] together with their possible relation with size. This turns out to be an unworkable

strategy, the main reason being the relative small size of our sample of firms. Indeed, as higher

cumulants are considered, the sample size required to obtain proper estimates of their values in

each size class increases and, consequently, the number of size classes available for estimating the

scaling coefficient reduces. This makes obtaining a reliable fit of the higher-order scaling relations

impervious.

At the same time, however, it is apparent that the fluctuation of the mean and the scaling

of the variance do not capture entirely the temporal evolution of the cross-sectional growth rates

distribution. Consider Figure 2 (right panel), which reports the probability density of the log growth

rates of COMPUSTAT companies in 2013. Contrary to what one might conclude form a superficial

visual inspection, in that year the empirical density is asymmetric and its average µt = 0.106

overestimates the typical modal growth rate, mt, which is equal to 0.027. This is not a specific

feature of the year 2013: mean and mode tend to be significantly different over the whole period

under analysis. To show this, Figure 6 reports the time evolution of both quantities together with

GCOMP

t . The mode appears much less volatile than the mean and it tends to stay on the opposite

side of the aggregate growth rate GCOMP

t . Thus, the growth rates distribution is characterized by

a changing but persistent asymmetry, which somehow seems to tack the aggregate fluctuations.

Indeed the diverse dynamics of mode and mean reinforce the idea that the distributional properties

of firm growth rates cannot be simply captured by µt and that the aggregate growth rate is linked

to the dynamics of individual companies in ways more complex of those that one single central
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tendency measure might capture.

These considerations suggest that we may improve in tracking GCOMP

t by supplementing the

index H2
t with some measure of asymmetry. Given the strong similarity between H2

t and µt, we

can decompose the index in the sum of two component

H2
t ∼ mt + pt , (8)

wheremt represents the mode of the distribution and pt = µt−mt a residual term that we identify as

the “distributional tilt”. Technically, the mode-tilt decomposition allows us to identify and separate,

inside the average growth rate observed in one specific year as captured by H2
t , the typical, modal,

value of the log-growth rate from the movement of the probability mass between the two regions

below and above the mode. The distributional tilt represents a measure of the observed asymmetry

of the distribution which is alternative with respect to the more widely adopted skewness.

In the next section we show that by considering the modal value and the tilt as separate and

complementary observations, we can build regression models with remarkable explanatory and

predictive power with respect to the aggregate growth GCOMP

t . However, before moving to study

the performance of the decomposition in (8), we want to conclude this section by providing a simple

economic interpretation of what the wedge between the mean and the mode of the firms growth rate

distribution means in terms of the underlying firms dynamics and their response to macroeconomic

and idiosyncratic shocks.

Figure 7 reports a stylized representation of the firm growth rates distribution characterized by

the peculiar tent shape appearing in Figure 2 and robustly observed in the literature. The peak of

these tents represent the mode of the distribution, that is the most common, or typical, growth rate

observed in the sample considered. Clearly, if the distribution of the growth rates is symmetric,

the peak represents also the mean. In both the left and the right panel of Figure 7 we depict two

of such notional distributions associated with two different growth regimes: a low growth and a

high growth ones. In the scenario represented in the left panel we assume that, while influenced

by idiosyncratic factors, all firms react homogeneously to the macroeconomic shocks hitting the

economy. For the law of large numbers, this assumption would result in a simple shift of the

distribution in the two regimes with the mean and the mode of the distribution moving together

and ultimately sharing the same relation with the aggregate growth dynamics.

The scene appears different if one allows not only for idiosyncratic individual shocks, but also

for possible heterogeneous responses of individual companies to the aggregate shocks. In this case,

since some group of firms might over-react while other firms might under-react, together with the

shift we are likely to observe a change in the distribution of probability mass around the modal

value, as firms with diverse characteristics move across the modal threshold (in both directions),

breaking the symmetry and separating the average and the modal growth rate. This scenario is

represented in the right panel of Figure 7 where, in moving from a low growth to a high growth

regime, the firm growth rates distribution is modified both by a shift and by a “tilt” of its shape.

This second scenario is more flexible and it provides a more general framework, as the shift and
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tilt movements of the micro distribution are allowed to take place over different time scales, to have

different degree of persistence and, ultimately, to exert different effect on, or differently react to, the

time evolution of the aggregate growth rate. This scenario is also more suitable to accommodate

the observed large differences in the behavior of individual companies, that are continuously hit

by idiosyncratic shocks and that due to differences in their internal structure or in the market

environment in which they operate, are plausibly differently affected by the economic opportunities

or downturns. All this is in tune with the empirical evidence built in the last few decades about the

sectoral specificity of firm growth dynamics (cfr. for example the discussion in Haltiwanger, 1997),

as the mass of probability moving around the modal value of the aggregate distribution might well

represent groups of firms belonging to the same or similar sectors.21 In the next section we compare

the ability of the mean and the skewness, on one side, and the mode and the tilt, on the other, to

track GCOMP

t within a regression framework.

4 Regression analysis

So far we have been content of assessing the goodness of our index in (6) and the further decompo-

sition in (8) simply through correlation measures and visual inspections. In this Section we want

to go beyond those simple analysis and try to asses, on a more quantitative basis, how good our

micro variables are in tracking the cyclical behavior of the aggregate economic activity. We will

perform a series of regression analysis to measure both the explanatory and the predictive power

or the former with respect to the latter. The aggregate quantity we consider here, that is our

dependent variable, will be GCOMP

t . This is a an informative exercise since, in this case, we know

that the sample of firms we consider contains, by definition, all the firms contributing to GCOMP

t .

As the regression analysis will made clear, however, this information is not trivial to extract and

the choice of the statistics used to capture the properties of the the micro level distribution is likely

to affect the quality of the results.

Explanatory power

To investigate the correlation between the aggregate net growth rate GCOMP

t and our statistics based

on the micro log-growth rate distribution of Compustat firms we consider the following specification

GCOMP

t = α+

T∑

τ=0

βm
t−τmt−τ +

T∑

τ=0

βp
t−τpt−τ + ǫt , (9)

where mt and pt represent the mode and the distributional tilt (µt −mt) defined in the previous

Section.22 In what follows the mode mt is estimated using the Half Sample Method (HSM) devel-

21The relevance of the sectoral decomposition of the aggregate growth rate inside this more flexible framework is
an inviting subject for further research which, due to space constraints, we decide not to pursue here.

22One could use H2
t instead of µt but, due to the similarity of the two quantities, we would not observe any

significant difference. Since the computation of the former is more complicated, in what follows we will use its
simpler approximation.
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Table 1: EXPLANATION AND PREDICTION - Compustat AGGREGATE

Decomposition of R2

(1) (2) (3) (4) (5) (6) (1)a (2)a (3)a (4)a (5)a (6)a

mt 1.008∗∗∗ 0.893∗∗∗ 48% 39%
(0.201) (0.187)

mt−1 0.157 0.290 4% 15%
(0.151) (0.316)

mt−1 0.297∗ 0.367 2% 6%
(0.156) (0.231)

pt 0.602∗∗∗ 0.586∗∗∗ 52% 43%
(0.099) (0.113)

pt−1 0.067 0.575∗∗∗ 8% 49%
(0.125) (0.191)

pt−2 -0.254∗∗ -0.559∗∗∗ 5% 30%
(0.110) (0.170)

µt 0.761∗∗∗ 0.714∗∗∗ 96% 78%
(0.065) (0.073)

µt−1 0.043 0.373∗∗ 9% 53%
(0.095) (0.156)

µt−2 -0.100 -0.290∗∗ 2% 16%
(0.068) (0.110)

γt -0.004 -0.004 4% 3%
(0.003) (0.003)

γt−1 0.005 0.009∗ 7% 30%
(0.004) (0.005)

γt−2 0.000 0.000 0% 1%
(0.003) (0.004)

R̄2 0.720 0.711 0.739 0.708 0.253 0.210

Obs. 54 54 52 52 52 52

mt, pt, µt, γt represent the mode, the tilt as defined in equation (8), the mean and the skewness of the firms growth

rate distribution over the time span 1960-2013. The dependent variable is GCOMP
t

, the net growth rate of the Compustat

aggregate. Robust standard error in parenthesis. As usual ∗∗∗, ∗∗, ∗ denotes coefficients statistically significant at the

1%, 5% and 10% respectively.
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oped in Bickel and Frühwirth (2006) and briefly described in Appendix B.1. This specification is

then compared with

GCOMP

t = α+
T∑

τ=0

βm
t−τµt−τ +

T∑

τ=0

βp
t−τγt−τ + ǫt , (10)

where µt is the mean and γt the skewness of the firm log-growth rate distribution. Both specifica-

tions contain a measure of central tendency, the mode in the first case and the mean in the second,

and a measure of distributional asymmetry, the tilt and the skewness respectively. In both models

T stands for the number of lags allowed for in the model and ǫ is an error term. The results of the

two regressions are reported in Table 1 and discussed below.

Let us start by estimating via OLS the simple benchmark model obtained setting T = 0.

Column (1) shows that both mt and pt display a robust procyclical behavior. They both have

a highly significant power in explaining GCOMP

t : the overall goodness of fit of this simple model

is good with an adjusted R-squared R̄
2
of about 72%. This explanatory power is almost evenly

distributed between the mt and the pt: as reported in column (1-2)a they both account for about

half of the explained variance of GCOMP

t .23 This as to be confronted with the same benchmark case

obtaining estimating (10). In this case the result is reported in Column (2). The overall goodness of

fit is slightly lower than with the previous model and, more importantly, the explanatory power of

this second model is entirely due to µt, while no significant correlation emerges between GCOMP

t and

γt. The skewness and the tilt, while in principle capturing similar effects, perform differently in

practice. This suggests that the way in which these two measures capture the observed asymmetry

is in fact different.24

Next we turn our attention to the more general case by estimating (9) setting T = 2. Adding

two lags to the benchmark model improves its overall explanatory power (Column 3): both mt

and pt contribute to explain the dependent, and lagged variables turn out to be relevant. The

comparison with the model using the average and the skewness (Column 4) confirms the interest of

our decomposition, as in this case only the average is significant. We verified that adding further

lagged values of the mean and the skewness does not improve at all the quality of the model: none

of the extra regressors emerge as statistically significant.

From this analysis we discover that, as expected, the modal firm growth rate is procyclical. But

from the positive contemporaneous correlation coefficient, we also observe that during an economic

boom not only the typical firm grows more, but one also observes a larger “mass” of firms which

perform better than the typical one. Conversely, during an economic downturn, the typical firm

tends to grow at a lower pace, eventually negative, and at the same time more firms perform worse

23This decomposition of the R2 is obtained using the “lgm” metric described in Chevan and Sutherland (1991).
To perform the decomposition we use the “Relaimpo” R package (Grömping, 2006). Note that this decomposition
applies to R2 and not to the adjusted R2; for our purpose of within model comparisons this discrepancy is irrelevant.

24This is a consideration which might well have implications going beyond the exercise presented here. For instance
Imbs (2007), in studying the relation at the sectoral level among output growth, its volatility and investments, note
that the skewness of output growth does not show any significant correlation with output growth. On the base of
this evidence he concludes that investments are not as lumpy as usually expected. Our result suggest that when
sample of heterogeneous firms are considered, the way in which one measures the asymmetry could be relevant. An
analogous exercise conducted using the tilt instead of the skewness might lead to different conclusions.
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than it. The double relation between GCOMP

t and the distribution of micro growth rates cannot be

devised by the simple analysis of the mean value and it is not revealed if one adopt the skewness as

a measure of asymmetry. The presence of a strong relation with the lagged tilt hints to a possible

predictive power of this statistics and lead us to the analysis of the next section.

Predictive power

In this section we move from an explanatory to a forecasting exercise and investigate the power of

m and p in predicting the future values of GCOMP

t , again comparing the results with what can be

obtained using µt and γt. To do that, we remove from (9) and (10) the values of the regressors

contemporaneous to the dependent variable, that is τ = 0, and we estimate the remaining lagged

variables setting again T = 2. The results of an OLS estimate are reported in columns (5) and (6)

of Table 1.

First, considering its simplicity, the goodness of fit of the model with mode and tilt is rather

remarkable, with an R̄2 of about 25%. Almost 80% of this predictive power is due to the role of

the distributional tilt, whose two lag values emerge as highly statistically significant. Hence, the

movement of the probability mass of firm growth rates around the typical, modal, value in a year,

pt, represents a new and apparently useful predictor of the observed aggregate fluctuations. The

performance of the model with mean and skeweness is lower, with an R̄2 of 21%. As expected from

the previous analysis, the skewness index has a relatively minor predictive power.

Robustness checks

To check the robustness of our regression results and hence the reliability of our interpretations in

this section below we perform 3 sets of tests whose results are reported in Table 2.

A first concern is related with our choice of not removing extreme growth events from the

database in connection with the use of an estimation technique, the OLS, known to be sensitive

to them. To deal with the fact that extreme growth rates might represent either legitimate events

of the life of a business firm or peculiar ones, like mergers and acquisitions, that one would like

to clean out we perform two complementary exercises. First we estimate our benchmark model

with a technique more robust to the presence of extreme observations, namely the Least Absolute

Deviation (LAD) regression. Second we estimate the benchmark by trimming our individual firm

growth rates at 25%. Using the LAD approach, instead of the OLS, does not seem to have any

impact on our results, the estimated coefficients are unaffected.25. Trimming the database seems

to have a bigger quantitative impact on estimates without, however, changing qualitatively our

story. This was expected since the trimming procedure “artificially” changes the shape of the

cross-sectional distribution of individual growth rates directly impacting mt and pt. So the shape

of this distribution ends up to depend on the trimming threshold; a dependence that support once

again our skepticism in sample cleaning of this sort.

25Note that the R̄2 for the LAD regression is not directly comparable with the adjusted R̄2
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Table 2: EXPLANATION AND PREDICTION - ROBUSTNESS CHECKS

LAD Regression 25% Trimming Parametric Mode and Tilt Including macro controls

(1) (2) (3) (4) (5) (6) (7) (8)

mt 1.042∗∗∗ 1.201∗∗∗ 1.313∗∗∗ 1.266∗∗∗ 0.907∗∗∗

(0.280) (0.060) (0.173) (0.184) (0.161)

mt−1 0.509∗ 0.447 0.126

(0.295) (0.317) (0.368)

mt−2 -0.057 -0.011 0.471∗

(0.278) (0.294) (0.261)

pt 0.602∗∗∗ 1.072∗∗∗ 0.535∗∗∗ 0.624∗∗∗

(0.128) (0.104) (0.072) (0.105)

pt−1 0.427∗∗ 0.464∗∗

(0.189) (0.212)

pt−2 -0.313∗ -0.422∗∗

(0.160) (0.207)

(ar − al)t 0.794***

(0.121)

(ar − al)t−1 0.665**

(0.300)

(ar − al)t−2 -0.491*

(0.270)

R̄2 0.458 0.862 0.775 0.749 0.156 0.144 0.787 0.395

Obs 54 54 54 54 52 52 54 52

mt, pt represent the mode (estimated with the HSM method in column (1) and (2) and AEP from column (3) to (6)) and the

tilt as defined in equation (8) of the FGRD over the time span 1960-2013. (ar − al)t represents one alternative way to measure

tilt using scaling parameters of AEP. The dependent variable is GCOMP
t

, the growth rate of the Compustat aggregate, except for

column (2) where it is the aggregate growth computed using all firms with growth rates between [−0.25, 0.25]. Robust standard

error (bootstrap standard errors for LAD regression) in parenthesis. R̄2 represents Pseudo-R2 for LAD regression and adjusted-R2

for others. As usual ∗∗∗, ∗∗, ∗ denotes coefficients statistically significant at the 1%, 5% and 10% respectively.
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A second concern is related to our non-parametric estimate of the mode of the distribution,

as said based on the Half Sample Method (HSM) discussed in (Bickel and Frühwirth, 2006). To

check the robustness of our results in this respect we estimate the mode and the distributional tilt

using a parametric method based on the Asymmetric Power Exponential distribution and whose

details are reported in Appendix B.2. We then estimate again equation (9) with OLS reporting

the results in Columns (3)-(6) of Table 1. Our main results, namely the existence of a good deal of

explanatory and predictive power of the typical growth rates and of a proper index of asymmetry

with the latter playing a dominant role, emerge as robust.

A final concern regards the lack in our regression models of some of the most common explana-

tory factors and predictors of aggregate growth. To check if the omission of these variables affects

our results we follow Gabaix (2011) and we estimate our benchmark models adding controls for

oil and monetary shocks, a short term interest rate and a short term spread.26 Not surprisingly

adding these factors improves the explanatory and predictive power of our regression models. How-

ever their inclusion does not kill the statistical significance of the mode and of the distributional

tilt and their overall contribution to the explained variance remains substantial: more than 80% in

column (7) and almost 40% in column (8)).

Predictive power with macroeconomic aggregates

So far we have provided evidence that describing the structure of the firm growth rate distribution

using its mode mt and the corresponding distributional tilt pt yields a higher explanatory and

predictive power of the net growth rate of the Compustat aggregate than when the mean and the

skewness are used. In this section we conclude our investigation with a harder test: we check if

the explanatory and predictive power of mt and pt is confirmed when we replace the aggregate net

growth rate computed with Compustat firms (GCOMP

t ) with a macroeconomic measure describing

the behavior of the whole economy, namely the net growth rate of the real Gross Domestic Product

(GDP) and the net growth rate of the real Final Sales of Domestic Products (FSDP).27 The spirit of

this exercise is to verify to what extent our simple way to characterize the growth rate distribution

of an important but selected sample of firms, i.e. those that are publicly traded, is effective in

explaining and predicting the dynamics of the whole economy.

With this aim we estimate equations (9) and (10) replacing the dependent variable with the net

growth rate of the real GDP and of the real FSDP respectively. Results are reported in Table 3.

We start by commenting results for the real GDP. Column 1 shows that contemporary values of mt

and pt both have a statistically significant explanatory power for the net growth of the real GDP,

even if as expected the overall goodness of fit (R̄2 is 58%) of this model is lower than what we got

in Table 1 with the same regressors and the aggregate Compustat growth GCOMP

t on the left hand

26Details on these proxies are provided in Appendix A.4.
27In principle FSDP differs from GDP because the former takes into account the change in private inventories. In

practice the growth rate of the two are highly correlated justifying the similarity of the results. With this respect
the correlation of the net growths of GDP and FSDP with the aggregate Compustat growth Gt is not as high, being
0.68 and 0.66 respectively.
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Table 3: EXPLANATION AND PREDICTION - MACROECONOMIC AGGREGATES

Dep. variable RGDP net growth rate RFSDP net growth rate Decomposition of R2

(1) (2) (3) (4) (5) (6) (7) (8) (1)a (2)a (3)a (4)a (5)a (6)a (7)a (8)a

mt 0.486∗∗∗ 0.425∗∗∗ 63% 65%
(0.081) (0.068)

mt−1 0.064 0.026 0.158 0.112 7% 2% 27% 7%

(0.123) (0.097) (0.109) (0.084)

mt−2 0.186∗ 0.197∗∗ 0.134 0.134 10% 6% 7% 4%
(0.099) (0.089) (0.090) (0.080)

pt 0.171∗∗∗ 0.137∗∗∗ 37% 35%
(0.043) (0.036)

pt−1 0.181∗∗ 0.241∗∗∗ 0.150∗ 0.191∗∗∗ 31% 12% 33% 13%
(0.087) (0.075) (0.077) (0.063)

pt−2 -0.248∗∗∗ -0.199∗∗ -0.184∗∗∗ -0.123∗ 52% 8% 33% 4%
(0.071) (0.075) (0.056) (0.065)

µt−1 0.105∗ 0.123∗∗ 41% 62%
(0.057) (0.051)

µt−2 -0.116∗ -0.091∗ 36% 19%
(0.066) (0.054)

γt−1 0.002 0.002 22% 18%
(0.002) (0.002)

γt−2 0.000 0.000 1% 1%
(0.003) (0.002)

Macro controls No No No Yes No No No Yes

R̄2 0.583 0.172 0.068 0.575 0.562 0.184 0.110 0.574

Obs. 54 52 52 52 54 52 52 52

mt, pt, µt, γt represent the mode, the tilt as defined in equation (8), the mean and the skewness of the firms growth rate distribution over the time span 1960-2013.

The dependent variable is GGDP
t

, the net growth rate of Real Gross Domestic Product (RGDP), in columns 1 to 4 and GFSDP
t

, the net growth rate of Real Final Sales

of Domestic Products (RFSDP), in columns 5 to 8. Robust standard error in parenthesis. ∗∗∗, ∗, ∗ denotes coefficients statistically significant at the 1%, 5% and 10%

respectively.
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side (R̄2 was 72%). Around two thirds of this 58% is associated with the mode and the remaining

part to the distributional tilt. Once again the combined explanatory power of mt and pt is higher

than that of mean and skewness with this latter not significant in practically any of our regressions.

Next columns (2) and (3) focus on their predictive power, and consequently they include only

lagged values of the regressors. Three considerations are relevant. Firstly, lagged values of mt and

pt appear to have a predictive power with respect to real GDP net growth; this power is stronger

for the distributional tilt both in terms of statistical significance and in term of their contribution

to the R̄2 which amounts to around 83%. Secondly, lag values of mode and tilt display a stronger

predictive power than the mean and the skewness: R̄2 of the former is 10 percentage points higher.

Thirdly, this predictive power is not killed by the introduction in the regression of a set of usual

GDP predictors. Column 4 indeed show thatmt−2, pt−1 and pt−2 are all highly statistical significant

and they count for around one fourth of the explained variance. Results for the growth of RFSDP

are very similar and all the comments above remain valid.

5 Conclusions

In this paper we explore the relation between the collective growth dynamics of firms and that

observed in the aggregate. Indeed this relation is found to be not trivial: even with a rather

homogeneous sample of firms, those publicly traded in the US, the average firm growth rate is

only weakly correlated and much more volatile than the aggregate one. We show that the two

major factors driving the wedge between micro and macro dynamics are the heteroskedastic nature

of firm growth rates, whose variance is significantly smaller for larger firms, and the fat-tailed

nature of their distribution. Consistently we build a synthetic index, H2, that embeds these two

distributional properties. Using H2 index, the tracking of aggregate fluctuations is improved by

almost 100%, with a correlation between the index and the aggregate growth rate reaching 0.77.

However, the agreement is still far from being perfect. This is due to the fact that H2 doe not take

into account the apparent asymmetry of the distribution of firm growth rates. A fact that has been

remarkably ignored by the previous literature. Thus, inspired by the available empirical evidence,

we propose a parsimonious way to account for the observed asymmetry by decomposing the mean

into the mode and the distributional tilt defined as the difference between the mean and the mode.

Then, we show that a simple regression model for the Compustat aggregate growth rate which

includes as regressors the mode and the distributional tilt of the firms growth rate distribution,

possesses a quite satisfactory explanatory and predictive power. In particular, both the explanatory

and the predictive powers are higher than those obtained using the mean and the skewness of the

same distribution. Remarkably this improved performance is retained when we replace as the

dependent variable in our regressions the aggregate growth rate of the Compustat sample with

the aggregate growth rate of the whole economy, as measured for example in terms of GDP. This

result is consistent with the existence of differences in the way firms react to economic booms and

downturns. An increase of the aggregate growth rate is more likely associated with a “tilt effect”

22



induced by a group of firms that outperform the typical, modal, firm rather than by a “shift effect”

due to a change in the average growth rate of the whole population. We interpret this evidence as

suggesting that the economic mechanisms driving the shift and the tilt effects are diverse, and that

they are likely to manifest themselves to some extent independently and possibly on different time

scales. The use of the average growth rate to describe the common behavior of the sample of firms

contributing to the definition of the economic aggregate, a widespread approach, mistakenly mixes

together two different aspects of the distributional dynamics: the movement of the typical growth

rate and that of the probability mass around it. This mixing might hide what, on the contrary,

can emerge as important separate factors influencing the growth dynamics in the aggregate.

Despite the simplicity and the limits of our approach, we believe that our analysis provides new

supports to the idea that, in order to improve our understanding of the macroeconomic dynamics,

it is crucial to take into consideration the structure of the persistent heterogeneity observed at

the firm level, as captured by the distributional properties that represent the natural description

of this heterogeneity. One has to go beyond the simplistic view that the complex phenomenon of

economic growth can be described by taking simple averages and, rather, build upon the specific

knowledge provided by an increasing range of studies on firm dynamics, at the same time exploiting

the amount of micro-economic data nowadays available.
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Appendixes

A Data

In this Appendix we provide details on the construction of the database used in this paper.

A.1 Synchronization

In the Compustat data base Net Sales are defined based on the fiscal year. Conversely, FRED

series are reported in terms of calendar year. In this paper we decide to express all the variables

according to fiscal years. So we apply to the series for the real Gross Domestic Product (GDP),

the real Final Sales of Domestic Product and the GDP Implicit deflator the following filter

Xt =




X4,t−1 +X1,t +X2,t +X3,t if t ≥ 1976

X3,t−1 +X4,t−1 +X1,t +X2,t if t < 1976 ,

where Xq,t represents the value of the variable X in the quarter q ∈ (1, . . . , 4) of year t. A fiscal

year in the US goes from July 1st to June 30th until 1975 and from October the 1st to September

the 30th from 1976 onward.28

A.2 Extreme growth events

A firm’s extreme (positive or negative) growth episode can represent either a “normal” event, like a

demand shock or the granting of an important patent, or a “special” event, as those associated with

mergers, acquisitions or other operation suddenly changing the structure of the firm. The former

type of event is usually associated with the internal or organic growth of the firm, while the latter

is considered somehow outside the explanatory domain of the regular dynamics of a business firm.

To obtain some hints on the nature and frequency of these events in the Compustat database we

perform an investigation using firms’ annual reports (Form 10-K) obtained from the US Securities

and Exchange Commission. We proceed as follows: we focus on a sample of recent years for which

Forms 10-K are available and we select those firms reporting the highest and the lowest growth

rates in that year. The selected firms are reported in Table 4 and here below we synthetically

report a description of the reasons behind the observed extreme growth rates.

28See the Congressional Budget and Impoundment Control Act in 1974.
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Table 4: EXTREME GROWTH - CASE STUDY

Maximum Growth Rate Minimum Growth Rate

Year Name Si,t Si,t+1 gi,t Name Si,t Si,t+1 gi,t

2013 Quest Solution, Inc.(1) 0.0040 37.3100 9.1122 Neah P.S. Inc.(2) 0.1490 0.0020 −4.3531

2012 MediaShift, Inc.(3) 0.0130 6.9530 6.2661 Revett, Inc.(4) 59.2110 0.0730 −6.7160

2009 Dendreon Corp.(5) 0.1010 48.0570 6.1563 CollabRx, Inc.(6) 12.3980 0.0160 −6.6599

2006 Insite Vision Inc.(7) 0.0020 23.7610 9.3670 Odimo Inc.(8) 18.9840 0.0140 −7.2370

1. Si,t+1 and Si,t represent nominal sale (millions of US$) while gi,t is the logarithmic difference growth rate for firm i at time t.

1. Quest Solution, Inc. (formerly Amerigo Energy, Inc.) The increase in revenue in 2014 is

driven by the acquisitions of Quest Solution and Bar Code Solutions Inc. that was completed

during this year.

2. Neah Power System, Inc. In 2013 this firm has signed a large multi-year development

contract. Nothing similar happens in 2014.

3. MediaShift, Inc. This company is engaged in digital advertising technology services. In

2013, its subsidiary Travora Networks (owned at 100%) signed an asset purchase agreement

with Travora Media to acquire Travora’s digital advertising network business.

4. Revett Mining Company, Inc. In December 2012 this firm suspended operations in a

silver and copper mine located in north-west Montana due to unstable ground conditions in

large portions of the mine.

5. Dendreon Corporation. This firm is a typical biotechnology company focused on the dis-

covery, development and commercialization of new drugs. On April 29, 2010, the U.S. Food

and Drug Administration licensed PROVENGE (their first autologous cellular immunother-

apy) and commercial sale began in May 2010.

6. CollabRx, Inc. This firm, now known as Rennova Health Inc., offers diagnostics and soft-

ware solutions to health care providers. Starting in the third quarter of the fiscal year 2009

it experienced a sharp decline in revenues resulting from the collapse of the semiconductor

capital equipment market and the global financial crisis.

7. Insite Vision Inc.. This firm develops ophthalmic products and it had total revenues of 23.8

million of $ in 2007. 22.1 million of these revenues represented the amortization of the license

fee and payments for AzaSite (one sustained-delivery-technology azithromycin) received in

February and April 2007, respectively.

8. Odimo Inc.. This firm is an online retailer of diamonds, jewelry, watches and other luxury

goods. They ceased operations as an online retailer starting from December 31, 2006. Since

then it does not record any sales other than commissions based on a percentage of gross
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sales made to visitors to their homepage who were, then, redirected to websites owned and

operated by others.

Without pretending too much about the representativeness and exhaustiveness of this list, it is

apparent that there are different reasons behind these extreme growth episodes. They include, but

are not limited to, the acquisition of new firms and purchase of new assets (case 1 and 3), accounting

issues (case 2), true exogenous shocks (case 4 and 6), very specific cash flows for patents and licenses

(case 5 and 7), and inactivity (case 8). All these event appear as genuine, albeit extreme, economic

occurrences that might shape the history of a business firm and we see no reason to exclude them

from the analysis, also considering that the minority of them can actually be considered due to

“external” reasons.

A.3 Attrition bias

Including also exiting and entering firms, an alternative definition of GCOMP

t could be

AGCOMP

t =

∑
i(Si,t+1) +

∑
k(Sk,t+1)∑

i(Si,t) +
∑

j(Sj,t)
− 1 , (11)

where Si,t+1 and Si,t denote the size of firms with valid sales in both t + 1 and t while Sj,t and

Sk,t+1 denote the size of firms observed only in t and only in t + 1 respectively. Figure 8 reports

the time evolution of the two measures. They do not diverge substantially.

A.4 Macroeconomic variables

Following Gabaix (2011) we consider 4 different macroeconomic variables as controls in our regres-

sions: oil shocks, monetary shocks, interest rates and the term spread.

As far as the oil shock is concerned, we extend to 2013 the series built in Hamilton (2003). We

start by the Monthly Producer Price Index-Crude petroleum (WPU0561, end of period) available

at FRED then the quarterly oil shock is defined as the (log) amount by which the current oil price

exceeds the maximum value over the past 4 quarters (quarterly oil shock is set to zero if it is

negative). A yearly oil shock is then defined as the sum of 4 quarterly oil shocks within that year.

The monthly monetary shock comes from David Romer’s web page and ranges from 1969 to

1996 (series RESID, Romer and Romer (2004)). Then following Gabaix (2011) the yearly shock

is built as the sum of the 12 monthly shocks in that year. For the years not covered by the data,

the value of the shock is assigned to be 0, the mean of the RESID series.29

The yearly interest rate is constructed by averaging, over one year, monthly observations of the

3-month nominal T-bill secondary market rate (TB3MS). Finally, the term spread is defined as the

5-year treasury constant maturity rate (GS5) minus the 3-month treasury bill secondary market

rate (TB3MS). Further details are available upon request.

29Gabaix (2011) argues that this assignment does not bias the regression coefficient under simple conditions, for
instance if the data are i.i.d. However it does lower the R2 by the fraction of missed variance; fortunately, most large
monetary shocks (e.g., of the 1970’s and 1980’s) are in the data set.
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B Mode estimators

In this section, we briefly describe the two methods used to estimate mt. The non-parametric

and parametric estimation methods are based on Half-sample method (HSM) and the Asymmetric

Exponential Power distribution (AEP) respectively.

B.1 Half-sample method (HSM)

Bickel and Frühwirth (2006) present the half-sample estimator of the mode for the distribution of

a continuous random variable. 30. Let (xi)
n
i=1 be an ordered vector of n random numbers drawn

from an unimodal distribution with mode M . Assume the sample size is an integer power of two

(n = 2m).31 Then:

1. find the smallest interval that contains n/2 points from the sample. In other words, obtain

the integer j1 for which xj1+n/2−1 − xj1 reaches a minimum, with 1 ≤ j1 ≤ n/2 + 1;

2. using only the data in that interval, find the smallest interval that contains n/4 points, i.e.,

obtain the integer j2 for which xj2+n/4−1 − xj2 reaches a minimum, with j1 ≤ j2 ≤ n/4 + 1;

30This procedure is implemented in the R package ’modeest’ https://cran.r-project.org/web/packages/

modeest/modeest.pdf.
31They also generalize this algorithm to allow n to be any positive integer. See the details in the appendix of their

paper.
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3. iterate this procedure until obtaining an interval with only two points, xjm and xjm+1;

4. the estimated mode is the mean of these two values, M̂ = (xjm + xjm+1)/2.

The proponents show that this estimator performs relatively well under a wide range of con-

ditions and, in particular, when the distribution is asymmetric with a large number of extreme

observations, which is the case in our empirical investigation. The HSM estimator possesses an-

other interesting property. Differently from methods based on density estimation, it does not require

the arbitrary selection of a “bandwidth” , which is often problematic. Indeed if the bandwith is too

large, then the mode cannot be precisely located, leading to a high bias. If, on the contrary, the

bandwith is too small, then it will be likely that the interval with the highest empirical frequency

does not contain the mode, leading to a high variance of the estimator. HSM avoids these issues

by beginning with a large interval and progressively reducing its width.

B.2 The Asymmetric Exponential Power distribution (AEP)

The AEP distribution introduce by Bottazzi and Secchi (2011) can be used to obtain an alternative

parametric estimate of the mode of the distribution. The AEP is a five-parameters family of

distributions with probability density

fAEP (x) =
1

C
e
−

(

1

bl

∣

∣

∣

x−m
al

∣

∣

∣

bl
θ(m−x)+ 1

br

∣

∣

∣

x−m
ar

∣

∣

∣

br
θ(x−m)

)

with C = alA0(bl)+arA0(br), Ak(x) = x
k+1

x
−1Γ(k+1

x ) and where m is the mode, bl and br the shape

parameter of the lower and upper tails respectively and al and ar two width parameters associated

with the probability mass below and above m. The mean of the AEP density is

µAEP = m+
1

C

(
a2rA1(br)− a2lA1(bl)

)
.

Thus according to definition (8) the parametric distributional tilt is given by

tiltAEP =
1

C

(
a2rA1(br)− a2lA1(bl)

)
.

The AEP parameters are estimated using Maximum Likelihood implemented in the package

“Subbotools”32.

32The latest version of Subbotools can be found at http://cafim.sssup.it/~giulio/software/subbotools/. And
Bottazzi (2004) provides the detailed manual.
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