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This work analyzes and models the nature and dynamics of organizational memory, 
as such an essential ingredient of organizational capabilities that determine strate-
gic choices in different competitive environments. There are two sides to it, namely 
a cognitive side, involving the beliefs and interpretative frameworks by which the 
organization categorizes the states of the world and its own internal states, and 
an operational one, including routines and procedures that store the knowledge of 
how to do things. We formalize both types of memory by means of evolving systems 
of condition-action rules and investigate their performance in different environ-
ments characterized by varying degrees of complexity and non-stationarity. Broadly 
speaking, in simple and stable environments memory does not matter, provided 
it satisfies some minimal requirements. In more complex and gradually changing 
ones, having more memory provides an advantage. However, there is some critical 
level of environmental instability above which forgetfulness is evolutionary superior 
from the point of view of long-term performance. Moreover, above some (modest) 
complexity threshold, stable and robust cognitive categorizations and routinized 
behaviour emerge.
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1.  Introduction

This work analyzes and models the nature and dynamics of organizational memory, 
an essential ingredient of organizational capabilities that determine strategic choices 
in different competitive environments. Indeed, the notion of organizational memory 
stands for an elusive albeit crucial feature of the organizational reproduction of knowl-
edge as distinct from the memory of individuals, namely the ability of organizations to 
elicit stored information from an organization’s history that can be retrieved to bear 
on present decisions (Walsh and Ungson, 1991). The property of memory of being 
‘‘organizational’’ means that, first, it may well be distributed within the organization in 
ways such that no individual agent or subunit embodies the full representation or the 
full behavioural repertoires contained in the memory itself. Second, the organizational 
character of the memory also implies that it is resilient to environmental shocks as well 
as to the replacement of individual members of the organization.

Organizations ‘‘remember’’ because they entail explicit norms and, together, more 
tacit practices addressed to collectively solve practical and cognitive problems, ranging 
from, say, the production of a car, all the way to, e.g. the identification of a malaria-
treating molecule. This is another way of saying that organizations learn, store, elicit and 
modify over time routines and other ‘‘quasi genetic action patterns’’ (Cohen et al., 1996).

Organizational memory concerns, first, the structure of beliefs, interpretative frame-
works, codes, cultures by which the organization interprets the state of the environment 
and its own ‘internal states’ (Levitt and March, 1988): in brief, call all this the cognitive 
memory of the organization. Second, organizational memory includes routines, com-
prising standard operating procedures, rules and other patterned actions: call this the 
operational memory of the organization. In short, the two types of memory concern the 
organizational capabilities to ‘understand’ the characteristics of the environment, on 
the one hand, and to coordinate particular sequences of actions on the other.

Both cognitive models and operational repertoires are the outcomes of learning pro-
cesses and evolve over time in response to experimentation and feedbacks from the 
environment. However, they might often entail quite high degrees of inertia and path-
dependent reproduction. As a consequence, a major question we shall address below 
concerns the role of memory in changing environments and its bearing in shaping 
strategies.

Here we set ourselves the ambitious goal to root such research endeavour in three 
complementary and partly overlapping pillars. The first one is as ‘foundational’ as it 
can be, namely, providing at least some basic hints, especially from other disciplines 
such as cognitive and social psychology and ‘applied’ epistemology, about what agents 
(both individuals and organizations) do in terms of cognition and behaviours in com-
plex and changing worlds, that is in the worlds we typically live in. The second pillar 
regards what economic theories do, or do not do, in order to capture and represent 
the features mentioned above. Finally, the third pillar regards what organizations do 
in terms of their (somewhat metaphorical) cognition, their actions and their learning 
processes about both. The latter is also the ultimate topic of this paper.

The model that we propose offers a straightforward (and, to our knowledge, novel) 
formalization of the link between memory and organizational routines. And it is also 
a promising instrument to explore the double-edged role of memory, conditional on 
different characteristics of the environment in terms of its complexity and (types of) 
its dynamics. Memory may crystallize and reproduce the advantages from learning 
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about ‘good representations’ and ‘good routines’ but may also entail ‘competence 
traps’ (Levinthal and March, 1993), harmful in changing environments. The analysis 
of the contrasting roles that memory plays in different environments is indeed a major 
task of this work.

We shall proceed as follows. In Section 2 we attempt a broad, even if necessarily 
concise, assessment of the current state-of-the-art concerning the very foundations of 
knowledge in terms of both individual and organizational cognition and operational 
repertoires in changing environments. Section 3 presents the structure of the simula-
tion model we propose to address the interpretative questions stemming from the fore-
going pieces of evidence and to explore the dynamics of collective cognition, behaviour 
and ensuing environmental payoff feedbacks. Section 4 discusses the major results we 
obtain by running the model. Finally, in Section 5 we draw the main conclusions and 
implications of this work.

2.  Cognition, routines and memory in changing environments: a bird’s-eye 
assessment

The existence and importance of organizational memory is associated with the very 
ability of organizations to interpret their environment, learn how to solve operational 
problems and, by doing that, build constructs of knowledge that can be stored and 
reused (Argote and Ingram, 2000; Kaplan and Tripsas, 2008).

2.1  Learning in opaque and changing worlds

Organizational cognition, behavioural repertoires, and, over time, memory are of 
course an issue only insofar as one departs from a representation of organizations 
and of the underlying agents as maximizing entities with ‘Olympic rationality’. The 
foundational critiques of this model include the contributions of Simon (1955), Cyert 
and March (1963), March and Simon (1958), Nelson and Winter (1982) and Winter 
(1964). They are devastating: to any reasonable scientist they would sound like the 
end of any debate and thus resurrecting the controversies would be like beating a dead 
horse. But the dead horse is instead alive and kicking, with economists openly neglect-
ing in their models all the evidence and business scholars neglecting such foundational 
debates. Thus it might be useful to recall telegraphically the basics of the story.

In our view, the fundamental point of departure is the acknowledgement that the 
world is not transparent. That is, our understanding of the ‘world out there’, in its inner 
causal links, is at best imprecise and, most often, utterly wrong. Conversely, main-
stream economics, alone among social sciences, holds that our understanding of the 
world is perfect, except possibly for some noise in the perception of the signals coming 
from it, essentially measurement errors.

A crucial aspect of learning is with regard to cognition—that is, the process by which 
decision-makers form and modify representations in order to make some sense of a 
reality that is generally too complex and uncertain to be fully understood. Hence the 
necessity to acknowledge the existence (and persistence) of a systematic gap between 
the agent’s cognitive abilities and ‘reality’ (were there an omniscient observer able to 
grasp it fully). Such a gap can take at least two, often interrelated, forms: first, a knowl-
edge gap, involving incomplete, fuzzy or simply wrong representations of the environ-
ment; and second, a problem-solving gap between the complexity of the tasks agents 
face and their capabilities with respect to accomplishing them.
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Regarding both, evolutionary theories of learning might significantly benefit from 
that branch of cognitive studies concerned with the nature and changes of categories 
and mental models (for different perspectives, see Johnson-Laird, 1983, 2006; Lakoff, 
1987; Holland et al., 1986; Margolis, 1987; Byrne, 2005. For the presentation of a few 
alternative theories, see Mayer, 1992). It is crucial to notice that if one accepts any 
‘mental model’ view, learning cannot be reduced to information acquisition (possibly 
including Bayesian processing of it) but rather is centred on the construction of new 
cognitive categories and ‘models of the world’.

Cognitive categories, it has been repeatedly shown, go together with various mecha-
nisms of framing, by which information is interpreted and also rendered operationally 
meaningful to the decision-makers (see Kahneman et  al., 1982; Borcherding et  al., 
1990; and March, 1994).

Frames have long been recognized in the sociological and anthropological literature 
(whatever name is used to refer to them) as being grounded in the collective experi-
ence of the actors and in the history of the institutions in which the agency is nested.1

Indeed, embeddedness seems to go a strikingly long way and affect even the under-
standing and use of cognitively basic categories, such as that of causality and the very 
processes by which humans undertake basic operations such as inferences, generaliza-
tions, deductions, etc. (Lakoff, 1987; Luria, 1976).

2.2 The ways the economic discipline did (or did not) take this up...

Given all the foregoing evidence, how did economic theory accommodate it, or not? 
A first defence of ‘rationality’ as a descriptive tool (as opposed to a normative, prescrip-
tive one) has been to consider it as a sort of yardstick against which to assess actual 
behaviours and their deviations vis-à-vis Olympic rationality. In turn, such deviations 
can be considered as biases.2 Or, conversely, deviations can be shown not to be biases 
at all but straight utility maximizing behaviours once informational imperfections have 
been taken into account. There is a long tradition in this vein of rationalization of behav-
ioural rules, from the early Baumol and Quandt (1964) to the more recent Love (2013).

Indeed, there are two major pitfalls with either version of this defence of rationality. 
One is that even in moderately complex environments, let  alone evolving ones, it is 
impossible even for the theorist to determine what the Olympically rational behaviour 
ought to be (more in Dosi and Egidi, 1991, and Dosi et al., 2005). The other is the 
epistemological sloppiness of the ex-post rationalization invoking an ensemble of unob-
servable variables. The reasoning goes more or less like this: since behaviours must be 
optimal, let us find the constraints on information, computational costs, etc., by which 
seemingly non-optimal behaviours turn out to be optimal. It is clear that this line of 
reasoning renders the rationality hypothesis shielded from any empirical refutation.3

1 Within an enormous volume of literature, a good deal of the sociological tradition has been influenced 
by the works of Talcott Parson or of the classic Pierre Bourdieu (1977); in anthropology, among others, see 
the discussions of ‘embeddedness’ by Karl Polanyi (1944, 1957) and Clifford Geertz (1963); see also Robert 
Edgerton (1985).

2  Incidentally, this is the perspective under which some version of behaviour has become respectable for 
part of the mainstream.

3  A similar approach has been taken recently to accommodate in the self-regarding utility maximizing par-
adigm the vast evidence on other-regarding preferences, social norms and the like. By adding arguments to 
the utility function the modeller is tautologically able to state that any observed behaviour can be explained 
by the maximization of some ad hoc utility function (cf., for instance, Rabin, 2013).
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A second defensive trench of orthodoxy, despite the evidence, involves a continuing 
commitment to ‘rational’ micro-foundations of economic interactions, together with a 
radical redefinition of the status of rationality assumptions themselves.

‘Rationality’ (however defined), rather than being an approximation to the empiri-
cal behaviour of purposeful and cognitively quite sophisticated agents, is assumed to 
be—so to speak—an ‘objective’ property of behaviours in equilibrium. Add the pre-
sumption that (most) observed behaviours are indeed equilibrium ones. And, finally, 
postulate some dynamics of individual adaptation or intra-population selection lead-
ing there. What one gets is some version of the famous ‘as if’ hypothesis, suggested by 
Milton Friedman (1953) and rejuvenated in different fashions by more recent efforts 
to formalize learning/adaptation processes, the outcome of which is precisely the 
‘rationality’ assumed from the start (archetypical examples of this faith can be found 
in Sargent, 1993, and Marimon, 1997).

A thorough and critical discussion of the ‘as … if ’ epistemology has been put for-
ward by Sidney Winter in various essays (see Winter, 1964, 1971). For our purposes 
here, let us just note the following:

	 (i)	 Any ‘as if’ hypothesis on rationality is bound to involve quite a few restrictions 
similar to those briefly overviewed earlier with reference to more ‘construc-
tive’ notions of rational behaviours, simply transposed into a more ‘ecological’ 
dimension. That is, canonical rationality, stricto sensu, postulates that one decides 
and acts by purposefully using the appropriate procedures, or by learning them 
in purposeful, procedurally coherent ways. ‘As if’ hypotheses of any kind appar-
ently relax the demands on what agents must consciously know, but at the same 
time must assume some background mechanism generating the available alter-
natives—which must include the ‘correct’ ones.

	 (ii)	 While ‘realistic’ interpretations of rationality put most of the burden of explana-
tion upon the power of inbuilt cognition, ‘as if’ shifts this burden to the selection 
dynamics. But, then, supporters of the view ought to show, at the very least, that 
robust convergence properties are demonstrated by some empirically justifiable 
selection dynamics. In our view, as it stands, nothing like that is in sight. On the 
contrary, except for very special set-ups, negative results are abundant in, for 
example, evolutionary games or other forms of decentralized interactions. No 
matter whether applied to biology or economics, path dependency cannot eas-
ily be disposed of; cyclical limit behaviours might occur (see Posch, 1994; and 
Kaniovski et al., 1996), etc.

2.3  From individuals to organizations

As already mentioned, one side of the story is, in a broad sense, cognitive. The view of 
organizations as fragmented and multidimensional interpretation systems is grounded 
on the importance of collective information-processing mechanisms that yield shared 
understandings (Daft and Weick, 1984), or ‘cognitive theories’ (Argyris and Schon, 
1978), of the environment in which they operate, and that assist organizations to bear 
uncertainty, besides, as we shall see, manage environmental and problem-solving com-
plexity. If one subscribes to the notion that organizational learning is a process of 
refinement of shared cognitive frames involving action-outcome relationships (Duncan 
and Weiss, 1979), and that this knowledge is retained—at least for some time—and can 
be recalled upon necessity, this is like saying that organizational learning is in fact the 
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process of building an organizational memory. This cognitive part of the memory is 
made of ‘mental artifacts’ embodying shared beliefs, interpretative frameworks, codes 
and cultures by which the organization interprets the state of the environment and its 
own ‘internal states’ (Levitt and March, 1988).

Together, there is an operational side to the organizational memory involving the 
coupling between stimuli (events and signals, both external and internal ones) with 
responses (actions), making up a set of rules that remain available to guide the ori-
entation of the organization and execute its operations. In this domain the memory 
largely relates to the ensemble of organizational routines—patterned actions that are 
employed as responses to environmental or internal stimuli, possibly filtered and elab-
orated via the elements of cognitive memory (much more on routines in Nelson and 
Winter, 1982; Cohen et al., 1996; Becker et al., 2005; Becker, 2005; and the literature 
reviewed here). As Cohen and Bacdayan (1994) put it, this procedural side is the 
‘memory of how things are done’, bearing a close resemblance with individual skills 
and habits, often with relatively automatic and unarticulated features (p. 554).

Cognitive and operational memories entail an ‘if…then’ structure. Signals from the 
environment, as well as from other parts of the organization, elicit particular cognitive 
responses, conditional upon the ‘collective mental models’ that the organization holds, 
which are in turn conditional upon the structure of its cognitive memory.

2.4  Modelling routines, memory and learning

For a long time all the way to the present, organizational models have run far behind 
the qualitative interpretations briefly discussed above. Some catching-up has occurred, 
however, especially in the field of modelling learning processes in high-dimensional 
spaces with relatively limited adaptation mechanisms. A promising candidate to model 
routines and memory finds its roots into the formalism of Classifier Systems (CS’s) 
(Holland, 1975; Holland et al., 1986). In a nutshell, a CS is a system of interlinked con-
dition/action rules that partly evolves according to the revealed environmental payoffs. 
Aiming to balance the rather unsynchronized research efforts and respective results 
between empirical and theoretical research, we build a model that finds its ascendancy 
there, and in their application in Marengo (1992), albeit with significant modifications.

Below, we present a model which links Classifiers Systems and NK fitness land-
scape models (Kauffman, 1993). The former provides a model of a memory system 
that accounts for both cognitive and operational memory, while we use the latter to 
represent an environment in which exogenous environmental traits and organizational 
actions or policies interact in a complex way to determine the organization fitness or 
payoff. While in standard NK models (e.g. Levinthal, 1997), cognition, actions and 
resulting payoffs are folded together in a mapping between ‘traits’ and their ‘fitness’, 
here we unfold such a map defining explicitly the cognition/action/environmental feed-
backs and modelling their (evolving) coupling. This is, we believe, a first major advance-
ment with respect to the existing literature. Our organization explores a complex and 
possibly changing landscape in which some dimensions are outside its control (the 
environmental traits) and some are within (the action traits). Since the former con-
tribute to determine the payoff of the latter, the organization must base its search over 
the action landscape on an internal representation (its cognition) of the environmental 
landscape. When the landscape is complex enough and the organization has cognitive 
and memory bounds, such an internal representation can only be partial, imperfect 
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and possibly wrong. However, in practice, through the accumulation of experience, 
organizations can develop better representations that enable them to act successfully 
in such a complex environment. This is a way to say that organizations painstakingly 
and imperfectly learn and develop models of their environment.

In fact, the characteristics and evolution of organizational memory mirror the char-
acteristics and evolution of organizational routines. In the case of routines, the mem-
ory elicits a ‘relatively complex pattern of behaviour triggered by a relatively small number of 
initiating signals or choices’ (Cohen et al., 1996).

As we shall explore below, it might well be that the coarseness of the ‘if ’ and the 
‘robustness’ of the ‘then’ parts might well depend on the nature of the environment 
and its dynamics. A conjecture in this respect is that the more complex and unpre-
dictably changing the environment, the less contingent the behaviour (Heiner, 1983; 
Dosi et al., 1999). After all, routines can be seen as an uncertainty reducing device 
(Becker and Knudsen, 2005; Dosi and Egidi, 1991): robust and largely not contin-
gent routines might be those memorized under highly complex and changing environ-
ments. In turn, inertia and path dependence are an almost inevitable corollary of the 
very existence of organizational memory.4 The organization is able to recall specific 
cognitive frames and behavioural repertoires precisely because they are stored and 
inertially reproduced (possibly with slight modifications) over time. Organizations 
path-dependently carry with them their birthmarks and what they have subsequently 
learned throughout their history. It is true that firms typically live in selective envi-
ronments which tend to ‘weed out’ the most dysfunctional traits and behaviours. 
However, typically their overall ‘fitness’ (say, their revealed competitiveness) depends 
upon multiple inter-related traits: in such cases, selection occurs on a fitness landscape 
with multiple local maxima. Indeed, organizations typically compete on such complex 
landscapes, where interrelated technological and behavioural traits are responsible 
for path-dependent reproduction of organizational arrangements (Marengo, 1996; 
Levinthal, 1997, 2000; Rivkin and Siggelkow, 2003; Siggelkow and Levinthal, 2005).

In the model which follows, we shall address isomorphic issues by means of simu-
lation exercises and will explore the relationships between the ‘depth’ and inertia of 
memory and path-dependencies in organizational behaviours.

3.  A model of cognitive and operational memory of organizations

3.1  Formalizing firms as problem-solving organizations

Broadly speaking, the roots of the formalization we present in this paper rest on two 
complementary classes of models, surveyed at much greater detail in Dosi et al. (2011). 
The first class includes models mainly addressing learning in complex and changing 
environments, and focusing on the relationship between learning patterns and ensuing 
rational performances. Agents are adaptive learners who adjust their knowledge of the 
environment in which they operate and their behaviour (often conflated together into 
‘organizational traits’) through local trial-and-error procedures. For this mode of anal-
ysis see Levinthal (1997), Dosi et al. (1999); Ethiraj and Levinthal (2004), Gavetti and 

4 The idea of path-dependence in economics is generally associated with David (1985) and Arthur 
(1989), but of course is a general property of non-linear, non-ergodic systems. We discuss different forms 
and degrees of influence of the past upon the future in Castaldi and Dosi (2006).
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Levinthal (2000), Rivkin and Siggelkow (2003) and Siggelkow and Levinthal (2005), 
among others.

The second class includes models focusing upon the relationship between the division 
of cognitive labour and search process in some problem-solving space, analyzing more 
directly organizations as repositories of problem-solving knowledge. Here the focus is 
on the problem-solving procedures embodied in the organization. Indeed, managing 
an organization, designing and producing cars or software packages, discovering a new 
drug, etc., can be seen as complicated problems whose ‘solutions’ comprise of a large 
number of cognitive and physical acts. These kinds of activities imply the coordina-
tion of large combinatorial spaces of components. Models addressing such dynamics 
of problem-solving knowledge include Marengo and Dosi (2005), Marengo (1992, 
1996), Denrell et al. (2004), Valente (2014) and Baumann and Siggelkow (2013).

On the output side, components making up an artefact can take a number of alter-
native states: so, for example, in the case of the production of a car, one combines 
different characteristics of the engine, alternative designs, different materials, etc. At 
the same time, innovative search may be straightforwardly represented in the form of 
a combination of multiple ‘cognitive acts’ eventually yielding the solution of the prob-
lem at hand, e.g. the discovery of a new molecule with the required characteristics, a 
reasonable and coherent software package, etc.

Let us start by considering those (still few) models whereby information-processing 
and problem-solving activities are represented by ensembles of condition-action (that 
is, ‘if…then...’) rules.

Marengo (1992, 1996) presents models focused upon the modification of such 
information-processing capabilities of individuals or subunits within the organiza-
tion, i.e., a process of ‘structural’ learning. Agents are imperfect adaptive learners, 
as they adjust their information-processing capabilities through local trial-and-error. 
This adaptive learning is (at least partly) driven by the information coming from the 
environment and/or from other members of the organization.

Using a condition-action rule as the basic building-block of this learning system 
means that the execution of a certain action is conditional upon the agent’s percep-
tion that the present state of the world falls within one of the categories the agent has 
defined in its mental model.

Moreover, the system must be able not only to select the most successful rules, but also 
discover new ones. This is ensured, in the above-cited models, by applying genetic opera-
tors which, by recombining and mutating elements of the already existing and most suc-
cessful rules, introduce new ones with traits similar to those in existing successful rules, 
though being completely novel, giving hope to further improvement of the performance.

A germane family of models, of somewhat more reduced form but also more ele-
gant and related to a lower-dimensional space, involves precisely some ‘black-boxing’, 
in particular concerning the relationship between organizational traits (including, 
of course, behavioural rules) and their actual expressions. Such a modelling genre 
prominently includes a family of evolutionary models of organizations inspired by 
S. Kauffman’s so-called ‘NK model’ (Kauffman, 1993). This model of selection and 
adaptation in complex environments represents evolving entities characterized by non-
linear interactions among their elements, with N the number of elements and K the 
degrees of interaction among them (their ‘epistatic correlations’). In Kauffman (1993), 
the ‘NK-model’ primarily deals with the evolution of populations of biological enti-
ties described by a string of ‘genes’ evolving over a fitness landscape, wherein a fitness 
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function is defined assigning a value to each possible string as a measure of its relative 
performance. One of the pioneering applications of the ‘NK’ approach to organiza-
tional analysis is Levinthal (1997). In that simulation model, populations of randomly 
generated structures (organizations) evolve on a fitness landscape, whereby the evolu-
tion is driven by variation, selection and retention processes.

In complex environments the diversity of organizational forms robustly emerges: 
Levinthal (1997) shows that random local search induces mutations in different direc-
tions over the landscape. Moreover, the case of environmental changes can be mod-
elled by re-drawing the fitness contributions of some features after the population has 
evolved and stabilized over previous optima. If the complexity of the landscape is high, 
even the modification of the fitness contribution of just one attribute can cause a large 
alteration of its shape.

Levinthal’s analysis has been expanded and broadened by quite a few works which 
have further studied the relationship between organizational design and environmen-
tal complexity and turbulence. Rivkin and Siggelkow (2002) (cf. also Siggelkow and 
Rivkin, 2006) tackle the issue of multilevel organizational search by introducing an 
explicit representation of organizational structures in NK-type models. Decisions over 
the N policies (bits of the string) are allocated among different departments and a 
superordinate CEO has the function of coordinating departmental decisions.

Gavetti and Levinthal (2000) add a further perspective to the analysis of search 
processes and look at the relations between forward-looking and backward-looking 
search and their effects on performance. The roots of the distinction between the 
two search processes go back to Simon (1955): the former involves cognition-ridden, 
forward-looking choices based on off-line evaluation of alternatives, even very distant 
from current behaviour; the latter entails experiential choice based on on-line evalu-
ation of a limited set of alternatives which are close to current behaviours. In Gavetti 
and Levinthal’s model, the organization chooses a policy on the basis of a simplified 
and incomplete ‘cognitive model’ of its environment, entailing ‘templates’ which can-
not directly prescribe actions. In this context, existing practices function as defaults 
for elements not specified by the cognitive representation and allow the identification 
of a specific course of action. Thus, it may happen that actors with the same cognitive 
template may engage in different behaviours.

An organization which chooses according to its cognitive representation explores 
regions, and not single points, of the landscape, while the width of these regions depends 
on the crudeness of the representation. The role of experimental search becomes more 
and more important as the crudeness of the cognitive representation increases.

Gavetti and Levinthal show that in a context of competitive ecologies in which low-
performance organizations are selected out, organizations that adopt a joint cognitive 
and experiential search dominate the population. This becomes particularly evident 
under rugged landscapes, in which organizations using purely experiential search 
are trapped into local optima. In this framework, changes in the representation can 
enhance organizations’ performance when the landscape itself changes, as the new 
representation may identify more effectively new (superior) basins of attraction, and 
this can compensate for the loss of experiential wisdom.

The model that we present in the following refines upon the first family of models 
and explicitly addresses the co-evolutionary dynamics between a cognitive domain 
(the ‘if ’s’ stemming from the ‘interpretation’ of environmental signals) and an opera-
tional one (the ‘then’s’). At the same time such a learning (or unlearning) dynamics is 
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nested upon, and ultimately driven by, fitness landscapes of the NK type—character-
ized by different degrees of ruggedness, and generally changing over time.

3.2 The model

3.2.1 An informal description.  Operationalizing these conceptual paths, we build a sim-
ple model of organizational cognition and action, where past experience is stored in 
a repertoire of condition-action rules, broadly inspired by John Holland’s Classifiers 
Systems (Holland et al., 1986). Such a repertoire, together with an indicator of each 
rule’s past usefulness, constitutes the organizational memory. Rules embed a ‘know-
what’ component in the condition part, i.e., the capability to make some sense of the 
environment and distinguish different situations, and a ‘know-how’ component in the 
action part, i.e., the capability to perform an appropriate action once a situation has 
been detected. Such a distinction is, with different nuances, common in the literatures 
on organizational cognition as well as on organizational routines and is germane to the 
distinction between ‘declarative’ and ‘procedural’ memory (Anderson, 1983; Cohen 
and Bacdayan, 1994; Miller et al., 2012).

Each rule takes the form of ‘if a given set of conditions is detected—then a certain 
action pattern is performed’ and can be therefore characterized by its degree of gen-
erality vs. specificity, according to the size of the set of environmental conditions to 
which it can be applied. General rules (with low specificity) prescribe the same course 
of action for a broad range of environmental conditions, while specific rules apply 
only to one or very few situations. General rules may reflect different phenomena: a) 
ignorance, i.e., the organization does not know what to do in different situations and 
therefore applies the same generic action to a wide range of conditions; b) inability to 
discriminate environmental conditions, which leads the organization to consider as 
equivalent situations which differ; c) routinization, i.e., a conscious or unconscious 
definition of relatively invariant rules which apply to ensembles of environmental con-
ditions, either because the organization is not capable of producing more specific rules 
for sub-ensembles or because the cost of finding such more specific rules is higher 
than the potential benefit they could deliver; and d) conscious generalization, i.e., the 
organization deliberately reckons that a broad range of situation must be treated as 
equivalent for action purposes.

In our simulations we will suppose that the organization starts with one fully general 
rule, whose condition part indicates it may be applied to any possible environmental 
condition, and a random action part. An adaptive mechanism, based on the feedback 
received when a rule acts on the environment, generates new rules as local modifica-
tions of the existing ones. Such local adaptive changes may involve both the condition 
part (increasing or decreasing its specificity) or the action part (by mutating of its bits). 
Each rule is assigned a ‘strength’ variable, whose value is updated on the basis of the 
performance provided when applied. The strengths of the rules whose conditional part 
fits current conditions are used to decide which one to apply. The strongest rule, among 
those which satisfy the current environmental conditions, will be preferred for action, 
under the assumption that high performance in the past should guarantee good results.

Rule strength also governs the novelty generation mechanism, as stronger rules will 
be preferably chosen for the generation of ‘offspring’ variant rules, i.e., new rules which 
are copies of the stronger ones but with some small mutations in the condition and or 
action part.
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In our framework, the repertoire of condition-action rules represents the memory of 
the organization, and its size is given by the number of different rules held in this reper-
toire. The strength of a rule is updated every time the rule is chosen to act on the envi-
ronment of the organization, and it is updated according to the difference between the 
expected performance (estimated on the basis of past rewards) and the payoff received 
by its action. Rules that are active because they satisfy the current environmental con-
ditions, but have not been chosen for action, have their strength reduced by a small tax 
punishing their failure to be selected. The system records for each rule an indicator of 
‘inactivity’, which keeps track of how frequently a potentially active rule has not been 
chosen for action. A rule is removed (and therefore ‘forgotten’) when the inactivity 
indicator reaches a given threshold. Thus, by tuning this threshold we control for the 
trade-off between remembering and forgetting. Other things being equal, the higher 
this threshold (indicating higher tolerance for inaction), the larger the size of memory, 
since rules will be deleted less frequently, while a lower threshold will reduce the size of 
memory, as fewer rules will manage to survive the selection on inactivity. Notice that, 
contrary to most of the literature on CS, the size of memory is endogenous because, as 
we will show below, it depends on all the features of the environment, which influence 
how many rules are compatible with the environment at each time, and, consequently, 
the frequency of activation, eventually determining the size of organizational memory 
expressed by the number of rules.

The overall dynamics of the memory is therefore history driven (among all the rules 
which apply to the current situation, the one which has been more successful in the 
past will tend to be preferred), but also cognition driven (only rules whose condition 
applies to the current situation can be used; in other words, rules define a set of cat-
egories in which environmental states are classified) and variation driven (novelty is 
constantly introduced as variations on existing rules).

We test the behaviour of such a system in different environments, characterized 
by varying degrees of complexity and volatility. We assume that both environment 
and actions are multidimensional objects and that the complexity of the problem the 
organization faces is determined by the interdependencies among the elements form-
ing the environment, among the elements composing the action and across the two 
elements, environment and action. In other words, the organization is placed in an NK 
landscape à la Kauffman (1993), but the N dimensions of the landscape belong to two 
different categories. Ne<N dimensions are environmental features, which the organiza-
tion cannot control or modify but can only observe and (try to) categorize according to 
conditions of its set of rules. The remaining Na=N-Ne are instead dimensions (policies) 
pertaining to the action of the organization and chosen by the latter according to its 
repertoire of rules. The payoff for the organization will be determined, in principle, by 
the current configuration of all the N dimensions, though each configuration of the Ne 
environmental dimensions determines a different landscape for the Na action dimen-
sions. However, we can, and we will in the simulations below, test the behaviour of our 
organization in landscapes characterized by specific structures of interdependencies, 
using the methodology presented in, e.g. Frenken et al. (1999) and Valente (2014). 
To represent the necessity of developing a set of categories, which the organizations 
have to discover, we will suppose that, while indeed all the environmental elements 
contribute to determine the payoff of an action, only a subset of them modify the rela-
tive shape of the action landscape, while the remaining environmental dimensions only 
determine a shift of the payoff values, but no change in their relative value. We call the 
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dimensions which together modify the shape of the action sub-landscape core dimen-
sions (or core bits in our simulations where all dimensions take only binary values). 
Thus, the ranking of actions (from the most to the least fit) does not change when the 
core dimensions remain constant and the non-core ones change, although their fitness 
value does change. When instead a core dimension changes, in general also the ranking 
of action will undergo random changes as pertaining to a different landscape.

In order to identify the best action under different environmental conditions, the 
organization must therefore learn to discriminate between core and non-core bits, in 
spite of the fact that all of them cause changes of the fitness values of actions, and pos-
sibly develop specific rules for each configuration of the core dimensions, prescribing 
a different action to each of them.

Also the action part of the landscape may be more or less complex. In an action 
landscape of complexity Ka the payoff contribution of each action bit depends upon 
Ka-1 other action bits5 (besides depending on the environmental bits as described 
above). Thus when Ka=1 we have a simple action landscape (for any configuration 
of the core bits) where the payoff contribution of each action bit is independent 
from the current value of the other bit; while as Ka grows the action landscape 
becomes more and more complex and uncorrelated, besides changing entirely for 
each configuration of the environmental dimensions.

It is worth stressing once more this fundamental difference between our model and 
the usual NK fitness landscape model which is, we believe, one of the significant origi-
nal contributions of this paper. We assume that the landscape is made of both exog-
enous and endogenous components. Both contribute to determining the fitness of 
the organization, in tune with familiar representations, depending on the complexity 
structure, but only the latter are under the control of the organization while the former 
are exogenously determined by what we call ‘the environment’, which of course may 
well include other organizations or past actions of the same organization itself. Thus 
exogenous components modify the landscape of the endogenous ones and the search 
process on the latter must be based on some cognition of the former. Our if-then rules 
are a simple (and already widely used in the adaptive learning literature) way to model 
an adaptive system that conditions its action upon a categorization of the exogenous 
states. In short, our organizations must discover both the correct categorization of the 
environmental events and, for each relevant class of events, the appropriate action. The 
only available information is the feedback received by the action actually performed 
at each step (i.e. ‘on-line’ learning), and we explore the results under different settings 
allowing for different sizes of memory for the organizations and complexity of the over-
all task faced by the organization.

Concerning the environmental dimensions, we simulate stationary and non-station-
ary environments. In the former case the environment-action landscapes are generated 
(with the warranted complexity structure) at the beginning of the simulation and never 
change. The state of the environment (the configuration of the Ne environmental bits fed 
to the organization) changes at each moment in time, but the mapping between each envi-
ronmental state, actions and payoff remains constant throughout the whole simulation 

5  Following the cited literature, we use a different indicator of complexity from that used in the original 
NK models. In our text we define K as expressing not the number of epistatic relations of each dimension, 
but the total number of dimensions affecting the fitness contribution of each dimension. So, instead of vary-
ing from 0 (independent dimensions) to N-1 (maximum complexity) as in Kauffman, our indicator varies 
from 1 to N.
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exercise. On the contrary, in a non-stationary environment the payoff values are subject 
to change, and therefore the shape of the landscape is modified, along with the relative 
convenience of deploying one action instead of another. In this case, only the structure of 
the interdependency links remains constant so that the relevant categories do not change.

In the next subsections we will present a detailed description of our model, and then, 
in Section 4, we will examine its behaviour in different environments.

3.2.2 Environment, states of the world and payoffs.  The environment is fully described 
by a set of n elementary ‘states’ E e e en= …{ }1 2, , . For simplicity we assume that each 
environmental feature may take only two values, ei   0,1{ }.

Organizational behaviour is characterized by an action vector made of m, ele-
mentary acts A a a am= …{ }1 2, , . Again, for the sake of simplicity, we assume ai   0,1{ }.

Payoffs or fitness: In general, the payoff or the fitness (we will use both expres-
sions indifferently) of the organization depends upon the entire profiles of organizational 
acts and environmental states. The payoff function is described as π : ,E A 1× → [ ]0 . We 
explore different complexity structures concerning the mapping from the E A×  space to 
the payoff. There are potentially three sources of complexity, namely those due to (i) 
interdependencies among environmental states, (ii) interdependencies among elemen-
tary acts and (iii) interdependencies among environment conditions and action patterns.

Task complexity structure: We assume an environment where some environmental 
features interact with the organizations’ actions to determine the payoff, while others do 
not. More precisely, we define as core environmental components those which influence 
the payoffs of different ensemble of actions and also the ranking of different action pro-
files. Conversely, non-core traits are those environmental components which influence 
the payoffs received by different actions, but not their relative ranking. Hence, suppose 
that the vector [a1,a2,..am] is the optimal action when the environment is described by 
vector [e1,e2,..en]. Then, if ei is a non-core bit, a change of its value will affect the overall 
payoff, but will not change the corresponding optimal action (nor of the ranking of all 
other actions), while if ej is a core bit a change of its value will in general determine a 
change of the corresponding optimal action as well as of the ranking of all other actions.

The crucial task for a learning organization is therefore to discriminate ‘action- 
relevant’ or ‘core’ environmental signals and ‘understand’ how they interact with the 
set of elementary acts which make up the action. Of course, the number of ‘core states’ 
is a measure of environmental complexity, since their number effectively determines 
the number of different landscapes to be explored by the action part. Note that learn-
ing is exclusively driven by the payoff, which is the only signal organizations receive on 
how good their actions are on that specific environmental state. The complexity of the 
environment is implemented by an NK-like fitness function, where the epistatic links 
are assigned so as to generate the desired correlation properties among the environ-
mental and action dimensions of the landscape.

3.2.3 Organizational cognition and action.  The task of the organization is to develop 
the capability of correctly detecting states of the world and choosing the appropriate 
behaviour. In order to do that, the organization stores a set of cognition–action rules 
that together constitute the organizational memory and action repertoire. These rules, 
which constitute our Classifiers System, perform the two interrelated tasks of detect-
ing and memorizing environmental regularities (i.e. partitioning environmental states 
into relevant categories) and applying the appropriate course of action to each of them. 
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Condition-action rules are ‘if... then’ rules that map detected environmental profiles 
into action. Each rule takes the form:

	 c c c  a a a c  1  and a  11 2 n 1 2 m i j, , , , , ,# , ,… → … { } { } 0 0 �

where # stands for ‘do not care’.
Each rule is characterized by its specificity σ i , i.e. the number of its condition bits 

which are different from #, and is assigned a strength, St i,
, which is an indicator of 

the payoff it has cumulated from past applications, minus possibly some ‘tax’ reducing 
the strength (details will be given below). If the current environmental state matches 
the condition part of a rule, i.e. if either e ci i=  or ci = # , then the rule is considered 
active, i.e. its action part can be potentially adopted by the organization in the cur-
rent environmental state. In case more than one rule is active at a given time step, the 
organization selects one by considering both the strength and the specificity of each 
rule. For details on how different rules compete for action and are rewarded, refer to 
the Appendix at the end of the paper.

At the start of each simulation run we assume that the organization has no knowl-
edge of the environment: the organizational memory contains only one rule, whose 
condition part is formed only by #’s (reflecting a state of total ignorance), while the 
action part is a randomly drawn binary string.

While the organization faces new environmental conditions and collects payoff from 
the application of one of its actions, new rules are regularly introduced into the mem-
ory as variations of the most successful among existing ones. In particular we use 
two distinct rule-generation mechanisms: specification and generalization. The former 
takes an existing rule and narrows down its domain of applicability, turning a # in the 
condition part into either 1 or 0; the latter does the opposite, basing the decisions on 
the collection of directly observed performance. Details on how specification and gen-
eralization work are in the Appendix.

Finally, rules are erased from memory, i.e. forgotten, when they are infrequently 
used, under the assumption that its failure to win the competition with other rules 
when the environmental condition is compatible with its condition suggests worse 
expected performance than alternative possibilities. Some of the technical details on 
how we implement the forgetting mechanism can be found in the Appendix.

4.  Some results6

We implemented the foregoing model and explored its results under different configu-
rations. As in most agent-based models, there is a relatively large number of param-
eters affecting the results, and we can obviously explore only a small fraction of the 
parameter space. Therefore, we do not advance claims concerning universal proper-
ties of our model; rather, our aim is to replicate qualitatively a few properties of the 
systems relevant to the theoretical debate, and to interpret the underlining generative 
mechanisms as revealed by both statistical analysis on a large number of replications to 

6 The simulations presented here were implemented in the ‘Laboratory for Simulation Development’(LSD), 
a simulation platform developed by one of us (Valente, 2008). The code of the model and the configurations 
used are available from the authors upon request.
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ensure robustness of results and detailed inspection of the state of the model at crucial 
times to provide reliable insight.7

In our experiments we focus on the analysis of the revealed fitness values achieved 
by our artificial organizations under different memory and learning conditions (e.g. 
possibility or not of forgetting), conditional on different degrees of environmental 
complexity and patterns of environmental dynamics. In all our experiments we con-
sider an overall landscape made of N=14 elements, divided into Ne=9 environmental 
bits and 5 action bits ‘operationally’ controlled by the organization. In each simulation 
run we define a given environmental setup (e.g. number of core bits, type of complex-
ity, etc.), and one or more ‘populations’ of organizations. Each population is a group 
of independent organizations with identical initial conditions and learning set-ups. At 
each step of a simulation run the environment is determined by its stochastic ‘law of 
motion’ (if any), determining a current environmental state, and organizations have to 
choose one rule from their repertoire to match the observed environmental conditions. 
Next, given the revealed payoff, organizations update the strength of their rules and, 
possibly, generate and/or remove rules from the repertoire.

For each organization we compute some statistics on its performance and proper-
ties of the repertoire of rules. The performance of an organization is measured on the 
basis of the fitness produced by combination of the current environmental state (com-
mon to all organizations in the model) and the action part of the rule selected by the 
organization for that time step. In order to allow for comparison between landscapes 
with different levels of complexity, we report the results on the relative fitness, which 
is the ratio of the organization’s fitness divided by the highest fitness attainable with 
the current environment, i.e. the fitness pertaining to the optimal action in response 
to the current state of the environment. It is well known in fact that the maximum 
fitness value of an NK landscape depends on the value of K, thus if we want to com-
pare the performance across landscapes with a different K value we must use relative 
fitness values instead of absolute one.

Together with the performance, we compute also the number of rules in the organi-
zations’ repertoires—as a proxy for the size of memory—and the specificity of each 
rule, i.e. the number of bits in the condition part of rules whose value is not #.

4.1  Learning in a stationary environment

Let us begin by analyzing the behaviour of our model for varying degrees of envi-
ronmental complexity in stationary environments, i.e. those characterized by a stable 
landscape capturing for instance eras of stability of industries with established techno-
logical standards and ‘predictable’ demand patterns. We consider four levels of envi-
ronmental complexity, measured by the number of core bits, from simple (1 core), to 
intermediate (3 cores), complex (6 cores) and maximally complex (9 cores) environ-
ments. For each of these settings we simulate three populations made of 100 organiza-
tions, each defined as having low, intermediate and high memory levels, respectively, 
determined by the threshold used to remove the less-often-used rules.8

7  For a methodological discussion on the use of agent-based models see Valente (2016).
8  For reasons of space we report here only a brief summary of the results. Detailed statistical analysis, 

along with the computer program, are available from the authors upon request.
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4.1.1  Simple environment (1 core).  Let us start with the simplest environmental set-
up, with only one core environmental bit. Figures 1, 2 and 3 show the average fitness, 
specificity and number of rules across time for the three sizes of memory, respectively.

In this setting the ‘optimal’ repertoire consists of two rules made of all #’s but for 
the core bit (hence specificity 1, cf. Figure 3), each applying to either state of the core 
bit, and containing the appropriate action. The figures show that all three popula-
tions manage to sensibly increase fitness through time, although only the organizations 
with large or intermediate memory size consistently reach the maximum fitness lev-
els. Figure 2 shows that the pattern to learning, in this setting, consists in generating 
initially a lot of rules (almost 10, for the large memory population), which are then 
selected over, until the two populations with large and intermediate memory sizes 
reduce them to the only two required. Organizations with small memory size remain 
instead stuck with a larger number of rules than that strictly required for optimality. 
Figure 3 offers the intuition on the reasons underlying this pattern. All organizations 
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Figure 1:  Average fitness over 100 organizations; simple (1 core) environment.
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Figure 2:  Average number of rules over 100 organizations; simple (1 core) environment.
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start their learning by rough and imprecise over-categorizations9 of the environment, 
quickly reaching levels of specificity much higher than 1, in search of the bits of the 
environment that matter in terms of action. At this stage, while organizations are still 
learning both the relevant categories of the environment and the relative actions, they 
seem to apply a sort of superstitious behaviour, exploring different actions for state 
conditions that, in reality, would require the same. While refining the action part, they 
also realize that some categories can be merged, as they obtain the same action part 
for distinct categories. Doing so, the newly merged rules are more general and we 
observed a reduction in the average specificity of rules.

Organizations with too small a memory, however, cannot perform this winnowing 
part of learning because more general but imperfect rules are discarded too quickly, and 
therefore continue to generate over-specific, and suboptimal, ones. Already this simple 
case highlights the tension intrinsic in the role of the memory. Less memory implicitly 
demands tighter selection—and thus, in a naïve reading, a sharper learning—but in turn 
tighter selection entails deeper trade-offs between exploitation and exploration, well in 
tune with March (1991).

4.1.2  Intermediate complexity (3 cores).  Let us now increase the complexity of the land-
scape to 3 cores. In this settings (Figures 4, 5 and 6) we observe results broadly similar 
to the previous case. However, with 3 core bits the optimal repertoire generally entails a 
different rule for each combination of states, that is, 8=23 rules. Though requiring a longer 
time span, we obtain the same outcomes as in the previous exercise: organizations with too 
small memory fail to reach the highest fitness, while the other two populations follow the 
same pattern of initial over-specification, discovery of the right categories, and identifica-
tion of optimal actions for each category.

The most notable difference with respect to the previous simpler environment is 
that the gap between the organization with smaller and larger memory is narrower here 
than in the simpler case, contrary to what one might expect. It seems that errors due to 
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Figure 3:  Average specificity of rules over 100 organizations; simple (1 core) environment.

9  Incidentally, note that these ‘categories’ are not partitions: their intersection is not the empty set.
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‘premature learning’ under very small memory are more costly when (nearly) optimal 
behaviours entail fewer actions to be fired more frequently. On the contrary, in more 
complex environments there are more chances to get it roughly right in at least some 
of the (many) possible relevant environmental conditions, when apparent ‘disfunction-
ality’—at least as defined on the grounds of short-term reinforcement—is kept alive.

4.1.3  Complex environment (6 cores).  With landscapes of higher complexity, whose 
results are reported in Figures 7, 8 and 9, our artificial organizations fail to reach 
systematically the maximum fitness. The specificity statistics (Figure 9) shows that 
organizations fail to map correctly the relevant ‘true’ environmental categories, that 
should be 6 for the correct categorization, but rather develop cross-cutting catego-
rization/action routines. Moreover, for a long initial period (notice the difference in 
time scale with respect to the previously discussed results), intermediate memory sizes 
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Figure 4:  Average fitness over 100 organizations; intermediate (3 core) environment.
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Figure 5:  Average number of rules over 100 s; intermediate (3 core) environment.

Downloaded from https://academic.oup.com/cje/article-abstract/41/3/775/3001532
by Scuola Superiore Sant'Anna user
on 22 March 2018



A model of cognitive and operational memory    793

show a consistently better performance than larger ones, hinting that excessively large 
memory appears, at least for a while, as a liability rather than an asset.

4.1.4  Maximally complex environment (9 cores).  Pushing still higher the environment 
complexity (all the 9 environmental bits are core bits) yields somewhat different 
dynamics (Figures 10, 11 and 12). Even under such very high levels of complexity, 
organizations learn and manage to improve their performance. However, the cost of an 
excessively large memory size becomes all the more apparent: the average fitness of the 
intermediate memory size is persistently and increasingly higher than that achieved by 
organizations with larger memory. The reasons can be understood by comparing the 
results on the specificity and number of rules. Organizations with large memory sizes 
collect and maintain a larger number of rules, but fail to extract from this a useful map 
between environmental states and actions; beyond a certain limit, they fail to push 
specialization which, evidently, is produced merely by retaining any rule irrespective 
of their past performance. On the contrary, organizations with average memory size 
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Figure 6:  Average specificity of rules over 100 organizations; intermediate (3 core) environment.
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Figure 7:  Average fitness over 100 organizations; complex (6 core) environment.
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Figure 8:  Average number of rules over 100 organizations; complex (6 core) environment.
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Figure 9:  Average specificity of rules over 100 organizations; complex (6 core) environment.
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Figure 10:  Average fitness over 100 organizations; highly complex (9 core) environment.
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need to be more disciplined, and retain rules only if proven good. They leverage on 
this attitude to build, eventually, a similar number of rules as the former organizations, 
but the set is different, showing a greater capacity to distinguish the relevant states, as 
indicated by the larger specificity.

4.2  Non-stationary environments

So far we considered stationary environments, in which a good rule, if discovered, 
remains good for a long period of time. Let us now consider environments which persis-
tently undergo regular shocks, generating each time a new landscape, i.e. a novel map-
ping between states of the world, actions and payoffs. Shocks occur at regular intervals 
(we test for different frequencies), implying that all the fitness values of the landscape are 
re-drawn, though the complexity structure of the landscape is kept constant. Therefore, 
the performance of incumbent rules, associating a given action to some conditions of 
the environment, is suddenly and abruptly modified. Shocks might include, for instance, 
disruptive technological innovations, new competition and regulations policies, etc.
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Figure 11:  Average number of rules over 100 organizations; highly complex (9 core) environment.
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Figure 12:  Average specificity of rules over 100 organizations; highly complex (9 core) environment.
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In these circumstances, one is able to explore also whether forgetting current (and, 
suddenly, at least partly obsolete) knowledge may be desirable in response to a shock. 
In order to do that, we compare the performance of two alternative learning strategies 
for each memory size. In the first setting organizations maintain their entire set of rules 
developed with the ‘obsolete’ landscape: in fact, they do not ‘know’ of the implica-
tions of the shock, but painstakingly need to amend the existing knowledge facing the 
new landscapes. Conversely, in the second setting organizations ‘reset’ completely their 
memory in response to shocks, starting the learning process from scratch (i.e. from a 
single rule with randomly chosen action). In fact, this is equivalent to evaluating the 
performance of new, untested, organizations. In the tables below we report the results 
for the average fitness generated by organizations exploring increasingly complex land-
scapes: 1, 3 and 6 cores.10 The rows in the table correspond to different frequencies 
of shocks, reported in the first column. The columns report the size of memory and 
whether the organizations reset their memory or not. The last row, that we call ‘Never’, 
is the equivalent of the previous case for stationary environments (with the small tech-
nical difference that for the sake of comparability we ‘force’ exploration for new rules 
to continue forever, thus undermining the measure of the fitness as organizations keep 
on exploring even after having reached the maximum fitness).

4.2.1  Simple environment (1 core).  Results show that in highly volatile environments, 
with high frequency of shocks, small memory size provides higher fitness than strategies 
allowed larger memory size. In these cases, reported in Table 1, a large memory allows 
the survival of inefficient rules that spoil both learning patterns and average performance. 
The advantage disappears as the shocks become less frequent, providing the opportunity 
for organizations with larger memory to better deploy their learning potential. In any 
case, organizations with the largest memory size still pay a price in terms of performance, 
supporting the hypothesis that in simple but volatile environments a large memory is not 
only redundant, but is effectively detrimental for performance. The reason is that a larger 
stock of experience takes more time to be replaced than a smaller one, allowing obsolete 
knowledge to linger longer within the organization, dragging down its performance.

The average performance of organizations which reset their memory after a shock 
is no better, and in many cases markedly worse, than the one of organizations with 
equivalent memory size which maintain their (obsolete) experience after a shock. This 
result hints to the reasons for the advantage of smaller memory sizes. Intense com-
petition for scarce memory speeds up learning, favouring reuse of useful chunks of 
existing knowledge, as opposed to generating new knowledge from scratch in a context 
with abundant remembering capacity. This is why the first column (small memory, 
keep obsolete rules after a shock) shows persistently better performance than the last 
column (largest memory, delete all rules after a shock). The advantage is clear at all 
frequencies, but for the most rare, in which performance values are very similar.

4.2.2  Intermediate complexity (3 cores).  With intermediate complexity we obtain simi-
lar results (see Table 2), though, of course, performance is generally lower due to the 
increased complexity of the landscape.

It may be worth noting that the distribution of fitness values across the whole land-
scape is highly biased, with few high values and a vast majority of low values. The 

10 We skip the analysis of maximally complex landscapes (9 cores) because the results are perfectly in line 
with the other cases.
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performance distribution is a power law produced by the function x30, with x being 
the sum of 14 independent uniform random variables (the individual fitness contribu-
tions) taking values in the range [0,1]. Such a distribution has an expected value of 
about 0.032 (=1/31), that is, picking randomly a performance value from the whole 
landscape would generate values in the range [0,1], with most of them being very close 
to 0. The fact that all our simulations report far higher performance levels, which are 
shown by only a tiny portion of the points in the landscape, means that our learning 
mechanism is effective in locating, even in the worse cases, high fitness local peaks, but 
the ecology yields systematically heterogeneous performances.

4.2.3  Complex environment (6 cores).  In this case of higher complexity we find, even 
more so, that smaller memory provides an advantage. Recall that memory plays two 
roles, storing so to speak ‘established and old’ learning, as well as novel candidate 

Table 1.  Simple landscape (1 core). Average fitness over 50,000 time steps starting from t=150,000

Retain memory after shocks Reset memory after shocks

Frequency Small Medium Large Small Medium Large

300 0.12566 0.0989861 0.0919705 0.10344 0.0837442 0.0606114
600 0.189397 0.139157 0.115108 0.165856 0.132492 0.120285
1000 0.243851 0.206673 0.157258 0.228764 0.187792 0.145979
1500 0.314622 0.253612 0.237312 0.292384 0.265688 0.229637
2000 0.368529 0.345406 0.308086 0.359418 0.315149 0.26155
2500 0.410609 0.4001 0.351153 0.403276 0.368321 0.33263
3000 0.484363 0.457313 0.451933 0.47254 0.442825 0.378531
5000 0.580595 0.573387 0.538362 0.518848 0.561429 0.496277
10000 0.69922 0.770904 0.763659 0.690147 0.761173 0.676752
20000 0.748382 0.770636 0.717614 0.752883 0.80075 0.731601
Never 0.803684 0.942152 0.931624

Table 2.  Intermediate-complexity landscape (3 core). Average fitness over 50,000 time steps starting 
from t=150,000

Retain memory after shocks Reset memory after shocks

Frequency Small Medium Large Small Medium Large

300 0.107307 0.0862687 0.0880694 0.0949113 0.0872966 0.082382
600 0.129952 0.0975477 0.0956609 0.11328 0.0980064 0.0867317
1000 0.153389 0.103191 0.106947 0.137083 0.121099 0.109123
1500 0.197236 0.142404 0.128115 0.161011 0.155791 0.132149
2000 0.218118 0.161657 0.138115 0.175368 0.154216 0.106668
2500 0.241845 0.183643 0.160308 0.201468 0.183583 0.145434
3000 0.264002 0.222403 0.198537 0.219785 0.208797 0.160834
5000 0.314652 0.285477 0.272994 0.260625 0.272635 0.215972
10000 0.444146 0.487149 0.506658 0.407526 0.425191 0.363751
20000 0.552035 0.58209 0.607224 0.510752 0.608566 0.536618
Never 0.671532 0.920983 0.902416
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rules to be assessed. In that, above some level of environmental complexity, the reset-
ting of memory after a shock provides an advantage to keeping memory across radical 
modifications of the environment. But, remarkably, this seems to occur if shocks are 
rare enough to allow a relatively thorough learning. Otherwise, cross-cutting robust 
and relatively blind routines seem to perform better, as shown by Table 3 below.

4.3  Path-dependency

We showed so far that our artificial organizations learn adaptively, but we may ask: 
do they learn the same things? That is, do they converge to the same cognition/action 
patterns facing the same stable environment and the same ‘objective structure of 
incentives’ stemming from the revealed payoffs? Or is learning path-dependent in 
the sense that organizations facing the same environment but starting from different 
initial conditions (rules with the same condition part but different randomly gener-
ated actions) and undergoing different adaptation will produce different rules? In 
this section we address this question for stationary environments of intermediate 
complexity.

The behaviour of our organizations depends on the interaction of the whole set of 
rules and of their relative strength. Hence, measuring directly the similitude among 
organizations is hard. Potentially, two identical set of rules with only a slight differ-
ence in strength may produce highly different results, while, on the contrary, very dif-
ferent sets of rules may potentially produce very similar results. Hence, we measure 
the differentiation of organizations using the indirect measure of the variance across 
the population of the fitness received through time. Figure 13 shows the variance  
of the relative fitness across the population of 10 organizations in a complex (6 core) 
but stationary environment. In more simple settings (1 and 3 cores), the time series 
of variances show an initial increase but a subsequent fall to zero as all organizations 
reach the optimal point: the transients converge. In the foregoing case, instead, vari-
ance grows and then stabilizes, indicating a persistent dispersion of observed fitness, 
suggesting that organizations differentiate along path-dependent trajectories, leading 

Table 3.  High-complexity landscape (6 core). Average fitness over 50,000 time steps starting from 
t=150,000

Retain memory after shocks Reset memory after shocks

Frequency Small Medium Large Small Medium Large

300 0.081146 0.078099 0.0792957 0.077693 0.0775796 0.0758342
600 0.0876982 0.0785803 0.0829455 0.0804502 0.0790845 0.0748973
1000 0.0932931 0.079472 0.0817679 0.0840607 0.0830139 0.0788371
1500 0.0991952 0.0815934 0.0815307 0.0887702 0.0887166 0.0810441
2000 0.109788 0.0868158 0.0869898 0.0972125 0.103213 0.0948689
2500 0.116153 0.0855875 0.0873492 0.096938 0.104273 0.0945893
3000 0.122875 0.0875066 0.091828 0.0978429 0.11075 0.100329
5000 0.151306 0.0992009 0.10047 0.110426 0.140738 0.122169
10000 0.20531 0.13491 0.135438 0.126998 0.178356 0.134209
20000 0.272416 0.219173 0.20577 0.147881 0.234087 0.175662
Never 0.514746 0.702701 0.693051
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them to different areas of the landscape. An even stronger pattern differentiation 
emerges for the maximally complex setting (9 cores).

This general path-dependency property is corroborated under the non-stationary 
setting, reported in Figure 14, showing the relative11 variance for the case of 1 core. 
When the rates of change of the environment are of an order of magnitude similar to 
the rates of learning, the dispersion is very high. When the change is more sedate, on 
the contrary, organizations tend to converge to the global maximum, consequently 
reducing their differentiation.

5.  Conclusions

This work presents a formalization of the notion of organizational memory embodying 
and combining organizational ‘cognitive’ frames and operational routines. This allows 
the analysis of both cognitive and operational patterns of organizational behaviours. 
We explore them under different degrees of complexity of the environment and of the 
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Fig. 13. Variance of relative fitness across a population of 100 organizations. Complex environment 
(6 cores), stationary environment.

Fig. 14.  Relative variance in non-stationary environments for different shock frequencies.

11 To normalize the variance, we divided the absolute variance for the square of average values, removing 
the bias due to the difference on unit of measurement for the indicator of dispersion.
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problem-solving tasks and under diverse environmental dynamics. We find that differ-
ent degrees of complexity and non-stationarity play a crucial role in determining the 
evolution of the overall rules system.

First, complexity and non-stationarity determine (to a degree) the balance between 
specialization and generalization. We find that, except in the most simple and stationary 
environments, what organizations learn and ‘remember’ thereafter are not fine-tuned 
detections of the precise states of the environment and equally fine-tuned behavioural 
responses, but rather cognitive states (‘categories’) which capture ensembles of envi-
ronmental states and correspondingly patterned behavioural responses, indeed, rou-
tines. If the set of relevant environmental states is relatively large and interdependent, 
as in the case of high complexity, the organization’s limited learning system is not able 
to discover all the relevant specific rules and hold them in memory. Consequently, 
organizations produce general rules, each of which applies the same action to sets of 
states that would each require a different action for optimization, while the organiza-
tion settles for a single action producing a good (‘satisficing’), though suboptimal, 
result. In practice, although such practice allows organizations to survive in complex 
environments it may downplay incentives for excellence related to specialization, as 
highly specific rules will emerge and survive only if they apply to frequently experi-
enced environmental situations, or if they generate very high payoffs. In all other cases, 
specific optimal rules, even when developed, will be forgotten because they are applied 
too rarely, and provide too small an advantage, in comparison to more general and 
suboptimal competitors. While generic rules are seen as a safety policy against uncer-
tainty, what is here at stake is the incentive for specialization, namely for the quest of 
optimal solutions.

Second, with the only exception of the simplest environments, the path-dependent 
and idiosyncratic learning processes, rooted in different organizations, result in the 
development of distinct interpretative frameworks even if all organizations are exposed 
to the same environmental signals and living on the same fitness landscapes. This is due 
to three different factors. The first one is that the complexity of the overall landscape 
(combining together environment and action dimensions) generates multiple peaks 
and different organizations will move in the basin of attraction of different local optima 
depending upon random mutations of their rules. The second factor is that there are 
many rules which generate the same or very similar behaviours and therefore have the 
same or very similar fitness. In other words, there is a good amount of neutrality in the 
selection landscape for rules and there is a lot of neutrality in memory systems (see 
Jain and Kogut, 2014; and Marengo, 2015; for two recent contributions to the topic). 
The third related factor is that there is also a good amount of redundancy in a memory 
system: if the memory size constraint is not too binding, a good number of rules are 
kept in memory (see below for details). Neutrality and redundancy are fundamental 
for the evolvability of the system, i.e. its capacity to produce variation and novelty and 
therefore to adapt to environmental changes. If, at each moment in time, memory 
contained only the specific rules optimally adapted to all and only the environmental 
situations experienced so far, then adaptation to new environmental conditions would 
be more difficult, as the organization would find itself in a competency trap (Levinthal 
and March, 1993).

Third, we explored the impact of different memory sizes. Broadly speaking, a larger 
capacity to develop and store rules is beneficial for organizations, as long as the fit-
ness landscape does not change or changes gradually so that adaptation to novelty is 
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unnecessary or can be done at a slow pace. This does not hold under frequent environ-
mental shocks: in these circumstances flexibility and fast adaptation are prerequisites 
for survival and memory becomes associated with the competence traps highlighted 
by Levitt and March (1988) and Gavetti and Levinthal (2000). A more effective evo-
lutionary strategy is to unlearn, that is to erase the memory of cognitive frames and 
routines which were successful in the past but tend to hinder adaptation under the new 
landscape.

Fourth, and somewhat counterintuitively, above a certain (quite high) threshold 
of environmental and problem-solving complexity and under repeated and massive 
environmental shocks, an effective evolutionary strategy returns to the remembrance 
of what we call robust interpretative categories and robust routines which yield satisficing 
outcomes across an array of (imperfectly understood) and changing environments.
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Appendix

In this appendix we provide some additional details on the model. We start with our 
system of rule selection and rule reward.

Rule selection and reward

We experiment with an on-line set-up of rule selection whereby, if more than one rule 
is active, they bid for action. The bid of a rule i that is active at time t is denoted Bt i,

 
and computed according to the formula:

	 B 1 N St i i e t 1 i, ,/= + −( )  −β β σ 	 (1)

where β is a parameter representing the relative importance of specificity in bidding, 
σ i  is the specificity of the condition (number of bits different from #) and Ne is the 
number of environmental bits. In summary, a bid is higher, the higher its strength and, 
weighed by the β parameter, its specificity. This reflects the principle of default hierar-
chies (Holland et al., 1986), that is, more specific rules, other things being equal, should 
be preferred to more general ones. The bid values are computed for all the active rules, 
those whose conditional part matches the current environmental state. A single rule 
is chosen with probabilities proportional to the normalized values of the bids, and its 
action part is played, producing a payoff.

The strengths of all rules are updated by detracting a small ‘tax’ on strength to avoid 
the permanence of a rarely applied rule:

	 S S 1t i t 1 t 1, ,= −( )− τ 	 (2)

where τ1 is the generic ‘maintenance’ tax, acting like depreciation in case the rule is 
never applied.

The selected rule pays an additional ‘tax’ proportional to the proposed bid, and 
receives as reward the payoff:

	 S  S 1   B 1t i t 1 t 1 2 t i t i, , , ,= −( ) −  + −( )−γ τ τ γ Payoff 	 (3)

The additional components are τ2, a scale parameter tuning the cost of bidding, and γ, 
controlling the speed by which the strength tracks the level of the payoff.

Generation of new rules

New rules are normally generated as a variation of existing successful ones, and 
can occur after a rule is applied, i.e. its action part has been played. A parameter 
determines the frequency by which an applied rule has the opportunity to generate 
an offspring, i.e. a new rule derived from its own structure. In simulation exercises 
on static environments the total number of offspring per rule is also limited in order 
to avoid a continuation of a search after a limit level is reached. The parameter is 
chosen to not affect the results, being triggered only when the performance of the 
organization stabilizes.
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New rules can be obtained by either specification or generalization of the condition 
part and/or by mutation of the action part.

Specification means that a rule with some #’s in the condition part generates an 
offspring rule whose condition part is a copy of the parent’s except for the mutation of 
some #’s into either a 0 or a 1. Two rule- and bit-specific indicators defined as follows 
control such mutations. Each un-specified bit h of the condition part (i.e. each ch = #
) is associated to two indicators r t h

0
,

 or r1
t h,

 recording the payoffs received when the 
rule is fired and the environmental state of the bit is 0 or 1, respectively. If the environ-
mental string has 0 in the hth position, i.e. eh = 0 , then r rt h t 1 h

0 0
, ,= +− Payoff , where 

Payoff  is the payoff received by the rule.
If instead eh = 0 , it is r t h

1
,

 that gets accordingly updated: r r1
t h

1
t 1 h t, ,= +− Payoff . The 

two indicators collect the sum of the payoffs received by the rule when the environ-
mental bits corresponding to each of its # were 0 or 1, respectively.

When the rule has the opportunity to generate an offspring, the first operation is to 
compute the following indicator for each non-specific bit:
	

l r r r rt h t h t h t h t h, , , , ,/= − ( + ) 0 1 0 1
	

(4)

This is an indicator of concentration, ranging from 0 (minimal concentration) to 1 
(maximal). If the indicator is very high, above a certain threshold, it means that the rule 
recorded systematically higher payoff when applied to environmental states defined by 
a given value in that bit, and therefore there is grounds for generating a new rule by 
means of specification. If this is the case, and more than one bit passes the threshold, 
the system chooses which bit must be turned from a # to either a 0 or 1 by assigning 
each generic bit the following probability:

	 prob t h t,h j j( , ) /
#

= ∑ =1 1θ θ 	 (5)

where Σ j =# indicates the sum overall and only the condition bit equal to # and θ is a 
parameter affecting the concentration of probabilities. Obviously, the bit selected for 
specification is set to 0 if r  rt h

1
t h

0
, ,>  and to 1 otherwise. The action part of the new 

rule generated by specification is a perfect copy of the parent’s action part.
If the rule cannot generate a rule by means of specification because no bit shows 

sufficient concentration, the system chooses randomly whether to create a new rule 
via generalization or mutation. Generalization consists of mutating one specified bit 
c  i ≠ #  into c  i = # , selecting randomly the bit to generalize. Also in the case of 
generalization, the action part of the offspring rule is a perfect copy of the parent’s 
action part.

New rules produced via mutation maintain the same condition part ci  and switch 
one, randomly chosen, bit of the action part from 0 to 1 or vice versa.

Besides the regular procedure producing new rules from existing ones, an additional 
procedure generates new rules to meet exceptional conditions. A more general rule can 
be introduced in the system when no existing rule can be applied because no condition 
part matches the current state of the environment. In this case, a ‘mismatch ratio’ is 
computed for all existing rules. This is the ratio of the bits that are specific (i.e. equal 
to 0 or 1) and do not match the environment (i.e. c ei i≠ ) divided by the number of 
specific bits. Thus, for instance, a rule with only one specific bit (and # everywhere else 
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in the condition), when this bit does not match the corresponding environmental one, 
has a mismatch ratio of 1. A rule with one mismatching bit, but having 9 other specific 
bits matching the current environmental state, has a mismatch ratio of 0.1. The rule 
with the lowest mismatching index is generalized by turning the mismatching bits into 
# and has therefore been able to meet the current environmental conditions.

Forgetting rules

Each rule is associated to an indicator reporting how frequently the rule is chosen 
when its condition part is compatible with the environment, i.e. it has the chance to 
be chosen. This indicator A

t i,
 is not modified when the rule is not applicable because 

its condition part does not match the environmental bits. Otherwise, it is updated as 
follows:

	 A A 1 C t it i t 1 i, , ,= + −( ) ( )−λ λ � (6)

where λ is a smoothing coefficient and C t i,( )  equals 1 if the rule i is chosen at time t 
and 0 otherwise. Thus, A

t i,
will approach 0 when the rule is rarely used, and 1 when, on 

the contrary, it is frequently used. At every time step the organization reviews all the 
rules in its repertoire and removes those whose indicator A

t i,
 is below a given thresh-

old. Consequently, the lower the threshold, the more rules will remain in the memory 
of the organization, while the higher the threshold, the more selective the organization, 
retaining only rules used frequently.
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