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Abstract: We propose and experimentally demonstrate a stable homodyne phase 
demodulation technique in a φ-OTDR using a double-pulse probe and a simple direct 
detection receiver. The technique uses selective phase modulation of one of a pair of pulses to 
generate a carrier for dynamic phase changes and involves an enhanced phase demodulation 
scheme suitable for distributed sensing by being robust against light intensity fluctuations, 
independent of the modulation depth, and convenient for analogue signal processing. The 
capability of the technique to quantify distributed dynamic phase change due to a generic 
external impact is experimentally demonstrated by measuring the phase change induced by a 
nonlinear actuator generating a 2 kHz perturbation at a distance of 1.5 km on a standard 
singlemode fiber with an SNR of ~24 dB. The demodulated nonlinear response is shown to 
have a spectrum consistent with one obtained using an FBG sensor and a commercial reading 
unit. 
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1. Introduction 

Recently, fiber optic sensing for distributed dynamic monitoring has become a subject of 
detailed investigation, thanks mainly to the interesting applications it has in real-time 
monitoring of fast perturbations. Specifically, Distributed Acoustic Sensing (DAS), which 
involves the use of coherent Rayleigh backscattering in an optical fiber to determine multiple 
vibrations over an extended region, has become an effective and reliable technique owing to 
its capability to determine external acoustic impacts over long distances [1]. Recent survey 
shows that the global market share of DAS is steadily increasing and is projected to surpass $ 
2bn in revenues by 2025 [2]. The technique has a number of interesting applications in many 
industrial fields including, among others, the monitoring of safety and integrity of large 
structures, oil & gas pipelines and railways infrastructures. 

Phase-sensitive Optical Time Domain Reflectometry (φ-OTDR) is a sensing scheme 
commonly used for DAS and is based on the observation of phase-sensitive coherent 
Rayleigh speckles in time domain. In this scheme, pulses from a coherent light source which 
are sent into a sensing fiber result in coherent Rayleigh backscattering exhibiting a distributed 
speckle pattern sensitive to local phase changes induced by external impacts [3–8]. A local 
disturbance applied to the optical fiber causes a change in the refractive index and optical 
path length of the light passing through it, which in turn change the intensity and phase of the 
backscattering signal. Observing the evolution of the received signal for each spatial location 
reveals information on the distributed impact. The theoretical limit to the frequency of the 
impact signal that can be extracted is set by the round-trip time (RTT) of light along the fiber, 
making the technique suitable for high frequency vibration measurements. A number of 
techniques have been proposed to extract perturbations in φ-OTDR, most of them focusing on 
the measurement of the location, amplitude and frequency of the received signal, on which 
part of the information on the disturbance can be encoded. Early implementations include 
intrusion detection [3] using a simple direct detection scheme and extracting presence of 
impact with a differential intensity trace [4]. Other schemes involving the resolution of the 
backscattered signal in the wavelet domain have also been proposed [5]. More recent schemes 
use advanced signal processing to increase the signal-to-noise ratio of the backscattering 
signal in the measurement of vibration [6,7]. 

One of the issues in most existing φ-OTDR schemes is that measurement of the 
amplitudes of the backscattering signal alone does not provide all required quantitative 
information on the external impact. Quantitative measurement of any induced perturbation 
requires extracting the phase of the backscattering signal for each location as well. One of the 
first systems addressing this issue used coherent detection involving mixing of the 
backscattered signal at the receiver with a local oscillator and subsequent demodulation of the 
phase using a coherent receiver [8]. However, in such a scheme, polarization of the 
backscattered light is not controlled along the fiber and the resulting mixing with an optical 
local oscillator requires expensive polarization maintaining components. Recently, there have 
also been some investigations of phase demodulation in φ-OTDR using a direct detection 
receiver. One such scheme involves scanning the frequency of the pulses sent into the optical 
fiber and exploiting the duality of the change in the instantaneous frequency of the pulses and 
a change in refractive index caused by an external impact [9]. Correlations of a number of 
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traces at different frequency offsets from a reference trace taken at an unperturbed instant are 
made, and the frequency offset of the peak of the correlations is used to retrieve the local 
change in strain or temperature. However, this sensing technique is inherently quasi-static as 
it involves necessary waiting time for frequency scanning. Using a method which is based on 
the perturbation response of a single-wavelength φ-OTDR signal analyzed as a 
unidimensional speckle pattern, monotonic change in temperature has been measured [10]. A 
method which exploits the frequency shift concept in [9] has also been used to implement a 
sensing scheme which involves chirping of the probing pulse, thereby sending the equivalent 
of pulses with multiple frequency content in one round-trip-time [11,12]. The longitudinal 
shift of the traces in the spatial domain is related to the magnitude of a local disturbance, and 
is then used to quantify the local perturbation. Using this technique, it is possible to quantify 
the change in sign of the perturbation. Owing to the necessity to introduce a given chirp slope 
within the pulse width, a high bandwidth-to-spatial-resolution ratio is required, where a 13 
GHz photodiode and a sampling rate of 40 GHz were used with 10 m spatial resolution. Note 
that, even though the chirp slope and pulse width determine the range of pulse frequency shift 
which can be accommodated, the dynamic range of the phase change measurement can be 
much higher than the spectral content of the pulse. A more recent scheme employs an 
alternating dual frequency pulse probe for the tracking of the relative shift of two groups of 
backscattering traces at a given location by computing a correlation between them [13]. This 
technique avoids the coupling between spatial resolution and dynamic range present in [11], 
while the use of alternating frequency pulses reduces the measurement speed by half and 
demonstrated measurements are slow changes in temperature gradient. Another phase 
demodulation technique involves the use of a local oscillator and 90° hybrid to extract the two 
orthogonal components of the phase. A technique which uses a 3x3 coupler for demodulating 
the phase has also been proposed and demonstrated [14,15]. This scheme requires the use of 
three photodiodes working in full synchronization and an interferometric system which 
should be kept in thermal isolation for stable demodulation. Another configuration which 
emulates demodulation in an optical coupler with three pairs of pulses, each of which has a 
relative phase shift of 2 / 3π with respect to each other has also been proposed. This technique 
addresses the thermal isolation, synchronization and receiver duplicity issues in using a 3x3 
coupler but results in a three-fold reduction in the sensing bandwidth [16]. In schemes using a 
3x3 coupler and 90° degree hybrid, backscattering intensity fluctuations introduce errors in 
the demodulated phase and handling them requires additional techniques. Note that 
demodulation techniques based on coherent detection or using 90° degree hybrid employ the 
arctan or the four quadrant arctan functions, both of which require unwrapping algorithms for 
values of the phase outside their corresponding ranges. Unwrapping of a fast, abrupt changing 
phase is computationally costly, and in the case of distributed sensing such as φ-OTDR, it 
involves more costly two-dimensional unwrapping computations. 

In this contribution, we propose the use of a novel φ-OTDR sensor based on a double 
pulse probe and direct detection for distributed dynamic phase change extraction using a 
stable interferometric demodulation technique which is highly suitable for distributed sensing. 
Our technique hinges on the observation that distributed information on the phase change 
along a sensing fiber can be extracted in a simple φ-OTDR configuration if a simplified 
distributed interferometer scheme equivalent to a standard point interferometer such as the 
3x3 coupler can be implemented together with a demodulation technique suitable to a 
distributed scenario. Specifically, in our scheme, a phase generated carrier for every point in 
the sensing fiber is obtained by sending a pair of coherent pulses into the sensing fiber in such 
a way that the phase in one of them is modulated with an arbitrary depth. Subsequently, the 
resulting beating between the backscattering signals from the two probe pulses can act as a 
radiofrequency carrier of arbitrary phase changes due to distributed external impact on the 
fiber. After a simple direct detection using a pin photodiode, homodyne demodulation of the 
phase is done using a technique which is highly suitable for distributed sensing by being 
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stable for arbitrary values of the modulation depth, independent of the received signal 
intensity fluctuation and mixing efficiency, and convenient for analogue signal processing. In 
the following sections, we first discuss the mechanism of using the dual pulse φ-OTDR as a 
distributed interferometer, and present the mathematical background of the enhanced 
homodyne demodulation scheme used. We then present the experimental setup used to 
validate our proposed sensing scheme, and describe the experimental results confirming the 
ability of the sensor to quantify the magnitude of a generic dynamic phase change induced by 
a non-linear PZT actuator, including comparison of the response with an FBG sensor using a 
commercial FBG reading unit. 

2. Double-pulse φ-OTDR and phase generated carrier demodulation 

Dynamic phase extraction from just a single disturbance point along an optical fiber can be 
done using interferometric techniques for quantifying phase changes [17–20], while 
concurrent demodulation of phase changes from multiple impact points with interferometric 
configurations requires the use of additional complex setups [21,22]. A similar demodulation 
can be performed in φ-OTDR using a double pulse probe, in which first a pair of adjacent 
pulses is sent into the sensing fiber and the interaction between the backscattering from the 
two pulses is used to extract distributed phase changes [16]. The basic schematic of the 
specific double pulse technique used in the proposed sensor is depicted in Fig. 1, which 
shows the backscattering signal from two adjacent points traversed by the double pulse 
indicated along the fiber with positions m  and k  separated by a short distance zΔ , where one 
pulse is selectively modulated with a phase of ( )tδΔ . When an external perturbation 

introducing phase change ( )tφ  is applied on a region between these two points, the 

backscattering from each position , ( )m kE t  at the receiver has an electric field given by: 

 
( ) exp[ ( ) ],

( ) exp[ ( ) ( ) ],
m m m m

k k k k

E t E j t j

E t E j t j t j

δ ϕ
φ δ ϕ

= +
= + +

 (1) 

where ,m kE are the amplitudes of the fields and , ,( )m k m ktδ ϕ+ are the phases in the two 

locations, ,m kϕ being the initial phases. Note that the term ( ) ( ( ))t f tφ ξ=  is the phase change 

which is a function of the external perturbation ( )tξ and appears in the expression for the field 

term for position k but not that of .m  Due to the coherence of the source, the two fields in (1) 
interfere with each other and the resulting intensity at the receiver will have the expression: 

 2 2 2 cos( ( ) ( )),m k m kI E E E E t tδ φ= + + Δ +  (2) 

 

Fig. 1. Schematic of a double pulse φ-OTDR showing the backscattering from two adjacent 
points. 

where ( )tφ is the measured phase change between the two positions in the presence of the 

external impact, 0( ) cost C tδ ωΔ = , C being the modulation depth and oω  the modulation 

angular frequency, is the relative phase change between the two positions. Hence, (2) shows 
that the double pulse configuration effectively changes the φ-OTDR configuration to that of 
an interferometer for each spatial point, where the resulting beating signal contains the phase 
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change due to the external impact information, which can further be extracted using a proper 
demodulation technique. In our proposed scheme, we use a phase-generated carrier (PGC) 
demodulation scheme which is highly suitable to distributed sensing to extract the phase. The 
principle of phase extraction using a generic PGC demodulation technique can be explained 
by considering the general case of a phase modulated signal with arbitrary 
phase 0( ) cos ( )t C t tθ ω φ= + , which as given in (2) is the phase change in the interfering 

signal [23]. The detected intensity in the presence of an external impact inducing a phase 
change of ( )tφ can be written as: 

 ( )cos cos ( ) .oI A B C t tωη φ= + +  (3) 

The terms A and B are parameters which depend on the input optical power at the 
receiver, A being the DC component while B is the amplitude and η  stands for the mixing 

efficiency of the interferometer. Expanding the second term in (3) using the cosine of sums 
property yields: 

 ( ){ ( ) }0 0cos cos cos ( ) sin cos sin ( ) .I A B C t t C t tη ω φ ω φ= + −  (4) 

The term with a linear multiplication inside cosine and sine functions can be expanded 
since for any constant C, the Bessel’s expansions of nested sine and cosine functions are [23]: 

 ( ) 0 2
1

cos cos( ) ( ) 2 ( 1) ( )cos(2 ),n
n

n

C x J C J C nx
∞

=

= + −  (5) 

 ( ) 2 1
0

sin cos( ) 2 ( 1) ( )cos((2 1) ),n
n

n

C x J C n x
∞

+
=

= − +  (6) 

where ( )nJ C  is n-th order Bessel function of C. Substituting the terms in (5) and (6) in their 

respective positions in (4) and using 0x tω= yields a sum of two terms for the intensity: 

 1 2[ ].I A Bη= + Φ + Φ  (7) 

 

Fig. 2. Initial mixing in PGC demodulation to obtain intermediate signals to the I and Q 
components (LPF: Low-pass Filter). 

The terms 1Φ  and 2Φ in (7) are two orthogonal components given by [23]: 

 1 0 2
1

( ) [ ( ) 2 ( 1) ( ) cos(2 )]cos ( ).n
n o

n

t J C J C n t tω φ
∞

=

Φ = + −  (8) 

 2 2 1
0

( ) [2 ( 1) ( ) cos((2 1) )]sin ( ).n
n o

n

t J C n t tω φ
∞

+
=

Φ = − +  (9) 

From (8), it can be seen that when ( )tφ is zero, the component 1( )tΦ is non-zero, while 

2 ( )tΦ in (9) vanishes. In contrast, when ( ) / 2tφ π= , 2 ( )tΦ is non-zero while 1( )tΦ  is 
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eliminated. These are signals centered at the even and odd multiples of 0ω . It is also worth 

noting that ( )tφ itself can be expanded for the generic case of a phase change with amplitude 

D and angular frequency ω  such that ( ) cos( ) ( ).t D t tφ ω ζ= + In a fiber interferometric 

system, the interference signal at the receiver ( )R t  is used to retrieve the two intermediate 

components, which are obtained by mixing the incoming signal with two oscillators at 0ω and 

2 0ω followed by low pass filtering as shown in Fig. 2. These signals are then processed 

according to a PGC demodulation algorithm to obtain the desired phase change. Considering 
a generic case with interference visibility η  and respective carrier amplitudes G and H, the 

two signals at the receiver in Fig. 2 can be written as: 

 1 1

2 2

( ) ( )sin ( ).

( ) ( ) cos ( ).

s t BGJ C t

s t BHJ C t

η φ
η φ

= −
= −

 (10) 

A commonly used scheme is the PGC-arctan method which uses the inverse tangent of the 
ratio of the two components. The PGC-arctan algorithm is used to retrieve the phase ( )tφ by 

just performing the inverse tangent of the ratio of the two terms in (10), with the requirement 
that the value of C, the modulation depth, must be such that 1 2( ) ( )J C J C= which is true for a 

value of C = 2.63. With this condition, and for equal amplitudes G and H, the demodulated 
phase is reduced to the direct inverse tangent of the ratio of 1( )s t and 2 ( )s t . Light Intensity 

Disturbance (LID) is negligible due the elimination of the amplitudes of the two components 
with the ratio. However, the deviation of the modulation depth value from 2.63 introduces 
errors in demodulation and studies have shown that it is not the optimum condition for 
reducing the demodulation error [24,25], as slight deviations from this value have been shown 
to result in reduced accuracy in the phase measurement [26,27]. 

In addition, this technique involves phase unwrapping for values of the phase outside the 
range of the arctan function to eliminate discontinuities with a suitable algorithm. Multi-
dimensional phase unwrapping, especially when fast jumps of the instantaneous phase exist, 
is a computationally intensive algorithm, and has been a subject of a number of independent 
investigations in the past [28,29] including recent ones [30–32]. This technique has been used 
in discrete sensing schemes including those based on interferometry. Even though fringe 
counting algorithms can be used for slower and less abrupt changes, note that the use of 
unwrapping in distributed sensing introduces computations of two-dimensional phase 
unwrapping such as the ones required in image processing schemes [33–35]. Since the 
amount of data that can be handled by a DAS in any monitoring scenario remains one of the 
main challenges in future DAS solutions according to recent DAS market forecast [2], the 
adoption of any interferometry demodulation scheme, including application of PGC to a DAS 
system, requires a close consideration of the associated digital signal processing and storage. 
Another commonly used PGC demodulation technique is the differentiate-and-cross-multiply 
(PGC-DCM) scheme where the phase is obtained by differentiating each of the 
components 1( )s t and 2 ( )s t and cross multiplying them before taking their difference. Applying 

this scheme to the intermediate components in (10), and using trigonometric identity, we first 
obtain [27]: 

 

.
2 2

2 1

.
2 2

.
2 2

2 1

( ) [ ( ) ( )]

[sin ( ) cos ( )] ( )

( ) ( ) ( ).

DCMs t B GHJ C J C

t t t

B GHJ C J C t

η

φ φ φ

η φ

= ×

+

=

                  

             

 (11) 
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Integration of the last term in (11) gives the final phase multiplied with the remaining 
terms: 

 2 2
2 1( ) ( ) ( ) ( ).DCMs t B GHJ C J C tη φ=  (12) 

It can be seen from (12) that the main issue with the PGC-DCM technique is that, while 
the Bessel function terms of the modulation depth are mere linear multiplication factors, there 
is clear dependence of the demodulated phase on the square of the B value and mixing 
efficiency .η This contributes to detrimental light intensity disturbance (LID), incurring 

significant errors in demodulation, and requires techniques including normalizing, (which 
introduces distortions) or tracking the intensity and using feedback loops to reduce [26]. 

3. Stable PGC demodulation with a double-pulse φ-OTDR scheme 

In the proposed sensing scheme, we use an enhanced phase demodulation technique which 
addresses the aforementioned issues in conventional PGC phase extraction methods to extract 
the dynamic phase change in the backscattering from the double pulse probe. The technique 
involves an enhanced PGC demodulation with Differentiate Multiply and Square (PGC-
DMS) method whose basic mechanism is depicted in Fig. 3 [27]. As shown, the instantaneous 
phase is obtained from the intermediate components by first differentiating 1( )s t and 

multiplying it by 2 ( )s t  and then dividing the result by the square of 2 ( )s t . When applied to 

the two intermediate terms at the receiver given in (10), first the product and square terms 
become: 
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Subsequently, taking the ratio of the terms in (13) and assuming equal amplitudes G and 
H in the mixing carriers gives: 

 1 2 1

2 2

( ) ( ) ( )
( ).

( ) ( )
D

SQ

s t s t J C d
t

s t J C dt
φ=  (14) 

Since the instantaneous phase contains both the high frequency perturbation and low 
frequency environmental drift, it will have the form ( ) cos( ) ( ).t D t tφ ω ζ= + Any phase change 

can hence be obtained by first integrating (14) and then as appropriate, high-pass filtering the 
result to remove slow environmental drifts: 

 1 1

2 2

( ) ( )
( ) ( ) ( )

( ) ( )DMS

J C J Cd
S t t dt t

J C dt J C
φ φ= =    (15) 

As can be clearly seen from (15), the ratio of the two Bessel functions for any value of the 
modulation depth C remains a mere linear multiplication factor, while both terms B 
and ,η which are difficult to control if the PGC-DCM algorithm is used, are eliminated. This 

method greatly suppresses the LID, which would significantly affect the results of the phase 
demodulation. It is also demonstrated to exhibit enhanced suppression of the total harmonic 
distortion compared to the PGC-arctan and PGC-DCM methods [27]. Note that light intensity 
disturbance due to backscattering signal fluctuations is an issue in a number of existing φ-
OTDR demodulation methods and requires additional techniques in order to be suppressed 
[14,16]. 
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Fig. 3. Phase demodulation in the φ-OTDR sensor using PGC-DMS. 

Hence, PGC-DMS demodulation mitigates the requirement to limit the modulation depth 
to a fixed value, doesn’t require phase unwrapping and is robust to LID, making it highly 
suitable for use in demodulation in φ-OTDR. Note also that the integration and differentiation 
functions involved in the PGC-DMS demodulation used in our technique can be easily 
implemented using operational amplifiers, which are fundamental building blocks of 
analogue signal processing systems [36]. This offers an advantage in terms of required digital 
storage and processing in distributed fiber optic sensing systems in which very often large 
volumes of data from multiple points are involved. This demodulation scheme is also a 
promising candidate for use with integrated analogue systems, since operational amplifies are 
available in CMOS integrated circuits [37,38], whose enabling technology is also compatible 
with silicon photonics [39], allowing hybrid platforms which combine electrical and photonic 
circuits for a compact integrated receiver [40]. Hence, the demodulation scheme used in the 
proposed φ-OTDR sensor is highly suitable for distributed dynamic phase extraction. 

4. Experimental setup 

The experimental setup used to demonstrate the proposed sensing scheme is shown in Fig. 4. 
First, the light from a narrowband laser with a linewidth of ~50 kHz is amplified using an 
Erbium-Doped Fiber Amplifier (EDFA) to boost the power level and an Optical Band-pass 
Filter (OBPF) is used to filter out the ASE noise. The signal is then sent into an Acousto-optic 
Modulator (AOM) which generates an initial single pulse. 

 

Fig. 4. Experimental setup of the proposed φ-OTDR sensor. 

The straightforward way to selectively modulate the phase of one of two consecutive 
optical pulses would have been to generate a double pulse in the AOM and use delay 
synchronization to selectively apply phase modulation to only one of them. However, in our 
scheme, we propose a more robust method starting from a single pulse and generating a pair 
of leading and trailing pulses. This is done by first generating one single pulse using the 
AOM, and then using a splitter and adding a fiber delay and a Variable Optical Attenuator 
(VOA) in one arm and a Phase Modulator (PM) in the other. The PM is modulated with 
sinusoidal voltages with a typical frequency of 10 kHz and an arbitrary modulation depth. 
The VOA is used to adjust the powers of the two pulses to equal levels, while it can also be 
used to suppress the pulse passing through the same arm, whenever the need to use only a 
single pulse arises. This configuration guarantees that, for any repetition rate of the signal 
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used to drive the PM, the pulse that is selectively phase modulated is precisely the trailing 
one. The PM and AOM are driven with WFGs which are synchronized to the triggering of the 
acquisition system. The selectively phase modulated pulse pair is then further amplified and 
boosted using a second EDFA and OBPF pair before the double pulse probe is sent into a 1.5 
km long singlemode sensing fiber via a three port optical circulator. At the end of the fiber, a 
nonlinear PZT actuator is used to induce a controlled external vibration. The PZT is driven by 
a voltage amplifier to which RF signals of controlled frequency and amplitude can be applied. 
The backscattering from the fiber passes through the return port of the circulator and is then 
coupled into a simple direct detection receiver which uses a 125 MHz PIN photodiode. The 
signal is then acquired in real time with a fast acquisition system with embedded ADC. While 
the measurement of an individual trace can be done in just a round-trip-time of the fiber, 
typical measurements of vibrations involve hundreds of individual acquisitions at rates of 50 
kHz (RTT = 20 sμ ). Then, the acquired traces were rearranged to form a matrix of traces 

with each row representing an entire trace of the whole fiber and each column the evolution 
of the phase modulated signal for each spatial location. Subsequently, mixing with the RF 
signal which is used to modulate the PM and filtering were employed to obtain the 
intermediate signals 1( )s t and 2 ( )s t  described in Fig. 2, followed by the application of the 

PGC-DMS demodulation scheme shown in Fig. 3 to extract the dynamic phase change. 
Note that the number of traces acquired for measuring the transient signal is 

programmable and it depends on the vibration frequency and the number of cycles that need 
to be measured. The maximum number of acquired traces along the whole sensing distance is 
determined by the sampling rate and the memory of the real time acquisition system. 
Continuous acquisition to observe many cycles of a low frequency transient signal is possible 
by limiting the trace acquisition to a short section of the fiber near the PZT. Besides, the 
maximum measurable frequency of the phase change when using PGC depends on the 
frequency of the signal used to modulate the phase of one of the pulses. Typically, for sensing 
distances of less than 1 km, phase modulation frequencies of 10s of kHz can be used. 

5. Experimental results and discussions 

To test the effect of phase modulation on the backscattering traces in the proposed scheme for 
phase demodulation, first pulses are sent into a 1 km test fiber when the PM is driven with a 
high-frequency RF signal with arbitrary modulation depth. The acquired individual traces are 
depicted in Fig. 5, clearly showing the effect of phase modulation in one of the pulses on the 
backscattering trace. The plot shows traces for single pulse with and without phase 
modulation and those of a double pulse with and without selective modulation of the phase in 
one of them. It can be seen that the double pulse scheme results in the mixing of the 
backscattering from the two pulses. In addition, the phase modulation of the pulse alters the 
pattern of the coherent speckles in both single and double pulse traces. In both the single and 
double pulse responses, the spatial resolution remains the same with application of phase 
modulation. After observing the effect of selective phase modulation on one pulse for 
individual single traces, the exact time evolution of the modulation needs to be measured for 
different phase modulation frequencies of the PM. This is done by continuously acquiring a 
number of traces with the double pulse and selective phase modulation and observing the 
backscattering signal for multiple locations when no perturbation is applied. 
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Fig. 5. Individual φ-OTDR traces for single and double pulse both with and without selective 
phase demodulation of one pulse. 

The observed spectra for any arbitrary position along the fiber are shown in Fig. 6 when 5, 
8 and 10 kHz modulating signals are used at the PM. As can be clearly seen, the phase 
modulation appears for each spectrum at the corresponding modulation frequency. Note that 
this modulation is observed in the coherent Rayleigh backscattering traces acquired after 
sending the double pulse, and it exists at all locations along the whole fiber, confirming the 
coherent mixing of the backscattering signals from the two pulses and the availability of the 
desired carrier wave for distributed dynamic phase change. Note that there are no applied 
vibrations and the measured phase change here is due to slow environmental drifts which are 
static within the short span of the measurement. 

 

Fig. 6. Spectra of acquired signal with no perturbation at an arbitrary locations showing 
corresponding carriers resulting from selective phase modulation of one of the pulse pairs with 
5, 8 and 10 kHz signals. 

Then, 1 and 2 kHz vibration signals were applied to the nonlinear PZT actuator placed at 
1.5 km, and the phase modulated signals were observed before applying the mixing, filtering 
and PGC-DMS demodulation. Sample spectra of such a signal are shown in Fig. 7 and their 
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observations show that the induced dynamic impact appears in sidebands to the 10 kHz, 
which is the RF signal used to modulate the phase of one of the pulses, and 20 kHz carriers at 
steps of 1 and 2 kHz. This is consistent with the spectrum of a generic phase-modulated 
signal, which contains tones spaced at intervals of the modulating frequency and centered at 
the carrier frequency. Since there is an induced dynamic phase change, as opposed to the case 
in which there are no applied vibrations, it is now possible to see the orthogonal components 
centered at 0ω  and 02 ,ω which are 10 and 20 kHz, respectively. 

 

Fig. 7. Modulated signals showing raw perturbation signals when 1 and 2 kHz vibrations 
applied to the PZT, before performing the mixing, filtering and PGC-DMS demodulation 
operations. 

Subsequently, the modulated signal is first mixed with the RF signals used in the phase 
demodulation and then low-pass filtered to obtain the intermediate signals. These spectra are 
obtained directly from the evolution of the intensity of the backscattering signal and are 
shown here before mixing, filtering and demodulation operations. Note that acoustic signals 
from naturally occurring vibrations that could be of interest in a real world monitoring 
scenario are known to have multiple frequency components. When any external impact is 
applied on a structure from a vibration source, standard parameters such as the peak sound 
pressure (PSP), are used to quantify the intensity of the signal [41,42]. The PSP is a function 
of the RMS value of the sound, which in turn scales with the energy in the fundamental and 
the harmonic frequencies. 

The best way to confirm the ability of our proposed scheme to perform quantitative 
measurement of phase changes due to vibrations is therefore to prove its capacity to extract 
the dynamic response of the demodulated phase from an external impact due to a multi-
spectral perturbation and compare it with an external sensor. We used the nonlinear PZT 
actuator having responses with higher harmonics, and demodulated the dynamic phase change 
using the PGC-DMS scheme shown in Fig. 3. The extracted phase change in time domain 
when the PZT is driven with a sample 2 kHz input is shown in Fig. 8(a). The result shows the 
effectiveness of the technique to extract the dynamic phase change induced by the nonlinear 
PZT, as is evident from the power spectrum of the signal shown in Fig. 8(b). Even though the 
reported dynamic phase change has amplitude less than ,π the proposed method is used to 
detect phase changes above this range introduced by environmental drifts, which have been 
high-pass filtered, without requiring unwrapping. Note that the nonlinearity of the vibrations 
from PZT actuators are well known and the associated harmonics in dynamic operations have 
been the subject of independent studies [43], including use of Bessel function based analysis 
and experimental evaluation of the higher order harmonics [44]. Precise characterization of 
the harmonics of these vibrations is also critical to the accurate use of PZT in dynamic control 
systems. We have done measurements of dynamic phase changes induced by the PZT with 
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stronger higher order harmonics, and a sample spectrum of the demodulated phase when the 
PZT is driven with a larger peak-to-peak voltage is also depicted in Fig. 9, where the SNR of 
the demodulated phase is ~24.16 dB. This further shows that the proposed dual pulse scheme 
with selective phase modulation and PGC-DMS demodulation can extract fundamental and 
higher order frequency components of natural perturbations required in the construction of the 
original dynamic response. 

 

Fig. 8. (a) Demodulated phase change for 2 kHz vibration applied to the PZT and (b) The 
spectrum of the demodulated phase change with PGC-DMS showing higher order harmonics 
of the response. 

The nonlinear characteristics of the PZT are also confirmed by measuring the response 
with a point sensor based on an FBG and a commercial reading unit. To do the 
characterization of nonlinearity, first an FBG is closely attached to the PZT actuator, and one 
of its ends is connected to the through end of a three-port circulator. Using a broadband 
source as the driving signal at the circulator’s input, the spectral shift of the reflected light 
from the FBG is measured using a BaySpec Inc. reading unit. Since the reading unit has a 
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maximum sampling rate of 5 kHz (for an effective measurement up to vibration frequency of 
2.5 kHz), the characterization of the actuator’s harmonics is performed using a 600 Hz input 
to the PZT. The conversion of the measured wavelength shift to strain for the FBG is made 
using a wavelength shift per strain of 1.2 pm/ με , while for the φ-OTDR sensor, the relation 

between the demodulated phase change and the strain ( ) (2 / ) 0.78t L nφ ε π λΔ = Δ × is used 

where ε is the strain, LΔ is the relative interference path delay, λ being the wavelength, and n 
the refractive index [15]. Note that the factor 1.2/1.55~0.78 is used in the calculation of the 
strain and the remaining 22% of the phase change is due to change in refractive index caused 
by strain [15]. The measured responses of the PZT using both the BaySpec and DAS 
measurements are shown in Fig. 10. It can be seen that the higher order harmonics of the PZT 
response at 1200 and 1800 Hz are clearly observed in both measurements, further confirming 
the distribution of the power among the different frequency components, and hence the 
capability of the proposed scheme to quantify the dynamic phase change induced by an 
arbitrary perturbation source. 

 

Fig. 9. Spectra of demodulated phase using dual pulse probe with PGC-DMS demodulation. 

Note that comparison of the spectra of the responses is shown since the capability of the 
proposed scheme to detect the multi-frequency response of the PZT is more clearly visible in 
the frequency domain. In addition, the linearity of the system is confirmed by the similarity of 
the responses obtained using the FBG sensor and PGC-DMS demodulation. This is also 
evident in the consistency of the minima and maxima of the sinusoidal response of the 
demodulated phase given in Fig. 8(a). Note also that spectra of dynamic phase changes have 
been observed at peak-to-peak PZT driving voltage levels which are two orders of magnitude 
below the one reported in Fig. 8(a), enabling sensitivities in the orders few 10s of 
milliradians. 

The proposed φ-OTDR sensor involves homodyne demodulation with a PIN photodiode 
of only 125 MHz bandwidth, while enabling a high-speed dynamic measurement. The 
theoretical limit to the measurable speed of phase change is set by the measurement rate of 
the φ-OTDR scheme; for example, with an RTT of 20 sμ corresponding to 50 kHz sampling 

rate, a phase modulation of up to 25 kHz can be used. This enables measurements with a high 
speed per detection bandwidth and complexity of optical receiver compared to most 
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conventional φ-OTDR demodulation schemes, making the proposed scheme a preferable 
technique for use in cost-effective dynamic monitoring systems. 

 

Fig. 10. Comparison of the response of a nonlinear PZT actuator using proposed PGC-DMS 
scheme for DAS with that of a point sensor and a commercial reading unit. 

6. Summary 

We have proposed and experimentally demonstrated a φ-OTDR scheme for dynamic phase 
measurements using a double pulse probe and a simple direct detection receiver based on a 
pin photodiode with a bandwidth of 125 MHz. The selective modulation of the phase of one 
of the probing pulses is proven to generate a carrier in the backscattering signal for arbitrary 
perturbations along the fiber. A stable homodyne demodulation scheme with an arbitrary 
phase modulation depth is used to extract distributed dynamic phase changes along the fiber. 
The demodulation method employed in the sensor is highly compatible with distributed 
dynamic monitoring systems by being robust against backscattering light intensity changes, 
not requiring computationally costly two-dimensional phase unwrapping and involving 
computations which can also be implemented using analogue signal processing. 

The proposed technique is used to measure a 2 kHz dynamic phase change induced by a 
nonlinear PZT actuator placed at a distance of 1.5 km with an SNR of 24.16 dB, 
demonstrating its capability to make quantitate measurements of dynamic phase changes from 
a generic external impact. The characterization of the nonlinear response is further confirmed 
by comparing the demodulated response of the PZT with one obtained using an FBG-based 
sensor. Finally, the proposed φ-OTDR demodulation scheme offers a high speed per detection 
bandwidth and receiver complexity making it suitable for use in cost-effective distributed 
dynamic monitoring systems. 
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