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ABSTRACT

Peripheral nerves are extremely complex biological structures. The knowledge of their
response to stretch is crucial to better understand physiological and pathological states
(e.g., due to overstretch). Since their mechanical response is deterministically related
to the nature of the external stimuli, theoretical and computational tools were used
to investigate their behaviour. In this work, a Yeoh-like polynomial strain energy
function was used to reproduce the response of in vitro porcine nerve. Moreover, this
approach was applied to different nervous structures coming from different animal
species (rabbit, lobster, Aplysia) and tested for different amount of stretch (up to
extreme ones). Starting from this theoretical background, in silico models of both
porcine nerves and cerebro-abdominal connective of Aplysia were built to reproduce
experimental data (R? > 0.9). Finally, bi-dimensional in silico models were provided
to reduce computational time of more than 90% with respect to the performances of
fully three-dimensional models.

Subjects Bioengineering, Computational Biology, Neurology

Keywords Peripheral nerves, Finite Element Models, Yeoh-like strain energy function,
Computational models

INTRODUCTION

Peripheral nerves are extremely complex biological structures which bridge the central
nervous system with the periphery of the body (Sunderland, 1945; Topp ¢ Boyd, 2006).
They are able to continuously conduce nervous impulses though axons, which run along the
nerve inside a framework of connective tissues (Millesi, Zoch ¢ Reihsner, 1995). Peripheral
nerves are sensitive to external perturbations, so unphysiological stretches can result in
injuries, which are classified with respect to their degree of damage (Seddon, 1943) or
with respect to the ability of axons to regenerate (Sunderland, 1951). Mild stretches can
preserve the integrity of connective tissues, but are able to prevent axons from transmitting
nervous impulses (neuropraxia), as in the so called “stinger syndrome”, due to the
nerve overstretching in arms and legs (Castro, 2003; Greenberg, Leung ¢ Kendall, 2011).
Connective tissues are still preserved for further stretches, which result in axonal damage
with Wallerian degeneration (axonotmesis), while too large stretches (e.g., due to severe
traumas) lead to the nerve rupture with the loss of continuity and a significant distortion
of connective tissues (neurotmesis) (Campbell, 2008).
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Since the mechanical response of peripheral nerves is deterministically related to the
external stimuli (e.g., traction force), anatomical studies (Sunderland, 1945; Sunderland,
1965) were integrated with biomechanical investigations (Millesi, 1986; Millesi, Zoch &
Reihsner, 1995). Tissue mechanics was used in combination with finite element analysis
(Zienkiewicz, 1977; Cook, 1981; Bathe, 1996; Halloran ¢ Erdemir, 2011; Erdemir et al.,
2012) to explore the response of peripheral nerves to different kinds of stimuli, as radial
compression (Ju et al., 2006; Main et al., 2011), and intraoperative traction (Ma ef al.,
2013). The knowledge of the nerve response was, indeed, interesting for several applications,
as neuroprosthetics (Navarro et al., 2005; Grill, Norman ¢ Bellamkonda, 2009), neural
interfaces design (Sergi et al., 2006; Cutrone et al., 2011) and interaction with biomedical
devices (e.g., microneedles (Yoshida et al., 2007; Sergi et al., 20125 Sergi, Jensen & Yoshida,
2016)). However, the modelling of the peripheral nervous tissue (PNT) behaviour is still
a challenging task for computational biology. In particular, invariant-based strain energy
functions (SEFs) were proposed (Alexander, Barkmeier-Kraemer ¢ Vande Geest, 2010)
to model the mild stretch of piglet nerves. In addition, it is not clear whether only one
invariant-based SEF could be applied to reproduce large stretches in different animal species
and human beings. As a consequence, in this work, a Yeoh-like (Yeoh, 1993) polynomial
SEF was applied to different nervous structures belonging to different animal species and
for a wide range of stretch (from A = 1.08 (Dilley, Summerhayes & Lynn, 2007; Dilley et al.,
2003) to . =5 (Koike, 1987)).

The logic flow of the text is the following: first, the suitability of the proposed SEF was
tested both for a porcine peripheral specimen and for different animal species (lobster,
rabbit, Aplysia). Then, a three-dimensional in silico model was implemented to reproduce
experimental stress—stretch data, while a bidimensional approximation was used to decrease
computational times. Similarly, a solid model was created to reproduce the behaviour of
a cerebro-abdominal connective of Aplysia (Koike, 1987), while a reduced bidimensional
approximation was used to speed-up simulations keeping the same amount of information
and lowering computational times.

MATERIALS AND METHODS

Stretching experiments

A peroneal nerve was dissected from a posterior limb of a Large White pig (~10 months
old), which was slaughtered in conformity with the Italian National Regulation and
frozen until experiments. Before experiments, the nerve specimen (96 mm long with a
cross-sectional area of ~6.39 mm?) was gradually defrosted and re-hydrated for about one
hour at room temperature in a bath of aqueous saline solution isotonic to the blood (0.9%
sodium chloride) to minimize the time dependence of the tissue hydration. The length of
the specimen between clamps was 69 mm, and its physiological characteristics were kept by
regularly spraying saline moisture on its external surface in order to maintain the initial level
of hydration. Stretching experiments were carried out at room temperature (~25 £ 1 °C),
by using an Instron R4464 testing machine (Instron Corporation, Canton, MA, USA)
with a standard load cell (Instron load cell, cell type 2525-808, max force 10 N, accuracy
0.25% Full Scale Output; (Instron Corporation, Canton, MA, USA) as shown in Fig. 1.
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Figure 1 A scheme of the experimental framework used to stretch the nervous specimen (magnification
in A). The nerve was fixed between two clamps and stretched through the movement of a transverse slid-
ing beam of a testing material machine (isolated from the environment). A load cell recorded both dis-
placements and forces, which were further elaborated to provide the digital stress/stretch curve (B).
Full-size Gal DOT: 10.7717/peer;j.4005/fig-1
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More specifically, the nerve was stretched (velocity v =10 mm/min (Bora, Richardson
¢ Black, 1980); maximum strain 8%) after preconditioning to minimize viscoelastic effects
(Fung, 1993). The axial force was digitally recorded for five extensions of the nerve.

Theoretical connection between stress and stretch

The peripheral nervous tissue (PNT) was modelled as a homogeneous and incompressible
material and, according to previous literature (Alexander, Barkmeier-Kraemer ¢ Vande
Geest, 2010), its mechanical behavior was described through an invariant based strain
energy function. More specifically, here, a polynomial hyperelastic strain energy function
in Yeoh form (Yeoh, 1993) was proposed:

V() =c(I; —3)+c(l —3)* + (I, —3)° (1)

where ¢, c;,c3 € R were scalar coefficients. The Cauchy stress tensor was expressed in
function of both the first strain invariant (I;) and the deformation gradient F as:
oW (Ip)

1

o =—kI+2 FF' 2)

where k was an indeterminate Lagrange multiplier, accounting for boundary conditions,
while I and FT were, respectively, the unit tensor and the transposed of the deformation
gradient. Since I; = tr(FFT), and F were expressed as a function of principal stretches,
Eq. (2) provided a theoretical connection between stress and stretch. A homogeneous,
triaxial stretch state was assumed, thus the deformation gradient and the first strain
invariant were written in function of the longitudinal stretch A. Considering both
incompressibility constraint and experimental boundary conditions (through which k in
Eq. (2) was determined), the theoretical transverse stretch was 1/ /x, while the longitudinal
component of the Cauchy stress was expressed as:

_ 60[9]()\'9619625 C3)

=

where Pl(A, c1, 02, ¢3) = 3630° + (2¢3 — 18¢3)A7 4+ 9348 + (27¢3 — 662 + ¢1)A° + (2¢, —
18c3) A4+ (—27¢3 + 60, — 1 )A% + (36¢3 — 4¢3 ) A — 12¢5.

Experimental data were collected for five consecutive extensions and their mean

(3)

0z

values were reported as a function of stretch and used to represent the behaviour

of the specimen. Equation (3) was used to reproduce experimental data through

a non-linear optimization procedure (quasi-Newton algorithm, Scilab, 2015; Scilab

Enterprises S.A.S, Versailles, France), allowing the R? function to be maximized

for each extension. More specifically, guess values for [c;,c;] were chosen (i.e.,

[10.00,0];[12.99,0];[0,12.40];[0,11.99];[10.00,0]), while [c3], was allowed to vary in the

range 6,000-9,000 KPa. To explore the sensitiveness of final vales of ¢; and ¢, to changes of

c3, the difference c;(c3) — c;(c3) was plotted (for a constant R? ~0.99), as shown in Fig. S1.

In addition, the influence of ¢; over R* was studied for constant values of ¢, ¢,, as shown

in Fig. S2. Furthermore, the correlation between ¢; and ¢, values was analyzed to test their

eventual independency as well as the correlation between these values and the ¢; constant.
Finally, the sensitiveness of the stress function with respect to ci, ¢;, ¢3 was expressed as:

SI(c;) = (amaxq —crminq)/amaxq (Hamby, 1995; Pannell, 1997), where i=1,2,3, Omax, and
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Omin,, Were respectively the maximum and the minimum values of stress for the maximum
1
and minimum values of ¢;, when the other constant had optimal values.

In silico model of porcine PNT

In silico models were implemented to reproduce the in vitro stretching of peripheral
nerves. To provide a suitable approximation of the complex shape of the real specimen,
two different lateral views were digitally acquired (Fig. S3) and numerically reproduced
through Image] (Rasband, 1997-2017) together with the mean straight lines for each
profile (see Figs. S3A, S3B). The resulting elliptical cylinder (eccentricity 0.77, major axis
3.57 mm and minor axis 2.28 mm) was, then, modelled within a FE software (Ansys (©
Academic; Ansys, Inc., Canonsburg, PA, USA) as an incompressible solid. In particular, the
nerve volume was meshed (5,004 nodes and 3,450 elements (Fig. S3)) with solid elements
(SOLID185), which were able to model fully incompressible hyperelastic materials with
enhanced strain and mixed displacement-pressure formulation (Cescotto ¢ Fonder, 1979;
Brink ¢ Stein, 1996). The lower side of the cylinder was fully constrained to account for
the lower clamped extremity, while experimental stretches were reproduced increasing
the axial displacement of the upper section (further prevented from lateral contractions).
Different approaches were also investigated to minimize the time needed to calculate the
stress field for the three-dimensional elliptical cylinder. First, exploiting symmetries, only
a quarter of the whole volume was meshed (1,330 nodes and 828 elements (Fig. S4A)) with
solid elements (SOLID185), while symmetry constraints were imposed to the lateral areas.
Then, the mean elliptic cylinder (reproducing the mean surface of the nerve and having a
low eccentricity), was rescaled into a circular cylinder, keeping constant the cross sectional
area through the additional constraint r> = ab (where r was the radius of the new circular
section, while a, b were the semi-major and semi-minor length of the elliptic section). The
axial symmetry of the circular cylinder was furthermore used to study only a rectangular
slice (Fig. S4B), which was eshed (210 nodes and 138 elements) with axisymmetric plane
elements (PLANE182). These elements were able to model fully incompressible hyperelastic
materials using enhanced strain and mixed displacement pressure formulation. Also in
this case, to reproduce experimental boundary conditions, the lower line belonging to the
rectangular area was fully constrained, while increasing longitudinal displacements were
imposed to the upper extremity, which was prevented from radial contractions. The times
needed to solve three-dimensional and bidimensional approximations were compared and
differences in stress fields and lateral strains were investigated.

In silico models of cerebro-abdominal connective of Aplysia

An in silico model of the right connective of Aplysia kurodai, interconnected to the
abdominal pleural ganglion, was implemented to test the suitability of the previous
procedure in case of different neural structures and for very large stretches. More
specifically, the cross section of the cerebro-abdominal connective was reproduced from
literature images (Koike, 1987) and approximated with an ellipse (eccentricity 0.64) with
semi-major and semi-minor axes respectively of 0.57 mm and 0.44 mm. Similarly, the
length of the connective was taken from experimental images (i.e., 50 mm).
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The solid model of Aplysia connective (Fig. S5A) was meshed with solid elements
(SOLID285), which were able to model fully incompressible hyperelastic materials with
mixed displacement-pressure formulation. This procedure resulted in 2,086 nodes and
7,192 elements. In this model, the upper side was fully constrained (to account for the
experimental clamped extremity), while the stretch was modelled through increasing
axial displacements of the lower side, which was prevented from lateral contraction at
the level of the middle sphere approximating the ganglion (Fig. S5). Also in this case,
the eccentricity of the connective was low, thus the cross sectional area was re-scaled
into a circular one with the same size. The resulting axisymmetric circular cylinder was
then reduced to a bidimensional slice (Fig. S5B), which was meshed (460 nodes and
173 elements) with plane elements (PLANE183). Indeed, these elements were able to
model fully incompressible hyperelastic materials, implementing axial symmetry and
large strains with mixed displacement-pressure formulation. Again, the upper side was
fully constrained, while the lower one was axially displaced and prevented from radial
compressions. The global computatioanl times needed to solve three-dimensional and
bidimensional approximations were compared and differences in stress fields and lateral
strains were investigated.

RESULTS

A single strain energy function to reproduce the nerve behavior
across different animal species

Experimental data were collected for five consecutive extensions and their mean values
were reported as a function of stretch in Fig. 2A (circles). For each value, the variation
range was also plotted as vertical lines (i.e., difference between minimum and maximum
values).

Equation (3) was able to reproduce experimental data (R? ~0.998) with ¢; = 5.89 KPa,
¢, =5.89 KPa and ¢3 = 7.75 MPa, while both the range of variation of experimental values
and the errors between the mean values and the fitting curve were calculated (Figs. 2B
and 2C). To further investigate the ability of Eq. (3) in reproducing each single extension,
all curves were analysed. In all cases, ¢; and ¢, were almost equal (i.e., error less than
2.422-107° KPa), and had the following values 4.99 KPa , 6.49 KPa, 6.20 KPa, 5.99 KPa,
4.99 KPa, while the ¢; parameter resulted in 8.13 MPa, 7.95 MPa, 7.46 MPa, 7.61 MPa,
8.21 MPa. These values were inserted in Eq. (3), which was, then, able to fit experimental
data for each curve (respectively with R? of 0.995, 0.995, 0.996, 0.996, 0.995). To test
possible further cross correlations among numerical constants in Eq. (3), the ¢; values were
plotted versus the corresponding value of ¢, for each extension, while the values of ¢3 were
also plotted versus cj, c;. This procedure showed a positive and very strong correlation
in the first case (i.e., R > 0.99, as expected), while a weak correlation in the second one
R? =0.49, as shown in Figs. 2D and 2F. Finally, the sensitivity index (SI) for ¢;, ¢, ¢3
constants resulted respectively in 10.79,0.32,5.38 (Fig. 2F).

Moreover, Eq. (3) was tested for different animal species (vertebrates and invertebrates)
and for different levels of stretch. More specifically, the behaviour of a rabbit nerve until
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Figure 2 (A) Experimental stress—stretch curve for 5 extensions. The mean values are plotted with cir-
cles, while standard deviations are shown through vertical bars. The theoretical curve, reproducing the
mean experimental values, is plotted in red. (B) Difference between maximum and minimum values
of all cycles as a function of stretch. (C) Difference between theoretical and mean experimental stress
as a function of stretch. (D) Values of ¢; and ¢, for each elongation. (E) Values of ¢; for each elongation

compared to the corresponding values of ¢; and c;,. (F) Sensitivity index for c;, ¢;, c; constants.
Full-size Gal DOI: 10.7717/peer;j.4005/fig-2
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A 2 1.3 was reproduced (R* =0.981) for ¢1,c, =0.2 MPa and c3 = 43.7 MPa, with errors
(between data and theoretical curve) ranging from —0.38 to +0.58 MPa (Figs. 3A and
3B). Similarly, the stress/stretch curve of lobster nerve was approximated (R? =0.971)
for 1 = 1.5 with ¢;,c; =0.14 MPa and ¢3 =0, with errors in the range —0.03,40.05 MPa
(Figs. 3C and 3D). Finally, the stress/stretch curve of a cerebro-abdominal connective of
Aplysia (A = 5) was reproduced (R* = 0.972 for c1,c; = 0.0081 KPa and ¢; = 0.0054 KPa),
with errors ranging between —34.41 and +25.31 KPa (Figs. 3E and 3F). A comparison
between coefficients was also performed and shown in Table of Fig. 3G.

In silico models of PNT
Three-dimensional model

In Fig. 4A, the spatial distribution of displacements is shown along the X, Y, Z axes,
while in Fig. 4B both the stress and strain fields are shown for the maximum stretch.
Theoretical and the computational curves were compared (Fig. 4C), and their difference
(within the —0.4%) was plotted as a function of stretch (Fig. 4D). Similarly, theoretical and
computational strains along radial directions (X, Y axes) were compared (Fig. 4E), and
their difference (within 0.0003) was plotted as a function of stretch, as shown in Fig. 4F.

Furthermore, the stress/stretch curves resulting from three-dimensional models (elliptic
and re-scaled circular cylinders) (Fig. S6A) were compared, and their difference (Fig. S6B)
was within the 0.02%. Similarly, the strain along the radial direction was compared for
both approximations (Fig. S6C), showing a maximum difference within —1.92-107°
(Fig. S6D). In addition, the distribution of nodal stresses (for the maximum stretch)
was compared showing a similar evolution (Fig. S6E) for both approximations as well as
similar quantile—quantile plots (uniform distribution). Finally, nodal stresses, deriving from
the elliptic cylinder, were plotted versus those coming from the circular approximation
(Fig. S6F). In this case, numerical values were grouped along a straight line and clustered
around the value of 3.34 KPa.

Bidimensional model of in vitro porcine nerve

A rectangular slice coming from the axisymmetric re-scaled circular cylinder was used
to approximate the nerve specimen (Fig. 5). More specifically, the displacements of the
plane section along the X, Y, Z axes as well as the longitudinal stress and strain fields were
computed for the maximum stretch (Figs. 5A and 5B). Theoretical and computational
stress/stretch curves were compared in Fig. 5C, showing a percentage error within 0.006%
(Fig. 5D). Similarly, the comparison between transversal stretches was performed (Fig. 5E),
and the error resulted in 0.0005 (Fig. 5F). Finally, the time needed to compute the
stress/strain fields was calculated for both the reduced models (i.e., 1/4 of whole structure
and plane axisymmetric slice), and normalized with respect to the total time needed to solve
the whole elliptical cylinder. Figure 5G shows that the three-dimensional approximation
(1/4 of the structure) was able to reduce the total normalized time from 1 to 0.225, while
the bidimensional one (plane slice) was able to further decrease the normalized time up
to 0.029.

Giannessi et al. (2017), PeerJ, DOI 10.7717/peerj.4005 8/22


https://peerj.com
http://dx.doi.org/10.7717/peerj.4005#supp-7
http://dx.doi.org/10.7717/peerj.4005#supp-7
http://dx.doi.org/10.7717/peerj.4005#supp-7
http://dx.doi.org/10.7717/peerj.4005#supp-7
http://dx.doi.org/10.7717/peerj.4005#supp-7
http://dx.doi.org/10.7717/peerj.4005#supp-7
http://dx.doi.org/10.7717/peerj.4005

Peer

~ Interpolated Theoretical
- 7data curve
— 77 R2=0.981
g o
= 5
b 44
» 34
»
g2 27
(75} 1
0 Cim
1 11 12 13
Stretch A
C 0.5
R2=0.971
— 0.4 1
©
o
= 034
b
» 024
3
= 014
(7))
0 @
1 12 1.4
Stretch A
e 300
R2=0.972
o 250
o
X 200+
© 450
)]
B 100+
=
) 50
1 2 3 4 5
Stretch A
Pig
C, (KPa) 5.89
C, (KPa) 5.89
C, (KPa) 7750

Lobster Rabbi

Aplysia

(o

0.67
0.41
0.2
0.07
-0.21
-0.41
-0.61
-0.87

Error [MPa]

10 —————
1.00 1.05 1.10 1.15 1.20 1.25 1.30

0.05
0.04
0.03 +
0.02
0.01
04
-0.01
-0.02

o

Error [MPa]

Stretch A

-0.03
1

30 4

—h

20+
10
0
-10 4

Error [KPa]

_20 -
_30 -

T
11

T T
1.2 13 14 15

Stretch A

Rabbit Lobster

200
200
41400

14
14
0

3 4
Stretch A

Aplysia
0.0081
0.0081

0.0054

Figure 3 Test of SEF for different animal species. (A) Stress/stretch curve for a nerve of rabbit and the-
oretical approximation. (B) Error (MPa) between data and approximation for rabbit. (C) Stress/stretch

curve for a lobster nerve. (D) Error (MPa) between data and approximation for lobster. (E) Stress/stretch
curve for a connective nerve of Aplysia. (F) Error (KPa) between data and approximation for Aplysia. (G)
Values of ¢}, ¢, ¢; for different animal species.

Full-size 4 DOI: 10.7717/peer;j.4005/fig-3

Giannessi et al. (2017), PeerJ, DOI 10.7717/peerj.4005

9/22


https://peerj.com
https://doi.org/10.7717/peerj.4005/fig-3
http://dx.doi.org/10.7717/peerj.4005

Peer

a uz . UX uy d
5.52 0.07 0.05 03 -
490 0.05 0.04 02
g 4.29 0.04 0.03 . 0.1+
— } 368 0.02 0.02 s 04
g 5
© K 306 0.01 0.06 s 0.1+
aE> w g2
o 2.45 -0.01 -0.06
) -0.3
= B 0.02 -0.02 044
a 1.23 -0.04 -0.03 '
-0.5 T T T 1
0.61 -0.05 -0.04 1 1.02 1.04 1.06 1.08
0 2 0.07 0.05 §4 e Stretch A
b Lx X Lx
_ 1.01
4.67 0.080 i
B N Theoretical
4.45 0.071 g M Xin silico d=0
4.22 0.062 += Y in silico d=0
o ® 0.99 -
© 2 0.
a 3.99 0.054 ©
X £ 4]
'E' 3.77 g 0.045 0 0.98
» n &
@ 3.54 0.036 & 0.97 -
5 3.32 0.027 =
3.09 0.018 0.96 | | | |
1 1.02 1.04 1.06 1.08
2.86 0.009
2.64 0.001 E Stretch A
x _Lx f
C
4. 0.0003 -
------- Theoretical curve
3D in silico model d=0 0.00025 ~
g 3 S 0.0002
< (T
o 2 . 0.00015 -
®
o 1 0.0001
N 5E-005
0 T T T ! 0 T T T ]
1 1.02 1.04 106 1.08 1 1.02 1.04 1.06 1.08
Stretch A Stretch A

Figure 4 Displacement and stress/stain fields for the three-dimensional elliptic model of nerve. (A)
Displacements in X, Y, Z directions at the maximum stretch. (B) Stress and strain fields along the spec-
imen at the maximum stretch. (C) Comparison between theoretical and in silico stress for increasing
stretches. (D) Percentage error between theoretical and in silico stress for increasing stretches. (E) Com-
parison between theoretical and in silico transversal strains for increasing stretches. (F) Percentage errors
between theoretical and in silico transversal strains.

Full-size Gl DOL: 10.7717/peer;j.4005/fig-4

Giannessi et al. (2017), PeerJ, DOI 10.7717/peerj.4005 10/22


https://peerj.com
https://doi.org/10.7717/peerj.4005/fig-4
http://dx.doi.org/10.7717/peerj.4005

Peer

a uy UX
552 |
_ ( 4.90
E L 4.29
— | 3es
©
L 3.06
€
88 245
&
o I 184
R
al iz
0.61
0

3.99
3.90
3.80
S X2
& ' c
o [ 36t (‘%’
301 35
o}
= 3.42
& :
3.32
| 323
3.13
C X
4
L 3+
X,
©
2 -]
o
7
£,
wn
0

-0.006

| -0.013

-0.020

. -0.026

-0.033

| -0.040

-0.046

-0.053

-0.060

0.087

0.075

0.064

0.053

0.041

0.030

0.018
0.007

0.003

-0.015

=

‘B

Theoretical curve
2D model

1 1.(|)2 1.(|J4 1.(|)6 1
Stretch A

.08

Error %

Transversal stretch

0.0005
0.0004

Error

0.0002
0.0001 +

Normalized time

0.0003

0.006

0.005 ~

0.004

0.003

0.002

0.001 ~

0.99

0.98 +

0.97 +

0.96

T
1.02 1.04 1.06 1.08
Stretch A

Theoretical
20D model

T
1.02 1.04 1.06 1.08
Stretch A

0.8

0.6

0.4

0.2

T
1.02 1.04 1.06 1.08
Stretch A

LA

-97%

| |

T T
3Dmodel 3D 1/4 model 2D model

Figure 5 Displacement and stress/stain fields for the bidimensional slice of nerve. (A) Displacements
in X and Y directions for the maximum stretch. (B) Stress and strain fields along the specimen at the max-
imum stretch. (C) Comparison between theoretical and in silico stress as a function of stretch. (D) Per-
centage error between theoretical and in silico stress as a function of stretch. (continued on next page...)

Full-size & DOI: 10.7717/peerj.4005/fig-5

Giannessi et al. (2017), PeerJ, DOI 10.7717/peerj.4005

11/22


https://peerj.com
https://doi.org/10.7717/peerj.4005/fig-5
http://dx.doi.org/10.7717/peerj.4005

Peer

Figure 5 (...continued)

(E) Comparison between theoretical and in silico transversal strains as a function of stretch. (F) Percent-
age errors between theoretical and in silico transversal strains. (G) Percentage decrease in time to solve re-
duced models (time were normalized over the time needed to solve the full three-dimensional model): the
three-dimensional fraction (1/4 of the whole structure) was able to decrease the time of 77%, while the
bidimensional slice further reduced this time of 20%, saving the 97% of the time needed to solve the full
solid.

Three-dimensional model of the Aplysia connective

The performances of the three-dimensional in silico model of the Aplysia connective were
studied and compared to theoretical results coming from the application of Eq. (3). Both
theoretical and computational curves were superimposed (up to A =5, Fig. 6A), while the
percentage difference was between —0.5% and 2.2% (Fig. 6B). Similarly, the transversal
stretch deriving from the three-dimensional in silico approximation was compared to the
theoretical ones (for both X and Y axes, Fig. 6C), resulting in differences within 0.039
(Fig. 6D). The deformation of the connective structure is shown in Fig. 6E, where the
initial configuration (A = 1) is plotted (upper part, wireframe) together with the final one
(A =5) (lower part).

Bidimensional model of the Aplysia connective

The bidimensional approximation of the Aplysia connective was able to reproduce the
theoretical stress/stretch curve (up to A =5, Fig. 7A), showing that the percentage error
remained within the 1.6% (see also some numerical oscillations in Fig. 7B). The evolution
of the theoretical and computational transversal stretches was, then, studied and the
resulting two curves were very close along the whole stretch range (Fig. 7C). In particular,
the difference between them (within 0.019), was an increasing function up to A = 2, while a
slightly decreasing one up to A =5 (Fig. 7D). The deformation of the connective structure is
shown in Fig. 7E, where the initial configuration (A = 1) is plotted (upper part, wireframe),
together with the final one (A =5, lower part). Furthermore, the quantile—quantile plot
(uniform distribution) for both three-dimensional and bidimensional models of Aplysia
connective were provided and compared in Fig. 7F. Although their shape was not totally
superimposed, most of values were clustered at 206.7 KPa for both the approximations.
Finally, the time needed to solve both three-dimensional and bidimensional models was
normalized with respect to the computational time needed to solve the whole three-
dimensional structure (Fig. 7G), showing that the use of the axisymmetric slice reduced
this time from 1 to 0.056.

DISCUSSION

A single strain energy function across different species

In this work, a unified approach was proposed to reproduce the stress/stretch behaviour of
neural structures across different animal species (vertebrate/invertebrate) through a classic
formulation involving a strain energy function. The chosen function was in Yeoh-like
form (Yeoh, 1993), since this formulation was suitable for a wide range of stretches,
avoiding numerical instabilities due to a high number of constants (Busfield ¢» Muhr,
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Figure 7 (...continued)

(for > = 5) is shown in the lower part of the figure. (F) Comparison between nodal stress distribution for
three-dimensional and bidimensional models (quantile-quantile plot- uniform distribution). The most
nodal values correspond to theoretical predictions (about 206.7 KPa) although side effects are present. In
other words, the use of the bidimensional slice was equivalent to the use of the three-dimensional struc-
ture. (G) Time needed to solve three-dimensional and bidimensional models (normalized over the time
needed to solve the fully three-dimensional model): the use of the bidimensional slice allowed a time save
of about 95% with very similar results.

2003) and overcoming stretch limitations due to other invariant-based implementations
(e.g., Mooney, 19405 Rivlin, 1948). Moreover, it was able to satisfy the Drucker stability
criterion (Drucker, 1957; Bergstrom, 2015) (i.e., the resulting stress always increased for
increasing strains), allowing boundary value problems to be treated without further
numerical complications (e.g., multiple solutions or stress oscillations due to instability).
The ability of Eq. (3) in reproducing different responses was due to a certain flexibility,
resulting from the interplay between numerical constants. In particular, the values of
constants ¢; and ¢, were almost equal for each extension, as well as for different values of
the c3 coefficient. Indeed, a maximum error of 2.422- 107> KPa (i.e., 4- 10~*%) was found
for all extensions (Fig. S1). Similarly, this difference was 3-107* MPa (i.e., 1.70%) for
rabbit, 1.9-1072 KPa (i.e., 1.42%) for lobster, and 1-10~7 KPa (i.e., 1 - 102%) for Aplysia.
As a consequence, ¢; and ¢, were assumed to be equal in these animal models. However,
the sensitivity of the stress function to ¢, (SI = 0.38) was smaller than the sensitivity to ¢;
and c3 (respectively SI =10.79 and SI =5.38). In other words, both ¢; and c3 seemed to
mainly affect the behaviour of the stress function, which was able to reproduce the elastic
response of several tissues, ranging from Aplysia connective to pig nerves.

Further cross connections between c;, ¢; and c3 were investigated (Fig. 2E), but no
evidence of a correlation was found (i.e., R> = 0.49 and scattered values). Therefore,
no important mutual stiffening effects (e.g., due to dehydration) were found during
experiments. This was in agreement with the hypothesis of mutual independence between
these two constants. As a consequence, Eq. (3) was able to reproduce in a very close way
(R? > 0.99) experimental data for the large white pig model (both the mean curve and
each extension) and for other animal species. However, the percentage errors was around
8-10%, since numerical oscillations arose between theoretical curve and interpolated data.

In silico models of nerves and Aplysia connective

The in silico elliptic cylinder, reproducing the mean surface of the nervous specimen, was
able to closely replicate the theoretical behaviour for longitudinal and transversal stretches.
Indeed, the percentage error with respect to the theoretical predictions ranged between
0.2% and —0.4% for the axial stretch (Fig. 4D), while the difference between theory and
computational results was less than 0.0003 for transversal stretch (Fig. 4F). Moreover,
symmetries were used to decrease the computational time needed to find the stress field
of this three-dimensional structure. More specifically, both symmetry planes XZ and YZ,
were used to reduce the structure to a quarter of the whole solid. Further reductions (e.g.,
to 1/8 of the structure) were able to reproduce the stress field (far from extreme sections),
while the displacement field was different, since boundary conditions were not symmetric
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with respect to the XY plane. However, just the reduction of the whole structure to a
quarter was able to considerably lower the computational time (—77%), as shown in
Fig. 5G. A further decrease was achieved through the substitution of the initial elliptic
cylinder with a circular one, which was obtained through a re-scaling procedure. Since this
cylinder was axisymmetric, the dimensionality of the problem was reduced from three to
two dimensions. This approach was based on the equivalence of the two solids, since the
eccentricity of the initial cylinder was quite low (0.77). Indeed, not only longitudinal and
transversal stretches were almost the same (respectively with percentage errors less than
0.02% for the axial one, and with difference ranging from 0 to —2-107° for the transversal
one), but also the nodal stress had the same distribution and the same values, clustered
around the theoretical value (Figs. S5E and Figs. S5F). The use of a bidimensional slice
instead of the full structure led to computational time decrease of about 97% (Fig. S5G),
while it was equivalent for the calculation of both axial and transversal stretches (i.e.,
percentage errors less than 0.006% and difference less than 0.0005 respectively for axial
and transversal directions) (Figs. 5C-5F). The main cause of this decrease of time was the
big reduction of nodes and elements, respectively from 5,004 to 210 and from 3,450 to 138,
which resulted in the smaller dimension of matrices needed to solve the structure.

Equation (3) was also suitable to model the connective of Aplysia. Again, a rescaling
procedure and the axial symmetry were used to lower the geometric dimension of the
problem together with the time needed to achieve the solution (—95%). The bidimensional
approximation provided results similar to those coming from the three-dimensional model.
In particular, the percentage error was less than 1.6% and the difference lower than 0.02,
respectively for axial and radial stretches. Finally, nodal stresses had a similar distribution
in both cases, as shown in Figs. 6 and 7.

From nerve to bundle mechanics: towards a possible application to
the regeneration of nerves

Literature studies on neural-like (Ciofani et al., 2011; Sergi et al., 2013; Sergi, Marino ¢
Ciofani, 2015) or neural cells (Roccasalvo, Micera ¢ Sergi, 2015) investigated the behaviour
of single cells in topographical and chemical active environments (Sergi ¢ Cavalcanti-
Adam, 2017). Nevertheless, this approach could be effective to study the regeneration of
peripheral nerves during the first phases, when axons grow separately. However, when they
are grouped into nervous bundles, which are also formed by connective tissues, their global
mechanical properties change. Thus, as the mechanical properties of a tissue (which is
formed by several thousands of cells) can be mathematically handed using the ”continuum
approximation”, in the same way the mechanical behaviour of a nervous bundle can be
accounted for through a suitable SEF. The use of Eq. (3) to model peripheral nerves (e.g.,
pig and rabbit nerves) and the connective of Aplysia was not foreseen, since these structures
were dissimilar and belonged to different animal species. Indeed, the cerebro-connective
was formed by several axons surrounded by a transparent perineurium, so this structure
was similar to a nervous bundle of big animal or human nerves (Sunderland ¢ Bradley,
1952). Therefore, the ability of Eq. (3) in reproducing the behaviour of the connective
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(Koike, 1987) showed that this formulation may be also extended to model the mechanical
behaviour of nervous bundles.

The functional tolerance of nerves to stretch is related to the nerve
site

The shape of the stress/stretch curve varied across different species, (e.g., lobster and Aplysia
curves). Equation (3) was able to account for this variability through the interplay between
constants. Nevertheless, the only knowledge of these data was not able to univocally
reproduce the response of the material, since this response was related both to the stiffness
and to the range of extensibility of nerves (before rupture), which, in its turn, was related
to the material toughness. All these characteristics could be resumed as a “functional
tolerance” to stretch. Intriguingly, this functional tolerance of nerves to stretch was related
to the likelihood of changes in their in situ length (Koike, 1987). As a consequence, the
rabbit nerves were more extensible than the pig ones, since the rabbit body is, in general,
more suitable for running and jumping than the pig body. Similarly, the high (and quite
unexpected) resistance of the lobster nerve to extension was related to its very small
likelihood of in situ extensions, as well as the extreme tolerance to stretch of Aplysia
connective was related to the high extensibility of its body (Koike, 1987). This hypothesis
seems to be supported also by the discovery of the very high stretch tolerance of ventral
grooved blubber and tongue nerves in rorqual whales (Balaenopteridae) (Vogl et al., 2015).
Indeed, these nerves were able to be easily extended respectively of 75% and 115% before
becoming stiff. This very high tolerance to stretch was related to the large deformations
of both tongue and ventral grooved blubber needed to implement an efficient feeding.
Indeed, other kinds of whale nerves (i.e., intercostal and phrenic nerves) were only able
to be normally stretched (12% and 18%) (Vogl et al., 2015). These findings also support
the importance of the body location (and the resulting in situ stretches) to understand the
mechanical response of nerves, since just in a single animal species (rorqual whales) they
had a big difference in functional tolerance to stretch.

CONCLUSIONS

In this work, a Yeoh-like SEF was proposed to reproduce the mechanical response of
neural structures for a wide range of stretches (from A =1.08 to A =5) across different
animal species. More specifically, the provided SEF was used to implement in silico FE
models of peroneal nerve of large white pig as well as of a cerebro-abdominal connective
of Aplysia. Symmetries were proposed together with a re-scaling procedure, to simplify
in silico models, decreasing the computational time needed to solve stress fields. The
provided approach, which was limited to the nerve hypelasticity, could be further enriched
accounting for viscous aspects, and used to model the mechanical response of nerves across
species and for a wide range of stretches as well as to model the mechanical behaviour of
nervous bundles during regeneration processes through suitable scaffolds (Giannessi et al.,
2014) and devices (Daly et al., 2011).
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