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Abstract— Understanding the neurophysiological 

signals underlying voluntary motor control and decoding 
them for controlling limb prostheses is one of the major 
challenges in applied neuroscience and rehabilitation 
engineering. While pattern recognition of continuous 
myoelectric (EMG) signals is arguably the most 
investigated approach for hand prosthesis control, its 
underlying assumption is poorly supported, i.e., that 
repeated muscular contractions produce consistent 
patterns of steady-state EMGs. In fact, it still remain to be 
shown that pattern recognition-based controllers allow 
natural control over multiple grasps in a hand prosthesis 
outside well-controlled laboratory settings. Here we 
propose an approach that relies on decoding the intended 
grasp from forearm EMG recordings associated with the 
onset of muscle contraction as opposed to the steady-
state signals. Eight unimpaired individuals and two hand 
amputees performed four grasping movements with a 
variety of arm postures while EMG recordings 
subsequently processed to mimic signals picked up by 
conventional myoelectric sensors were obtained from 
their forearms and residual limbs, respectively. Off-line 
data analyses demonstrated the feasibility of the approach 
also with respect to the limb position effect. The sampling 
frequency and length of the classified EMG window that 
off-line resulted in optimal performance were applied to a 
controller of a research prosthesis worn by one hand 
amputee and proved functional in real-time when operated 
under realistic working conditions. 
 

Index Terms— Myoelectric control, pattern recognition, 
onset of muscle contraction, prosthetic hand, transient 
control. 

I. INTRODUCTION 
NDERSTADING the neurophysiological signals 
underlying voluntary motor control and decoding them 

for controlling limb prostheses are among the major 
challenges in applied neuroscience and rehabilitation 
engineering. Individuals with a below-elbow amputation 
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maintain part of the 18 extrinsic muscles that originally served 
the fingers and wrist. The electromyogram (EMG) recorded 
from these muscles can in theory be used to control a variety 
of grasps and movements in a multi-digit hand prosthesis. 
Although other promising techniques have been proposed and 
assessed, like peripheral electrodes [1], [2], implantable 
epimysial electrodes [3] or myoelectric sensors [4] and 
targeted muscle reinnervation [5], the use of EMG signals 
recorded from the skin surface remains the most widely 
spread, reliable and clinically viable approach for controlling 
hand prostheses [6]. Remarkably, the most reliable controller 
available today is substantially the two-state amplitude 
modulation EMG controller proposed by Bottomley [7] back 
in the ‘60s in which a single pair of agonist/antagonist muscles 
controls the opening and closing of the prosthetic hand. 
However, this scheme cannot differentiate between different 
muscular patterns pertaining to different hand movements, 
and, accordingly, cannot be used to control multiple grasps of 
a dexterous prosthesis. 

An alternative approach is pattern recognition, as first 
proposed by Finley and Wirta in 1967 [8]. This technique is 
based on the premise that amputees can activate repeatable 
and distinct muscular contractions for each class of desired 
motion and that the associated EMG patterns can be used to 
send commands to the prosthesis. Ideally, this occurs in a 
physiologically appropriate manner, i.e., that the individual 
contracts the residual muscles as to perform a particular grasp 
that the prosthesis then implements. Englehart and colleagues 
pioneered the development of continuous classifiers [9]–[11] 
that still represent the state of the art. With these classifiers, a 
set of statistical features is extracted from a continuous stream 
of signals using a sliding window at a certain rate [12]. The 
features are then fed into a classification algorithm able to 
differentiate between different patterns of muscle contractions 
and to produce a new decision (output of the classifier) at 
every time step, in a continuous fashion, with latencies short 
enough to be perceived as real time by the individual 
(typically within 300 ms [13]). Researchers have demonstrated 
that these classifiers are able to discriminate up to 12 
hand/wrist movements from forearm EMGs, with accuracies 
>95% both offline and in constrained laboratory environments 
[14]–[17]. However, if such classifiers also can be 
successfully applied in realistic settings, i.e., with different 
arm postures, grasps and force levels, remains to be resolved 
[18]–[20].  

Remarkably, the assumption that repeated muscular 
contractions produce repeatable patterns of steady-state EMGs 
is weak. In fact, the steady-state EMG has very little temporal 
structure (it is mostly a random signal) due to the active 

Classification of transient myoelectric signals 
for the control of multi-grasp hand prostheses 

Gunter Kanitz, Christian Cipriani, Senior Member, IEEE, and Benoni B. Edin 

U 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNSRE.2018.2861465

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Kanitz et al.: Classification of transient myoelectric signals for the control of multi-grasp hand prostheses 2 

modification of recruitment and firing patterns needed to 
sustain the contraction [21], [22]. In addition to this 
neurophysiological factor, changes in skin-electrode 
impedance, electrode shifts and varying loads on the residual 
limb [6] further affect the temporal structure of the EMG 
signal. For these reasons, time-averaged, compound statistical 
properties have to be extracted from the EMG signals for the 
classification. To further improve the reliability of the 
classification, majority voting (MV) is usually applied to the 
output of the continuous classifiers, such that the output class 
at a given time step is the most common class in the previous 
n time steps [10]. More complex post-processing approaches, 
such as velocity ramp (VR) [23] or confident-based rejection 
(CBR) methods [24] also exist. In short, continuous classifiers 
require both dimension reduction methods (statistical features 
extraction) and time domain filters (MV, VR or CBR behave 
as low pass filters), yet they are intrinsically prone to errors. 
Not surprisingly, the only clinically available continuous 
classifier based on pattern recognition is trained to recognize 
just two classes/movements [25]. 

While investigating the properties of the EMG coincident 
with the onset of rapid contractions, Hudgins and colleagues 
observed a substantial degree of structure in the transient 
waveforms of upper arm  muscles [26]. This observable 
structure has been reported by others [27], and suggests an 
orderly recruitment of motor units [22]. Other investigators 
assessed the performance of different classifiers, seeking to 
improve the accuracy of Hudgins’ and colleagues’ method 
[28]–[30], and very recently Jiang et. al. proposed a 
classification strategy following the same principles [31]. 
Besides these few studies, to our knowledge this approach was 
not further investigated and this work aimed to bridge this gap.  

Building on Hudgins seminal work, here we propose an 
approach for decoding the intended grasp from the forearm 
EMGs by processing the signals associated with the onset of 
muscle contraction. As grasping largely relies on feedforward 
mechanisms [32] we hypothesized that the muscle 
contractions associated with the initial phase of the grasp 
contained predictive information about the intended, 
preplanned grasp. If this hypothesis is correct it should be 
possible to decode the intended grasp only once during a 
reach-for-grasp action, thus avoiding the instability effects 
associated with continuous classification, and well in advance 
compared to the latter. To assess our hypothesis, we collected 
EMG data from the forearms of able-bodied participants and 
hand amputees while they performed four hand movements. 
The movements chosen, i.e., power, pinch, and lateral grasps, 
and hand opening include grasps that cover ~80% of activities 
of daily living [33] and can be implemented by clinically 
available multi-grasp hands [34]. The movements were 
performed in nine different positions within the work-space of 
the arm. Through off-line processing we extracted the portions 
(windows) of data associated to the onset of the muscular 
contraction from the EMG recordings, i.e., the transition 
between no-contraction and contraction. We processed such 
portions of data (or transients) to identify the intended 
movements using a representative classifier. Besides assessing 
the viability of the approach, we searched for the input 
parameters (window length and sampling frequency) that 
optimized the performance independently of the arm position. 

 
Fig. 1 Experimental setup. A) Four hand movements: power grasp, 
lateral grasp, pinch grasp, and hand open. B) Nine arm positions: 
elbow flexed in the parasagittal plane at ~45° (FD), ~90° (FH) and 
~135° (FU); elbow flexed at ~90° with the shoulder medially rotated 
~45° (FM), and laterally rotated ~45° (FL) (left picture); arm reaching 
down (AD), reaching up (AU), reaching the front (AF), reaching lateral 
(AL) (right picture). C) Placement of the 15 electrodes around the 
circumference of the forearm. 

 
The configuration that proved optimal off-line was 

implemented in a real-time system operating with clinically 
widely available EMG sensors and successfully demonstrated 
by one amputee operating a multi-grasp prosthetic hand. 

II. MATERIALS AND METHODS 
A. Participants and experimental protocol 

Ten participants took part in the experiments after giving 
their informed consent. Two participants (both males) were 
below-elbow amputees and myoelectric hand users (Table I). 
The eight able-bodied volunteers (aged 24-46, two females) 
had no history of neuromuscular disorders.  

Participants were instructed to stand upright and to perform 
four different hand movements:  a power grasp, a lateral 
thumb-index grasp, a three-digit pinch grasp, and hand 
opening (Fig. 1A). These movements were performed at nine 
different arm positions including four with the elbow fully 
extended and five with the elbow flexed (arm reaching the 
front, lateral, up and down). Fully extended elbow positions 
included: arm reaching down, up, front, and lateral. In three of 
the elbow flexed positions the elbow was flexed in a 
parasagittal plane (crossing the shoulder) at ~45°, ~90°, and 
~135°; in the last two the elbow was flexed at ~90° with the 
shoulder/humerus medially rotated ~45°) or with the 
shoulder/humerus laterally rotated ~45° (Fig. 1B). This 
variability was included to assess the robustness of the 
decoding approach with respect to arm positions and covered a 
large portion of the normal work space. Each of the four hand 
movements was repeated five times in a randomized order in 
each of the nine arm positions, for a total of 180 repetitions. 
Instructions on what arm position to adopt and which 
movement to perform were visually presented on a screen 
along with a progress bar that indicated the duration (3 
seconds) and remaining time. The participants were instructed 
to perform the grasps at moderate, non-fatiguing force levels 
and were allowed to rest after each trial. 
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Table I Demographic Data of Below-Elbow Amputees 

ID Age 
Years since 
Amputation Cause Side Level 

Residual limb, 
length from elbow 

Contralateral forearm 
(from elbow) 

A1 38 21 traumatic Right Wrist 35cm 51 cm 
A2 44 20 traumatic Right Transradial 22cm 42 cm 

 
 
Fifteen differential channels of surface EMGs were 

recorded using disposable Ag/AgCl electrodes with an inter-
electrode distance of 2 cm at a sampling rate of 2048 Hz 
(using the EMG-USB2+, OT BioElettronica S.r.l., Turin, 
Italy) and stored for offline analysis. For both able-bodied and 
amputees, the surface electrodes were placed equidistant in a 
cuff fashion around the forearm starting just distal to the 
elbow joint (Fig. 1C) to cover most extrinsic flexor and 
extensor muscles of the hand (i.e., extensor digitorum 
communis, flexor digitorum superficialis, abductor pollicis 
longus, extensor pollicis longus, and flexor pollicis longus). 
The general purpose of the placement was to obtain recordings 
from as many different muscles as possible.  

Able-bodied participants were fitted with an 18 joint 
sensors data-glove (CyberGlove III by Cyber Glove Systems 
LLC, San Jose, CA; acquisition rate 30 Hz). The glove was 
used as a reference to verify the possibility of detecting the 
onset of contraction from the EMGs with respect to the actual 
hand and finger movements. EMG data and hand movements 
were synchronized using a data acquisition board (USB-6009, 
National Instruments Corporation, Austin, TX) and a custom 
application running on a laptop. The recorded data was 
analyzed offline.  

B. Data analysis  
The goal of the data analysis was twofold: (i) to assess 

whether different hand movements could be classified using a 
window of EMG data containing the onset of the contraction; 
and (ii), to identify time-domain parameters (such as the 
length of the window and the sampling frequency) that 
optimized the performance of such a classification scheme. 

The data analysis proceeded in several stages (Fig. 2). First, 
the entire raw EMG signal was whitened using parameters 
from the training set [35] and then the mean absolute value 
(MAV) was extracted from each channel of raw EMG signal, 
using an overlapping sliding window of 100 ms with a single 
sample displacement (1/2048Hz) [12]. Second, the MAV was 
filtered and down-sampled to one out of five sampling 
frequencies (FS) under investigation: 100, 80, 60, 40 and 20 
Hz. During reach-for-grasping actions in daily-life actions, the 
hand is preshaped long before the hand is close to the target 
object [36]. The associated onset of forearm contractions, tT, 
was identified for each piece of data associated to each 
movement by means of an onset detection algorithm (ODA) 
described below. Finally, the processed EMG signals in a time 
window (transient window) starting at tT and lasting for WL 
(window length), were fed into a classifier. WL was varied 
from 0 to 300 ms in steps of 50 ms. 

The ratio of windows properly associated to the target 
movement, i.e., the true positive rate (TPR; Equation (E1)), 
was used as the metric to assess the performance of the 

classification scheme and to infer its sensitivity with respect to 
the amount of the input data (WL) and its sampling frequency 
(FS).  

 𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑟𝑖𝑎𝑙𝑠  
(E1) 

 
Calculate MAV

Antialiasing & Downsampling

Onset Detection Algorithm

Classification strategy

Computation of TPRs

WLWL

FSFS

 
 

Fig. 2 Steps of the data analysis. Acronyms: MAV – Mean Absolute 
Value of EMG; TPR: True Positive Rate. FS: Sampling frequency. WL: 
Window length. 
 
 
1) Choice of Choice of window length and sampling frequency 

The choice of WL and FS can be crucial because they 
influence the response time and possibly the accuracy of the 
classification [37]. For each participant and each combination 
of WL and FS, EMGs collected in a single arm position were 
used to train the classifier. 

The data from the remaining eight arm positions were used 
for the evaluation of the TPR (leave-8-out validation). This 
procedure was repeated for all 9 arm positions to compute a 
global WL and FS dependent TPR for each participant.  

The combination of WL and FS that yielded to optimal TPR, 
was found by fitting the TPR across all participants with a 
multivariate 2nd degree polynomial regression model with 
interaction terms (E2). Regression coefficients (c1,...,c6) which 
did not show statistical significance (p>0.05) were ignored.  

 

 
𝑇𝑃𝑅𝑅𝐸𝐺 = 𝑐1 + 𝑐2𝑊𝐿 + 𝑐3𝐹𝑆 + 𝑐4𝑊𝐿𝐹𝑆

+ 𝑐5𝑊𝐿
2 + 𝑐6𝐹𝑆

2 
(E2) 

The maximum acceptable classification delay with respect 
to the onset (coincident with the window length, WL), was 
limited to 300 ms to comply with real-time constraints [13]. A 
Friedman test was finally used to infer on statistical 
differences between the optimal combination and all the 
others��

The combination of parameters (WL*, FS*) that proved 
optimal across all participants with respect to performance 
(TPR) and maximum classification delay (WL MAX), was 
finally used to infer on the robustness of the approach across 
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arm positions. To this end, we computed for each participant 
the performance of the trained classifier in all each arm 
position and tested in the remaining ones. Based on these 
results, we determined the optimal training position and finally 
computed the TPR across arm positions. 

�
2) Onset Detection Algorithm (ODA) 

The onset of the muscle contraction (tT) was retrieved from 
the EMG data associated with each movement by means of a 
threshold detector. The threshold was computed using the 
training set and was determined using a test signal (MAVTST), 
computed as the sum of the EMG channels (MAV), with each 
channel previously high-pass filtered for offset removal, as in: 

 

MAVTST(𝑡) =  ∑ (𝑀𝐴𝑉(𝑡, 𝑐ℎ) −
∑ 𝑀𝐴𝑉(𝑡𝑂, 𝑐ℎ)𝑡

𝑡𝑂=𝑡−0.3𝑠

0.3 ∙ 𝐹𝑠 )
𝑛𝐸𝑀𝐺

𝑐ℎ=1

 

 
(E3) 

The duration of the filter window (300 ms) was chosen to 
reduce the distortion of the onset as in Hudgins and colleagues 
[26]. tT was fixed at 50% the minimum peak amplitude 
reached by MAVTST across all trials in the training set. We 
chose this rather simple ODA instead of more complex, state 
of the art ODAs (e.g. the Teager-Kaiser energy operator [38]) 
as it could be implemented online with limited computational 
cost. 

The onsets of the physical movements in able-bodied 
subjects (tG) were also identified in a similar manner using the 
glove data. Another test signal, GLVTST, was computed (E4) 
and the threshold was set at 50% the peak velocity. 

 

GLVTST(𝑡) =  ∑ 𝑎𝑏𝑠 (
𝑑
𝑑𝑡 𝐺𝐿𝑉(𝑡, 𝑐ℎ))

𝑛𝐺𝐿𝑉

𝑐ℎ=1

 (E4) 

The median and the central 50th inter-percentile range of the 
difference between the onsets detected from the EMG (tT) and 
the data glove (tG) were used, as an indirect yet qualitative 
measure, to infer on the accuracy and precision of the EMG 
ODA. 

This ODA was found to be working well but there are 
certainly other useful alternatives [38]–[41].  

 
3) Classification scheme 

We have no reason to believe that there is a specific 
classifier that outperforms all others. However, we 
implemented a state of the art Error-Correcting Output-Codes 
classifier [42] with a one-versus-all coding matrix [43], 
comprising four binary support vector machines using a linear 
kernel. Unlike conventional continuous classification schemes, 
our classifier was fed with time series of EMG windows 
starting at tT and lasting for WL seconds. The classifier was fed 
with vectors (VT) that contained the temporal evolution of the 
signals, rather than only instantaneous patterns as in 
conventional schemes (Fig. 3) [44].  

 

 
 

Fig. 3 Representation of the input data used for classification. The 
extracted EMG window (nxm matrix) is transformed into a row vector 
( 𝐕𝐓 ∈ R𝟏× n∙m) and used for classification. 

 

 
 

Fig. 4 Experimental setup of the online system. A) Individual with 
below elbow amputation wearing the research prosthesis. B) Online 
implementation of the transient EMG classifier. Once the transient 
detection algorithm (ODA) identifies an onset (at tT), the transient 
window (WL) is recorded and classified; thereafter, the average of the 
(steady-state) EMG signals from four EMG sensors is computed and 
used to proportionally modulate the aperture of the identified grasp. 

 

C. Online implementation and feasibility test 
The proposed approach was implemented in an actual 

research prosthesis and its performance in real-time was 
qualitatively assessed in a realistic workspace and condition. 
The prosthesis included a customized prosthetic socket with 
four EMG sensors (Otto Bock, 13E125=50, Vienna, Austria), 
a research robotic hand (IH2 Azzurra by Prensilia S.r.l., 
Pontedera, Italy), and a portable micro PC (Sharks Cove by 
Microsoft, Redmond, WA; Intel ATOM Processor, 4 Core, 
1.88 GHz and 1 GB of RAM) running a Matlab application 
that implemented the classification scheme (Fig. 4A). The 
socket was manufactured for one hand amputee (participant 
A1 – Table I). The participant was an experienced, regular 
user of a conventional myoelectric hand but had limited 
experience of multi-grasp hands. A proportional velocity 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNSRE.2018.2861465

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Kanitz et al.: Classification of transient myoelectric signals for the control of multi-grasp hand prostheses 5 

control, having the mean EMG signal as the input, was used to 
control the hand aperture once a hand movement (one of the 
four) had been classified (Fig. 4B). The participant was asked 
to use the three grips to transport three objects from one 
position to another on a stand or on a table. The task required 
large arm movements. Prior to the actual test, the participant 
performed a short session (~30 seconds) during which both the 
classifier and the participant got trained (supplementary 
video). The threshold used for the ODA was computed using 
the data recorded during this training session. 

III. RESULTS 
For each participant the experimental recordings lasted for 

less than an hour including the setup preparation. The 
implemented ODA proved functional in identifying the onset 
of the contraction with respect to the actual physical 
movement as recorded by the data-glove in able-bodied. In 
particular the tT was mostly detected before tG albeit varied 
largely across participants and hand movements (Fig. 5). The 
onset detected from the EMG (tT) anticipated the physical 
movement (tG) in the median by 120, 190, 250, and 70 ms, for 
the pinch, open, power and lateral movements, respectively. 

The fitting of the TPR with a 2nd order polynomial (E2), 
proved FS and its interaction with WL to be not statistically 
significant (p>0.05). In other words different sampling 
frequencies did not affect the TPR of the classifier (FS* � 
[100, 80, 60, 40, 20] Hz). Accordingly, we used a model of the 
TPR (E2) that only depended on WL:  

 

For the remaining analysis, the results of the classification 
across all sampling rates were combined to increase the 
sample size.  

The TPR fitting across all participants proved optimal (with 
a TPR of 94%) for WL = WL* = 300 ms (Fig. 6). However, the 
Friedman test revealed no statistical differences between the 
result at WL* and those for WL ≥ 150 ms.  

The TPRs of the classifier when trained in each arm 
position and tested in the remaining ones, was recomputed for 
each participant, using the optimal configuration (i.e., WL* = 
300 ms). Across all participants, the FD training position 
(elbow ~45° flexed in the parasagittal plane) resulted in the 
best classification of the four hand movements; all training 
positions also resulted in an overall TPR ≥ 89% (Fig. 7A). 
With FD as the training position, the performance of the 
classifier remained largely invariant to changes in arm 
position (Fig. 7B). When training in the FD position and 
testing in the remaining arm positions the lateral grasp was 
prone to errors in the AU (elbow extended, arm reaching 
lateral) positions, whereas the pinch grasp had a reduced 
performance for the AF (elbow extended, arm reaching front) 
position (Fig. 7B). Finally, using WL*, FS*, training in the FD 
position and testing in all other arm positions, yielded an 
average TPRs of 96% for able-bodied participants and 95% 
for amputees (Fig. 8; for the two amputees the average TPR 
was 93% and 97%, respectively ). 

The outcomes from the online implementation and 

feasibility test are preliminary and qualitative in nature. 
However, the online myocontroller decoding grasp-type and 
grip force (proportional control) appeared feasible and robust 
in a realistic scenario (supplementary video). Following a 
short training of the classifier, the participant was able to 
operate the hand and successfully transfer objects using the 
three implemented grasps, in a wide range of the arm 
workspace (Fig. 9; supplementary video). The classifier 
trained in one position thus proved robust in all other 
positions. Importantly, the control strategy we propose 
evidently does not critically depend on a large number of 
EMG electrodes—at least with a limited set of hand 
movements—since the amputee successfully managed to 
control the prosthetic hand with four rather than 15 electrodes. 

IV. DISCUSSION 
To summarize, we claim that forearm EMGs patterns at the 

onset of a contraction contain predictive information about 
upcoming grasps and, as such, can be used for real-time 
control of a prosthetic hand.  

The idea of using pattern recognition of transient EMGs for 
prosthetic control is not new. Hudgins and colleagues from 
University of New Brunswick (UNB) [26] proposed already in 
1993 the use of transient EMG signals at the onset of a muscle 
contraction (of upper arm muscles). However, in their 
following studies in 2001 [9] and 2003 [10], they abandoned 
the transient approach in favor of the continuous classification 
strategy claiming that the requirement of “initiating a 
contraction from rest … prohibits switching from class to 
class in an effective or intuitive manner” [10]. Their 
continuous classifier had a major impact in the field of upper 
limb prosthetics research and has been the starting point for 
the vast majority of pattern recognition control 
approaches/systems developed worldwide since then1. Still, 
due to the nature of the steady-state EMG [21], [22] 
continuous classifiers are known to suffer from instability 
issues, which require post-processing techniques to address 
them [10], [23], [45]. Post-processing algorithms inevitably 
reduce the responsiveness of the system as they infer how to 
remove misclassified samples at the output of the classifier 
from history or prior information. The transient EMG 
approach uses only the data contained in a short window 
associated to a muscle contraction, which is known to contain 
a deterministic structure [26], [27]. The advantage of this 
approach is that classification is only necessary when a 
transient window is detected by the ODA, making the entire 
system less prone to errors. In addition, when errors occur, it 
is comparatively simple for the user to abort the ongoing grasp 
attempt and start anew. Importantly, since the contraction 
precedes the actual movement (Fig. 5), the response time of 
the transient classifier is faster than that of a conventional 
continuous classifier. 

 

 
1 It would be impractical to cite all the systems developed based on 

[9] and [10]. At the time of writing this manuscript [9] has been cited 
>500 times, and [10] >900 times. 

𝑇𝑃𝑅𝑅𝐸𝐺∗ = 𝑐1 + 𝑐2𝑊𝐿 + 𝑐5𝑊𝐿
2 (E5) 
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Fig. 5 Accuracy and precision of the ODA. The top and bottom panels show the median velocity profiles from the data glove (GLVTST) across all 
able-bodied participants for the pinch (top panel) and the power grasp (bottom panel). Intra-subject variability is illustrated by the interquartile 
range (IQR) for a single participant, i.e., participant 4 (in red). The middle four panels show for each type of grasp onsets as detected by the EMG 
(tT) relative to the glove (tG = 0 s).  On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the 
whiskers extend to the most extreme data points not considering outliers, and outliers are plotted individually. The average true positive rate (TPR) 
for each participant is found to the right. 
 

The choice of the UNB group to abandon the transient 
approach in favor of the continuous one was likely influenced 
by the prosthetic components available at the time, and in turn 
by the limb movements under investigation. These were wrist 
movements (flexion/extension and radial/ulnar deviation) plus 
opening/closing of the hand, all digits together [9]. The 
transient approach required an individual to elicit a contraction 
from rest but this was a rather awkward imposition when 
performing sequences of such movements. Hence it was 
deemed appropriate to abandon the transient approach 
although this entailed using the less deterministic steady-state 
EMG signals. Today multi-Degrees of Freedom (DoF) hands 
are able to perform different grasp types, not just the opening 
and closing of all the digits together exist [34]. If the aim is to 
decode such grasps from the EMG signals – and this was our 
goal – it is perfectly acceptable to conceive a control scheme 
in which the different grasps can be formed starting from a 
relax state of the prosthesis but not from any other state/grasp 
[34].  

During normal reach-to-grasp movements humans start 
from a ‘rest’ state and then as they reach to grasp an object, 
they gradually mould the hand to enclose it using a 
predetermined grasp type (e.g. lateral grasp, pinch grip, etc.) 
and stereotypical movements [46], [47]. For simple grasping 
tasks, the grasp type is maintained until the hand is reopened. 
Moreover, available multi-DoF hands do not even allow 
complex in-hand manipulation. It thus seems reasonable to 
propose a control scheme in which different grasps are formed 
starting from a relax state of the prosthesis but not from any 
other state/grasp. The transient approach proposed by Hudgins 
and colleagues finds in the grasp control of prosthetic hands 
for below-elbow amputees a new and apt application. 
Interestingly, this approach was recently investigated by Jiang 
et. al. [31] who proposed a transient classification strategy 
(they used the term transition) for the control of a prosthesis 
which included a single DoF hand and a wrist rotator, 
achieving results in line and complementary with our work.  
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Fig. 6 Boxplot of the true positive rates (TPRs) as function of WL with 
indications of groups that show a statistically significant difference from 
the optimal WL (WL* = 300 ms) as determined by the Friedman test (*: 
0.05 ≥ p > 0.01; **: 0.01 ≥ p > 0.001; ***: 0.001 ≥ p). 
 

The performance of the transient classifier relies on the 
ability of the ODA to identify the onset of a muscle 
contraction, and thus to feed the classifier with the portion of 
data which contains the temporal pattern associated to a 
certain movement. Our recordings with able-bodied 
participants, showed that our simple EMG ODA detected 
onsets ahead of the movements but with some variability 
across movements and participants. However this variability 
was mainly inter-participant and the individually-trained ODA 
was able to capture the intended grasp (Fig. 5). Nonetheless, 
the ODA used in this study should be considered just an 
example; ODAs with better temporal precision may further 
improve the accuracy of the classifier. 

The optimization of the parameters WL and FS yielded to 
interesting results. Specifically, the performance was not 
statistically different with window lengths ≥150 ms (Fig. 6). 
This is highly relevant for clinically viable control system for 
prostheses. It suggests that the EMG signals picked up by 
conventional myoelectric sensors (e.g. Otto Bock, 
13E125=50), which are a rectified and low-pass filtered 
version of the raw signal (similar to the MAV used in this 
work) could be sampled at a relatively low sampling 
frequency, with reduced computational cost. It also suggests 
that a window of data containing ≥ 150 ms (i.e., down to ~4 
samples, at FS = 20 Hz) is enough for successful classification; 
as this window starts before the actual movement the response 
of the classifier might well be perceived as in real-time.  

The analysis of the TPR across arm positions proved the 
transient EMG approach resistant to the limb position effect 
[18], [20], currently observed in steady-state classifiers. In 
practice, changes of arm posture and of applied loads to the 
prosthesis, generate relative movements between the stump 
and the socket, that yield to changes in the recorded EMG, 
which in turn is misclassified [18], [48], [49]. Current 
approaches for reducing such an effect include the use of 
orientation sensors and/or increasing the sample of training set 
from different limb positions [48] or the application of 
computationally expensive features [50]. Our analysis, 
confirmed by the online test, suggests that a transient EMG 
classifier requires no additional hardware (or computation, or 
training time) to achieve consistent and successful operation in 

the arm workspace. Again, this is important in clinical 
prosthetics). 

It is known that multiple time domain features improve the 
accuracy of the classification, and that optimal feature sets do 
exist for continuous classifiers [10], [37], [44]. Nonetheless 
we decided to use a single feature here, i.e., MAV. This choice 
was primarily dictated by the fact that the MAV of the raw 
EMG is known to be comparable to the output of clinically 
available EMG sensors. This allowed us to infer on the 
applicability of our outcomes to a more applied scenario and 
to test the algorithms in a real-time experimental setup. The 
latter, although not providing quantitative results (and this 
represents a limitation for the present study), confirmed the 
results of the offline analysis proving that the transient 
classifier could work in a clinical setup. It should be noted that 
in the case of real-time control (i.e., with a user in the loop), 
the user would likely adapt to the system and learn how to 
achieve optimal performance [51]. Nonetheless it needs to be 
clarified how more complex feature sets [10], [26], [52] or 
classifiers, would perform with the present approach, offline 
and in real-time. The generalizability of the approach also 
needs to be investigated, as classification performance 
generally degrades with the number of classes/movements.  

 

 
 

Fig. 7 True Positive Rates (TPRs) for each hand movement using the 
found optimal parameters (WL* = 300 ms, FS* = � [100, 80, 60, 40, 
20] Hz) (results from all participants). A) TPRs based on training 
positions. B) TPRs using the optimal training position (FD). The bottom 
rows depict the average TPRs across movements. Position acronyms: 
elbow flexed in the parasagittal plane at ~45° (FD), ~90° (FH) and 
~135° (FU); elbow flexed at ~90° with the shoulder medially rotated 
~45° (FM), and laterally rotated ~45° (FL); arm reaching down (AD), 
reaching up (AU), reaching the front (AF), and reaching lateral (AL). 
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Fig. 8 Hand movements confusion matrices using optimal parameters 
(training in down position, WL* = 300 ms, FS* = � [100, 80, 60, 40, 20] 
Hz). The TP is in the diagonal. The TPR for each target class is 
indicated on the right of each matrix. 

 
Finally, the results achieved in this work invite studies of a 

number of questions related to the transient EMG approach. It 
is not known if it can be applied to control simultaneously 
hand and wrist motions, nor if it can be used to estimate the 
grip force for the desired grasp. To assess the clinical viability 
of the transient approach a study with multiple participants 
and varying levels of below-elbow amputation, operating 
actual prostheses, and comparing the transient approach with a 
state of the art continuous classifier would be desirable. 

 

 
 

Fig. 9 Snapshots from the feasibility tests of the online myoelectric 
controller. This required the participant to perform large movements of 
the upper limb to transfer objects that required various grasps (cf., the 
video clip in the supplementary materials). 
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