
  

  

Abstract—In the recent years, the interest in exoskeletons for 

industrial applications has significantly increased. To provide 

efficient assistance to users with an active exoskeleton when 

performing lifting tasks, the automatic detection of the 

movement onset in real time is an important requirement for the 

control system. In this paper, we propose a lift detection 

algorithm using only exoskeleton sensors. A quadratic 

discriminant analysis classifier is combined to threshold-based 

rules to detect the onset of the lift movement. The promise of this 

algorithm was validated by applying it to control online an 

active hip exoskeleton in a sequence of experimental tasks 

including lifting and lowering a load, standing up, sitting down, 

and walking. The average detection accuracy over seven healthy 

subjects was 98.72 ± 0.58%.  

I. INTRODUCTION 

N recent years, the interest in exoskeletons for industrial 

applications has continuously and significantly increased 

[1]. Exoskeletons have the potential to relieve part of the 

effort workers have to sustain during their job, especially in 

heavy material handling tasks. Compared to passive 

exoskeletons, active exoskeletons have more versatile control 

systems and thanks to the external power source they can 

produce more powerful and more efficient lift assistance. 

However, to take full advantages of an active exoskeleton, it 

is important for the control system to automatically detect the 

onset of the lift movement in order to deliver appropriate 

assistance synchronously with the assisted movement.  

Despite the necessity of developing lift detection 

algorithms for active exoskeletons, related studies are limited 

[2, 3]. Kawai et al. developed a myoelectric controller to 

detect user’s lift intentions to trigger lift assistance [2]. 

Electromyographic (EMG) signals of three thigh muscles 

were collected and processed with artificial neural network 

(ANN). The main limitation of this approach is that extra 

EMG electrodes should be placed on user’s body, which 

makes it inconvenient to use. In addition, the performance of 

lift detection might be influenced by EMG changes due to 

muscle fatigue, sweating, and electrode displacement, which 

could happen after performing lifting tasks for a long time. 
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In this paper, we present a lift detection algorithm using 

only signals collected by exoskeleton sensors. Compared to 

algorithms requiring extra sensors (e.g. EMG electrodes), our 

approach is more practical to be used in real working 

scenarios. The algorithm first detects possible lift movements, 

and then a quadratic discriminant analysis (QDA) classifier is 

used to determine whether they are real lifts or other 

movements. The algorithm was verified on seven healthy 

subjects wearing an active hip exoskeleton. 

II. METHODS 

A. Experimental setup and protocol 

The exoskeleton  used in this study is a robotic hip 

exoskeleton to assist the hip flexion/extension movement 

(APO [4]), developed at The BioRobotics Institute of Scuola 

Superiore Sant’Anna. Sensors used for lift detection include 

two on-board encoders and an inertial measurement unit 

(IMU) on the backpack (Fig. 1(A)). They are used to record 

hip joint angles of both sides and kinematic information of the 

trunk. A 5-kg box is used in the experiment. 

Seven healthy male subjects (27.9 ± 2.3 years old, 178.1 ± 

8.1 cm, 70.0 ± 6.4 kg) were recruited for this experiment. The 

experiment consisted of two sessions: training session and 

testing session. In the training session, subjects were asked to 

perform two types of tasks: (1) repetitive lifting and (2) a 

movement sequence including standing up, walking, lifting 

and lowering the load, and sitting down. Both tasks were 

performed with five different lift techniques (namely, squat, 

stoop, freestyle, left-asymmetric, and right-asymmetric 

lifting). In the testing session, subjects were asked to perform 

the task similar to the second task in the training session with 

only freestyle lift technique at slow, normal and fast speeds. 
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Fig. 1. (A) A subject wearing the APO endorsed with an IMU on the 

backpack. (B) Phase definition for lift detection. The dotted lines 

represent in the order the start of the Grasp phase, the start of the Lift 

phase and the end of the Lift phase. 



  

The APO was controlled in transparent mode (i.e. zero-torque 

control) in the training session, while in assistive mode 

(assistance delivery was triggered by the lift detection 

algorithm) in the testing session. Data collected in the training 

session were used to train the detection model used in the 

testing session. 

B. Lift detection algorithm 

Lift detection is performed in two steps. In the first step, a 

set of threshold-based rules is used to detect possible lift 

movements. Subject’s movement can be segmented into three 

phases: Grasp, Lift, and Other (Fig. 1(B)). The transition 

from Other to Grasp should follows three rules: (1) 𝜃𝑑𝑖𝑓𝑓 <

𝛼1, (2) 𝜃𝑚𝑒𝑎𝑛 > 𝛼2 and (3) 𝜃𝑠𝑡𝑑 < 𝛼3 . The transition from 

Grasp to Lift, i.e. the detection of possible lift, should satisfy 

three rules: (1) 𝜃𝑠𝑡𝑑 > 𝛼4 , (2) HasPeak = 1 , and (3) 

𝑇𝑔𝑟𝑎𝑠𝑝 ≤ 𝑇0. The transition from Lift to Other should meet 

two rules: (1) 𝜃𝑚𝑒𝑎𝑛 < 𝛼5 , and (2) 𝜃𝑠𝑡𝑑 < 𝛼6  or 

HasValley = 1 . In the above rules: 𝜃𝑑𝑖𝑓𝑓  is calculated as 

|𝜃𝐿 − 𝜃𝑅|, where 𝜃𝐿 and 𝜃𝑅 denote hip joint angle of the left 

and right side, respectively; 𝜃𝑚𝑒𝑎𝑛  equals to (𝜃𝐿 + 𝜃𝑅)/2 and 

𝜃𝑠𝑡𝑑 is the standard deviation of (𝜃𝐿 + 𝜃𝑅) over the last 100 

ms; T𝑔𝑟𝑎𝑠𝑝  is the current duration of grasping; HasPeak 

equals to 1 if a peak of (𝜃𝐿 + 𝜃𝑅) has occurred within the 

Grasp phase, otherwise it equals to 0; HasValley equals to 1 if 

a valley of (𝜃𝐿 + 𝜃𝑅)  is detected within the Lift phase, 

otherwise it equals to 0; 𝛼1  to 𝛼6 , and 𝑇0  are predefined 

thresholds. 

In the second step, if a possible lift movement is detected, a 

QDA classifier is used to determine whether it is a real one or 

not. Two features are used for the recognition, which are 𝑓1 =

𝜃𝑚𝑒𝑎𝑛  and 𝑓2 = 𝛽(𝑖) − 𝛽(𝑖𝑔𝑟𝑎𝑠𝑝0).  𝛽  is defined as 

𝜃𝑚𝑒𝑎𝑛  –  𝜑, where 𝜑 is roll value of the IMU on the backpack 

of the exoskeleton. 𝑖 denotes the current sample and 𝑖𝑔𝑟𝑎𝑠𝑝0 

denotes the sample at the initial moment of grasping in 

current lift.  

III. RESULTS 

Table. I reports the performance of online lift detection in 

the testing session. Note that TP denotes lift correctly 

detected as lift; FP denotes non-lift movement mistakenly 

detected as lift; TN denotes non-lift movement not detected as 

lift; FN denotes lift not detected as lift.  

The average detection accuracy achieved over seven 

subjects is 98.72 ± 0.58% (Mean ± SEM).  

IV. DISCUSSION AND CONCLUSION 

To better provide assistance to a user, movement intention 

detection plays an important role in active exoskeletons 

control. In this paper, we develop a lift detection algorithm 

for an active hip exoskeleton aiming at lift assistance. The 

presented algorithm uses a two-step detection strategy. The 

first step could detect the onset of a possible lift movement 

and avoid most mistaken detection of non-lift movements 

(e.g. standing up and level-ground walking) as lift. However, 

some movements (e.g. sitting down) could be sometime 

mistakenly detected as lift: indeed, most of the errors are due 

to the misclassification of sitting down as lift. Therefore, in 

the second step, a QDA classifier is necessary to further 

verify whether the detected lift is actually occurring. 

The proposed algorithm has two main advantages. First, 

the algorithm only uses signals measured from exoskeleton 

embedded sensors, which makes the whole system compact 

and convenient to use, especially for industrial application. 

Second, the algorithm is able to detect the lift onset timely 

enough to provide efficient assistance. Subjective feedback 

from all the subjects showed that the APO controlled by the 

proposed algorithm could provide helpful assistance in the 

testing session, which made the lift easier with less perceived 

physical effort. In addition, the application of a QDA 

classifier in the second step increases the potential of the 

algorithm with respect to a rule-based strategy, as we did in 

[4], because QDA classifier can be used to solve a multi-class 

recognition problem, as well. For example, in addition to 

detecting the lift, it might be possible for the algorithm to 

classify the lift technique. 

The primary limitation of the algorithm is that mistaken lift 

detections could still happen and there are also a few miss 

detections of lifts. In future works, we will investigate some 

other features to improve the performance of lift detection, 

and we will also explore the potential of this algorithm to 

recognize different lift techniques.  
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TABLE I 
LIFT DETECTION PERFORMANCE IN THE TESTING SESSION 

Subject TP [#] FP [#] TN [#] FN [#] Accuracy 

S 1 174 0 29 0 100.00% 

S 2 177 0 30 3 98.57% 

S 3 183 8 22 1 95.79% 

S 4 180 1 29 0 99.52% 

S 5 182 1 29 0 99.53% 

S 6 180 5 25 0 97.62% 

S 7 180 0 30 0 100.00% 

 

 


